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  Similarities and differences in the immune systems of plants and animals are discussed 

in relation to non-specific and specific immunity (resistance), systemic acquired resistance 

(immune memory), transgenerational immune memory and gene silencing. Furthermore, we 

attempt to answer the question “what is inhibiting or killing pathogens during the immune 

(resistance) process”? Therefore, the possible roles of reactive oxygen species and 

antioxidants in pathogen inhibition are evaluated in different types of plant disease resistance. 
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 If we consider immunity (resistance) to pathogen infections in the case of plants and 

animals, similarities or analogous mechanisms seem surprising but differences could be also 

important. The two systems seem to be „so far and yet so close”, as was expressed by 

Maekawa et al. (2011) in an excellent paper. The detailed unraveling of the mechanisms of 

plant immunity followed vertebrate immunity research with a 40-50 years delay, in spite of 

the fact that Ward (1902) as early as 110 years ago has shown that some lines of bromes 

(Bromus inermis) react to infection of a rust fungus (Puccinia dispersa) with an „immune 

response”.  

 The essence of both plant and animal immunity is the recognition and protection 

against the foreign (the non-self). In the course of immune reactions non-specific and specific 

plant or animal receptors detect non-specific and specific pathogen elicitor molecules also 

called antigens in animal systems. The first class of plant or animal receptors recognizes the 

non-specific „pathogen-associated molecular patterns” (PAMP) or „microbe-associated 
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molecular patterns” (MAMP). These are membrane-resident receptors, also called as pattern-

recognition receptors, PRRs. On the other hand, the second class of receptors recognize 

pathogen effectors (polymorphic strain-specific antigens) usually inside host cells. These host 

cell receptors belong to the NLR protein family (NLR = Nucleotide-binding oligomerization 

domain- and leucine-rich repeat-containing proteins). The plant NLR receptors are usually 

called resistance proteins (R-proteins). Accordingly, one can differentiate between two types 

of immunity: the non-specific pattern-triggered immunity and the specific effector-triggered 

immunity (cf. Jones and Dangl, 2006).  

 As a result of the recognition of non-self molecules in plant and animal organisms, 

analogous, but not identical, signal responses are initiated. Plants lack mobile immune cells, 

like lymphocytes (B and T cells) in animals. Lymphocytes that clonally express receptors can 

detect pathogens in the circulatory system. As a result of the recognition of pathogen antigens 

by receptors, clonal expansion and differentiation of the receptor-carrying lymphocytes takes 

place. In addition, both T and B memory cells are formed which produce receptors with the 

same antigen-specificity and permit subsequent secondary immune responses through highly 

complex interactions. Because plants lack a circulatory system, different immune strategies 

are needed to establish specific but less complex immune responses and generate a different 

type of immune memory. This is indeed a „stress memory” which acts against a secondary 

infection in remote plant organs.   

 

Non-specific immunity 

 The first step in the recognition of the non-self is a general response, when non-

specific receptors on the surface of plant or animal cells detect non-specific PAMPs. These 

molecules regularly occur in bacteria, fungi and in several other microbes. Typical examples 

are: lipopolysaccharides, peptidoglucanes, chitin, bacterial flagellin. PAMP-receptors can be 

regarded as multidomain proteins with similar biological functions and protein structures 

(Felix et al., 1999; Ausubel, 2005; Rast et al., 2006; Boller and Felix, 2009; Ronald and 

Beutler, 2010). When these plant or animal receptors are activated by PAMPs, general 

reactions are stimulated in infected hosts. Ion fluxes are activated, an oxidative burst is 

initiated, mitogen-activated protein kinases (MAP kinases) are expressed. Furthermore, a set 

of transcriptional changes occur, e.g. in plants, so-called pathogenesis-related proteins and 

phytoalexins are being accumulated. All these alterations may have roles in PAMP-induced 

immunity (pattern-triggered immunity) (Jones and Dangl, 2006; Boller and Felix, 2009).   
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Specific immunity  

