Skip to main content
Log in

Quantitative topographic analysis of fractal surfaces by scanning tunneling microscopy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The applicability of models based on fractal geometry to length scales of nanometers is confirmed by Fourier analysis of scanning tunneling microscopy images of a sputter deposited gold film, a copper fatigue fracture surface, and a single crystal silicon fracture surface. Surfaces are characterized in terms of fractal geometry with a Fourier profile analysis, the calculations yielding fractal dimensions with high precision. Fractal models are shown to apply at length scales to 12 Å, at which point the STM tip geometry influences the information. Directionality and spatial variation of the topographic structures are measured. For the directions investigated, the gold and silicon appeared isotropic, while the copper fracture surface exhibited large differences in structure. The influences of noise in the images and of intrinsic mathematical scatter in the calculations are tested with profiles generated from fractal Brownian motion and the Weierstrass-Mandelbrot function. Accurate estimates of the fractal dimension of surfaces from STM data result only when images consist of at least 1000–2000 points per line and 1/f-type noise has amplitudes two orders of magnitude lower than the image signal. Analysis of computer generated ideal profiles from the Weierstrass-Mandelbrot function and fractional Brownian motion also illustrates that the Fourier analysis is useful only in determining the local fractal dimension. This requirement of high spatial resolution (vertical information density) is met by STM data. The fact that fractal models can be used at lengths as small as nanometers implies that continued topographic structural analyses may be used to study atomistic processes such as those occurring during fracture of elastic solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pfeifer, Appl. of Surf. Sci. 18, 146–164 (1984).

    Article  CAS  Google Scholar 

  2. B. Mandelbrot, Fractal Geometry of Nature (W. H. Freeman & Co., San Francisco, CA, 1982).

    Google Scholar 

  3. J. Feder, Fractals (Plenum Press, New York, 1988).

    Book  Google Scholar 

  4. J. J. Mecholsky, T. Mackin, and D. E. Passoja, Adv. in Cer. Vol. 22: Fractography of Glasses and Ceramics (American Ceramic Society, Inc., 1988), pp. 127–134.

    Google Scholar 

  5. D. E. Passoja, Adv. in Cer. Vol. 22: Fractography of Glasses and Ceramics (American Ceramic Society, Inc., 1988), pp. 127–134.

    Google Scholar 

  6. D. E. Passoja and D. J. Amborski, “Fracture Profile Analysis by Fourier Transform Methods”.

  7. B. Mandelbrot, D. Passoja, and A. Paullay, Nature 308, 721–722 (1984).

    Article  CAS  Google Scholar 

  8. E. Underwood and K. Banerji, Mat. Sci. and Eng. 80, 1–14 (1986).

    Article  Google Scholar 

  9. G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726–729 (1982).

    CAS  Google Scholar 

  10. See, for example, a number of papers in Proc. Int. Conf. on STM 1987, edited by R. Feenstra, J. Vac. Sci. and Technol., 257–556 (1988).

  11. D. A. Bonnell and D.R. Clarke, J. Am. Ceram. Soc. 71 629–637 (1988).

    Article  CAS  Google Scholar 

  12. D. A. Bonnell, Mat. Sci. and Eng. A105/106, 55–63 (1988).

  13. D. A. Bonnell and M. Angelopoulos, Synth. Met. 33, 301–310 (1989).

    Article  CAS  Google Scholar 

  14. R. Voss, in Fundamental Algorithms for Computer Graphics, edited by R. A. Earnshaw (Springer-Verlag, New York, 1985), pp. 805–835.

    Chapter  Google Scholar 

  15. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W.T. Vettering, Numerical Recipes (Cambridge University Press, Cambridge, U.K., 1986), pp. 381–453.

    Google Scholar 

  16. M.V. Berry and Z.V. Lewis, Proc. R. Soc. London 370, 459–484 (1980).

    Google Scholar 

  17. M. Coster and J. L. Chermat, Int. Met. Rev. 28, 228–250 (1983).

    Article  Google Scholar 

  18. B. Dubuc, J. F. Quiniou, C. Rouques-Carmes, C. Tricot, and S.W. Zucker, Phys. Rev. A 39, 1500–1512 (1989).

    Article  CAS  Google Scholar 

  19. E. Stoll and O. Marti, Surf. Sci. 181, 222–229 (1987).

    Article  Google Scholar 

  20. P. Meakin, R. Ramanlal, L. M. Sander, and R. C. Ball, Phys. Rev. A 34, 5091–5103 (1986).

    Article  CAS  Google Scholar 

  21. F. Family and T. Vicsek, J. Phys. A 18, L75 (1984).

    Article  Google Scholar 

  22. M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett. 56, 889 (1986).

    Article  CAS  Google Scholar 

  23. P. Meakin and R. Jullien, Europhys. Lett. 9, 71–76 (1989).

    Article  Google Scholar 

  24. R. E. Williford, Scripta Metall. 22, 149–154 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, M.W., Bonnell, D.A. Quantitative topographic analysis of fractal surfaces by scanning tunneling microscopy. Journal of Materials Research 5, 2244–2254 (1990). https://doi.org/10.1557/JMR.1990.2244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2244

Navigation