 Although PAMP-triggered immunity can be considered as a general response of plant 

or animal organisms to pathogens, another type of immunity permits the inhibition of specific 

pathogenic races in resistant hosts. In these cases specific effectors of pathogenic races trigger 

the immune response (Zipfel and Rathjen, 2008). In both plants and animals, a lipid 

compound, phosphatidyl-inositol 3-phosphate mediates entry of pathogen effectors into host 

cells (Kale et al., 2010). Plant or animal NLR receptors that interact with these effectors 

possess a very specific recognition ability. Interestingly, effector recognition by a receptor is 

associated with an almost infinite number of effector (antigen)-binding ability of animal 

receptors. In this case somatic recombination and mutation is generated in the receptor-

carrying lymphocytes determining a high degree of immune diversity. This type of specific 

immunity represents the animal adaptive immune system (Fig.1). Effector recognition by a 

receptor results in clonal expansion of lymphocytes and formation of memory cells having 

receptors with effector-binding specificity identical to that of lymphocytes. These procedures 

allow a secondary immune response against a subsequent infection (cf. Jones and Dangl, 

2006).   

  An adaptive immune system does not exist in plants. Plants have no lymphocytes, 

immune memory cells are not formed and the phenomenon of somatic recombination has not 

been unequivocally demonstrated. However, as regards similarity, plant NLR receptors, the 

R-proteins also have NB and LRR domains like their animal counterparts. In addition, there is 

a secondary immune response operating in plants that confers inhibition of secondary 

infections and is triggered by a primary infection that occurred earlier in a distal plant organ. 

This phenomenon is called systemic acquired resistance (SAR) (Ross, 1961; Durrant and 

Dong, 2004; Spoel and Dong, 2012).     

 One can raise the question, how can plants develop specific resistance mechanisms 

induced by numerous effectors of different pathogenic races? Plants do not have an adaptive 

immune system, the basis of immune diversity in animals. Only a limited number of specific 

receptors (R-proteins) exist in plant organisms, and still, immune plants can recognize a high 

number of effectors of pathogenic races. The “gene-for-gene concept” tried to answer this 

question (Flor, 1971). According to the original experiments rust-resistant flax strains express 

different R-genes corresponding to specific avirulence (effector) genes in each pathogenic rust 

race. In each incompatible (resistant) host/pathogen combination an avirulence gene encodes 

a specific effector and a plant R-gene encodes a specific receptor. Thus, an effector of a race 

can activate only the corresponding specific plant receptor. However, it turned out that only a 
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few hundred R-genes exist in host plants, as compared to the almost infinite number of 

effectors encoded by pathogen avirulence genes. Therefore, this concept cannot explain the 

high degree of immune capacity and broad immune diversity of plants (Fig. 2).  

 Recent investigations on the mechanism of plant non-adaptive immunity point to the 

possibility that plants may exhibit a different type of immune diversity. Several results have 

shown that plant R-protein receptors do not directly recognize effectors of pathogens as 

foreign proteins in most host/pathogen combinations. Rather, pathogen effectors modify 

target self-proteins in plants in the course of the infection process (Fig. 3). As a result of the 

proteolytic activity, phosphorylation, acetylation etc. exerted by effectors, the modified self-

proteins become “foreign” (non-self) for plant receptors. Thus, the receptor R-protein can 

recognize the modified target self-protein. This is the essence of the “guard hypothesis”. An 

R-protein is somehow connected to a target self protein(s). After modifications, target 

proteins are able to initiate recognition processes and an immune response develops (Liu et 

al., 2011; Chung et al., 2011; Mukhtar et al., 2011).   

 It seems clear from the “guard hypothesis” that only a limited number of receptor R-

proteins will be required to recognize different pathogenic races because the very large 

number of effectors released by those races may modify the same target protein (albeit in 

different ways). It also turned out that a large number of effectors can alter only a few 

conserved target self-proteins, which will be able to activate R-proteins. Thus, immunity will 

be initiated in a very large number of plant cultivar/pathogenic race combinations. It would 

seem that immune diversity may exist also in plants, because only a small number of R-

proteins can recognize an almost infinite number of race-specific effectors.  

 As a consequence of the effector-receptor interaction signal transduction chains are 

activated and, in the end, invading pathogens will be inhibited or killed. A series of genes are 

activated or inhibited in the resistant plant. However, the role of these genes in the immunity 

process is not exactly clear so far. Tao et al. (2003) surprisingly demonstrated that similar 

gene groups are activated in infected hosts whether the plant exhibits susceptibility or 

resistance. In the case of compatible or incompatible Arabidopsis-Pseudomonas combinations 

one can detect common mRNA expression profiles. If we compare specific and non-specific 

immune processes, again same or similar gene groups are activated (Navarro et al., 2004; 

Zipfel et al., 2004). All these facts refer to the possibility that timing of gene activations, 

rather than gene alteration itself has a pivotal role in disease resistance. It was shown in 

several experiments that those genes are activated much earlier in resistant plants than in 
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susceptible ones. Accordingly, it seems reasonable to suppose that different forms of plant 

immunity have a common basic mechanism.  

 If an effector protein of a pathogen modifies a plant protein which has no role in non-

self recognition, this modified protein will not be foreign therefore will not be recognized by 

receptor R-proteins. In this case the pathogen effector acts as a virulence factor rather than an 

avirulence gene product. In fact, the original function of pathogen effectors is to promote 

pathogenesis as virulence factors (cf. Jones and Dangl, 2006). Therefore, effector proteins of a 

given pathogen could be regarded as “double agents”, as was expressed by Alfano and 

Collmer (2004), since effectors may behave as avirulence factors in immune processes or 

virulence factors in reactions of susceptibility. 

 

Systemic acquired resistance (SAR) (Immune memory – Stress memory) 

 Mobile immune cells and a circulatory system permit diseased animals to exert 

immunity in the whole body. In addition, immune memory cells are also formed having 

receptors with antigen-binding ability allowing a secondary immune response to a subsequent 

infection. This immune memory-based response is a very effective type of adaptive immune 

response in animals. Interestingly, immune memory operates also in invertebrate animals 

although they do not have an adaptive immune response system. The mechanism is not well 

understood at the moment (Netea et al., 2011).   

The process of immune memory also exists in plants where signals produced at the site 

of a primary infection induce a secondary immune response in non-infected distal tissues 

(systemic acquired resistance, SAR) (Ross, 1961; Balázs et al., 1977; Sziráki et al., 1980; 

Doss, 1981; Hammerschmidt et al., 1982; Durrant and Dong, 2004; Spoel and Dong, 2012). 

However, this type of immunity is non-specific, it is effective against symptoms caused by a 

broad spectrum of pathogens or abiotic stresses usually associated with tissue necroses. It 

resembles the immune memory of animals although plants do not produce immune cells and 

memory cells and lack a circulatory system. Interestingly, one theory claims that somatic 

recombination, a DNA rearrangement analogous to adaptive immunity in animals, occurs in 

plants. For example, viral infections may induce hypothetical systemic signals which initiate 

an increase in the rate of somatic recombinations at the site of primary infections as well as in 

distal tissues (Kovalchuk et al., 2003; Dong, 2004; Boyko et al., 2007; Alvarez et al., 2010; 

Boyko and Kovalchuk, 2011). Further research is needed to clarify whether somatic 

recombination is a general mechanism of plant immune memory.   
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 According to another concept the phenomenon of immune memory should rather be 

regarded as “stress memory”. Primary infection can induce SAR in distal tissues if the 

pathogen infection or stress is associated with local cell and tissue necrotization. However, 

there may be certain exceptions to this rule. For example, when a tobacco host plant expresses 

the Rx virus resistance gene and is infected with Potato virus X (PVX), a symptomless 

immunity (extreme resistance) develops, with complete absence of the hypersensitive reaction 

(i.e. localized necrosis). Liu et al. (2010) have shown that in such cases in spite of the lack of 

necrotic symptoms SAR is operating in distal leaves. One can suppose that symptomless 

stress at the site of primary infection is sufficient to induce SAR in other organs. Furthermore, 

it is important to consider that SAR-induction also occurs if not pathogens but chemicals, 

such as HgCl2 or liquid N2, elicit tissue necrotization at the site of primary application. In 

addition, SAR provides resistance not only against secondary pathogen infections since the 

rate of necrotization caused by HgCl2, CuCl2 and the herbicide paraquat will also be 

diminished in distal plant organs following SAR-induction (Sziráki et al., 1980; Doss, 1981; 

Strobel and Kuć, 1995).   

 It was shown that salicylic acid (SA) accumulates during SAR (Métraux et al., 1990; 

Malamy et al., 1990). SA is an essential component of SAR but not the mobile signal itself 

(Forouhar et al., 2005; Park et al., 2007). Recently, interesting results have been published as 

regards the mobile signal system which makes it possible to send messages from the site of 

primary infection to distal plant tissues. These multiple signals can initiate different reactions 

in systemic tissues and, as a consequence, SA accumulates at the site of secondary infection 

or stress, where a transcription cofactor, the product of the NPR1 gene (Nonexpressor of PR 

Genes 1) is activated by SA (Mou et al. 2003; Spoel and Dong, 2012). Following this reaction 

transcriptional reprogramming cascades are initiated and SAR develops in distal tissues. 

Furthermore, antioxidants accumulate and production of reactive oxygen species (ROS) is 

reduced, in accordance with suppression of necrotic symptoms in remote leaves of plants 

expressing SAR (Fodor et al., 1997; Király et al., 2002; Hafez et al., 2004). It seems important 

to note that the transcriptional actions of NPR1 are analogous to those induced by the immune 

regulator nuclear factor kappa B (NF-κB) in mammals.   

 At the site of primary infection where several immune signals are generated and SA is 

accumulated, methyl salicylic acid (MeSA), a possible mobile SAR signal, is formed with the 

aid of methyl transferase. In remote uninfected tissues MeSA will be reformed to SA by 

MeSA-esterase (Forouhar et al., 2005; Park et al., 2007). According to recent experiments the 

SA-MeSA transformation may not be a pivotal phenomenon in all plant/pathogen 
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combinations, its role depends on host plant species, plant/pathogen interactions and 

environmental conditions. Also, it turned out that during the course of SAR-induction the 

interactions of several signals are needed. Some of these recently recognized signals are a 

lipid transfer protein (DIR1), glycerol-3-phosphate (G3P), azelaic acid and pipecolic acid. 

These compounds, in addition to SA, may take part in the generation and translocation of 

mobile immune (SAR) signal(s) or function as a mobile immune signal per se and induce 

development of SAR (cf. Dempsey and Klessig, 2012; Shah and Zeier, 2013). However, exact 

details of the combined actions of these immune (SAR) signals are not clarified so far. In 

addition, it is known that SA analogs, such as acetyl salicylic acid (aspirin), 2,6-

dichloroisonicotinic acid (INA) and benzothiadiazole (BTH) can also act as SAR inducers 

(White, 1979; Kogel et al., 1994; Görlach et al., 1996). In fact, in the 1990-s BTH was used 

for a few years as a resistance-inducer pesticide in farming practice.   

          

Transgenerational  immune memory 

It is known that a transgenerational memory of stress exists in animal systems (Carone 

et al., 2010).  In certain cases plant immune memory can be also transmitted to subsequent 

generations (Luna et al., 2012). This implies that somatic and/or meiotic recombination may 

also occur in plants, in response to pathogen infections and abiotic stresses, which could be a 

cause of transgenerational immune memory (Chiriac et al., 2006; Molinier et al., 2006; Boyko 

et al., 2007, 2010; Alvarez et al., 2010; Boyko and Kovalchuk, 2011). Furthermore, epigenetic 

changes may also have a role in the inheritance of plant immune memory. Dowen et al. 

(2012) emphasize that defense genes can be modulated by DNA methylation. Immunity of 

Arabidopsis thaliana to Pseudomonas syringae pv. tomato is negatively regulated by DNA 

methylation and loss of DNA methylation stimulates resistance to bacterial infection. 

Akimoto et al., (2007) called the attention to the enhanced resistance of globally demethylated 

rice to infection by a Xanthomonas bacterium. Generally, it would seem that some defense 

genes are controlled by DNA methylation (Dowen et al., 2012). Methylation of histones may 

also occur. The progeny of salt stressed Arabidopsis plants exhibited changes in histones, 

modifications of DNA methylation and expression of several genes (Bilichak et al., 2012). 

According to recent research a primary plant infection results in modification of histone 

methylation and acetylation patterns at promoters of SA-inducible defense (stress)-related 

genes in systemic tissues. Such changes confer enhanced induction of these genes during a 

secondary infection and the “primed” state of SA-dependent defenses and SAR is transmitted 

to subsequent generations. This transgenerational transmission of plant immune memory 
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requires activity of the transcription cofactor NPR1, a central regulator of SA-dependent 

defenses and SAR (Jaskiewicz et al., 2011; Luna et al., 2012).  However, understanding the 

exact steps of the development of plant transgenerational immune memory will require further 

research.   

 

Gene silencing as an immune response 

Until the mid 1990-s the generally accepted notion was that the essence of animal and 

plant immunity is the recognition of non-self proteins. However, it turned out that during 

certain plant virus infections and in transgenic plants the expression of foreign genes (e.g. 

viral RNA or transgenes) that enter plant cells may be inhibited (silenced) (cf. van der Krol et 

al., 1990; Napoli et al., 1990; Baulcombe, 1996, 2004; Voinnet, 2001, 2005). Although 

transcription of a transgene or virus gene could be normal, the resulting mRNA may be 

degraded, i.e. post-transcriptional gene silencing occurs. In these cases immunity is expressed 

on the level of nucleic acids (RNA, DNA), rather than on the level of proteins. 

 Plants recognize a certain level of transgene mRNA and invading viral RNA as 

foreign, initiating thereby a specific degradation mechanism. A distinct type of RNA-

dependent RNA polymerase(s) is activated and antisense RNA strands are synthesized that 

are complementary to the transgene and/or virus RNA. This process results in the formation 

of double-stranded (ds) RNA. In fact, dsRNA is indeed regarded as foreign by plants, since 

they normally do not encounter these molecules.  In virus infections, dsRNA is also formed as 

an intermediate product of pathogen replication. These foreign dsRNA structures are 

degraded by dsRNA-specific ribonucleases. This is how the process of post-transcriptional 

gene silencing is initiated, the end result being the inhibition of expression of all genes that 

show sequence homology to the foreign gene (transgene or virus gene) (see e.g. Baulcombe, 

2004; Eamens et al. 2008; Ghildiyal and Zamore 2009; Ruiz-Ferrer and Voinnet, 2009; Wang 

et al., 2012).   

Artificial production of dsRNA in plants (e.g. via a transgenic approach) may induce 

strong gene silencing (Hamilton et al. 1998; Waterhouse et al. 1998; Carthew, 2001). 

Interestingly, it has been also shown that truncated (defective) viral RNA-s, a characteristic of 

certain plant virus infections, may cause gene silencing and therefore, virus inhibition (Szittya 

et al., 2002; Silhavy and Burgyán, 2004). Gene silencing is an unwanted phenomenon in plant 

breeding and biotechnology, because it inhibits effective expression of transgenes. On the 

other hand, gene silencing may be beneficial for pest management, because it could confer 

plant resistance (immunity) to e.g. virus infections. Interestingly, gene silencing may also 
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protect a host crop against a root parasitic weed. Transgenic alfalfa was created that expresses 

an antisense (i.e. dsRNA-producing) construct based on the acetyl-CoA carboxylase gene of 

the root parasite Triphysaria versicolor. Development of the root parasite on transgenic alfalfa 

was inhibited by up to 80 % (Bandaranayake and Yoder, 2013). It is likely that gene silencing 

is also functional during virus infections of humans and animals although there is insufficient 

proof so far to claim that this mechanism is effective not only in laboratory experiments but is 

also a pivotal element of immunity under natural conditions. 

 

What is inhibiting or killing pathogens during the immune process? 

 The interaction between pathogen effectors and resistant host receptors results in 

inhibition or killing of pathogens. In past years, several theories tried to explain the possible 

mechanisms of disease resistance in plants, such as accumulation of antimicrobial 

compounds, cell wall thickening, activities of cell wall degrading enzymes, localized necrosis 

(hypersensitive response, HR), accumulation of phytoalexins, reactive oxygen species (ROS) 

etc. (cf. Király et al., 1972; Goodman et al., 1986; Jones and Dangl, 2006; Spoel and Dong, 

2012). Although excellent results have been published on the genetics of plant/pathogen 

interactions (e.g. Staskawicz et al., 1995; Schulze-Lefert and Bieri, 2005; Maekawa et al., 

2011; Gassmann and Bhattacharjee, 2012), the direct mechanism of the “killing effect” has 

remained unknown. Recently, the role that ROS, primarily oxygen free radicals, play in 

animal and plant immunity has become a pivotal research topic mainly because of two 

reasons. First, there is a cause-and-effect relationship between animal phagocytosis and the 

accumulation of ROS (Morel et al., 1991). Second, ROS accumulation has been also detected 

in the course of several plant immunity events (Doke, 1983; Doke and Ohashi, 1988; Ádám et 

al., 1989; Levine et al, 1994; Baker and Orlandi, 1995; Delledonne et al., 2001; Apel and Hirt, 

2004; Delledonne, 2005; Torres et al., 2006; Shang et al., 2010). Furthermore, it was 

experienced that the accumulated ROS can protect plants from a late infection. Thus, it was 

shown that it is possible to “immunize” plants against an expected infection (Hafez and 

Király, 2003; El-Zahaby et al., 2004; Hafez et al., 2012).  

 Animal phagocytosis and plant immunity seem to be analogous processes. However, 

as regards the biochemical mechanisms, certain differences exist. In case of phagocytosis 

superoxide (O2 
.-) reacts with nitrogen monoxide (NO.) and peroxinitrite (ONOO-) is formed, 

the latter compound being capable of killing bacterial pathogens. On the other hand, in plants 

O2 
.- is dismutated and  hydrogen peroxide (H2O2) is produced. In this case H2O2 reacts with 
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NO., as a consequence, the killing action will operate both against pathogens and host plant 

cells (HR). ONOO- has no killing action in the case of plants (Delledonne, 2005).  

 

Role of reactive oxygen species (ROS) in plant immunity on the basis of recent experiments 

 About three decades ago Doke (1983) and Doke and Ohashi (1988) demonstrated that 

in a fungus resistant potato and a virus resistant tobacco exhibiting HR type immune 

reactions, O2
.- accumulates in contrast to the susceptible infected host plants where there is no 

change in O2
.- levels. Later, we have characterized a similar phenomenon in tobacco leaves 

showing an HR-type resistance to bacterial infections (Ádám et al., 1989). In all of these 

resistant hosts there is a correlation between immunity and accumulation of O2
.-. A similar 

correlation has been demonstrated in rust-resistant wheat cultivars and accumulation of H2O2 

(Hafez et al., 2009). 

 

Non-host resistance 

  Fabro et al. (2011) have shown that in the “non-host” plant Brassica rapa (turnip) 

more effectors of Hyaloperonospora arabidopsidis are recognized than in Arabidopsis 

thaliana which is a “host” of this oomycete pathogen. This could be a possible cause of the 

inability of H. arabidopsidis to grow in turnip. In other words, the host plant cannot recognize 

a subset of effectors of its own pathogen which are recognized, and therefore induce an 

immune reaction in the non-host. However, it is still an unanswered question, how this 

immune reaction can inhibit pathogens in non-host plants? 

Although there is a definite correlation between accumulation of certain reactive 

oxygen species (ROS) and inhibition of plant pathogens in resistant (immune) plants, the 

cause-and-effect relationship between these two events (i.e. ROS accumulation and disease 

resistance) is not entirely clear so far. We have observed in recent unpublished experiments 

that in a series of plant/pathogen interactions, the “non-host” type of resistance is associated 

with an early activation of O2
.--accumulation in resistant non-host plants, which could inhibit 

or kill pathogens early after infection (Fig. 4 and Fig. 5). This may happen in barley plants 

which have been infected with powdery mildew specialized for infection of wheat, but not 

barley leaves (Blumeria graminis f. sp. tritici). Barley is a non-host for this wheat pathogenic 

fungus, but it is compatible with another, barley-specific powdery mildew, Blumeria graminis 

f. sp. hordei. If the infectious pathogen is wheat powdery mildew, barley plants remain 

symptomless (no HR is produced) and disease development is fully inhibited. If barley is 

infected with its own powdery mildew, the reaction may result in resistance with inhibition of 
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the pathogen and production of HR symptoms or in susceptibility with development of typical 

disease symptoms and unarrested growth of the pathogen. In the former case of “host” type of 

resistance O2
.- also accumulates, although relatively late after infection, as compared to non-

host resistance. However, in infected susceptible barley there is no O2
.- -production. It would 

seem that this is a general rule based on several experiments. Accordingly, the cause of 

symptomless non-host resistance could be the early inhibition or killing of infectious agents 

by reactive oxygen species. However, in host plants exhibiting resistance to infections (host 

resistance) O2
.--accumulation takes place somewhat later, thus pathogens can grow for a 

limited time, the HR can develop, although the host remains resistant to powdery mildew. In 

this case O2
.- may inhibit or kill, not only pathogens but also several host cells causing 

resistance with HR symptoms. In a compatible plant/pathogen combination, where the host is 

susceptible to infection, pathogen growth is uninhibited and disease symptoms are produced 

possibly because there is no O2
.--accumulation after infection which could be due to elevated 

antioxidant capacity of the host (El-Zahaby et al., 1995; Harrach et al., 2008). This theory is 

supported by another finding in our laboratory (unpublished results). It was shown that a short 

heat-shock in the non-host resistant barley causes a partial susceptibility to wheat powdery 

mildew and, at the same time, inhibition of O2
.-- production (see below).  

 

Inhibition of O2
.-
 and H2O2 production in plants increases susceptibility 

 We have analyzed the effect of inhibition of ROS-accumulation on plant disease 

resistance in two types of experiments. In one investigation we wanted to see the influence of 

inhibited or suppressed O2
.-- production caused by high temperature on disease resistance of 

tobacco and barley. In another experiment we have characterized the effect of suppressed 

ROS-production of a NADPH-oxidase mutant of Arabidopsis thaliana on disease resistance.  

 It is known for a long time that in TMV-infected resistant tobacco kept at a relatively 

high temperature (30oC) necrotic lesions (HR) are suppressed and, correspondingly, viral 

replication is released from inhibition in the originally resistant tobacco that expresses the 

virus-resistance gene N (Samuel, 1931). We have shown (Király et al., 2008) that at 30oC not 

only the resistance-associated HR-type necrosis is inhibited, but O2
.- production is also 

suppressed, coupled with a  decreased activity of NADPH-oxidase and reduced expression of 

the encoding NADPH-oxidase gene, factors that have a pivotal role in O2
.-- production during 

plant resistance (Doke and Ohashi, 1988; Torres and Dangl, 2005; Proels et al., 2010; Marino 

et al., 2012). Furthermore, activity of an antioxidant enzyme, dehydro-ascorbate reductase, 

was also stimulated in TMV-infected, N gene-containing tobacco kept at 30oC, indicating an 
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enhanced “neutralization” of ROS. As a result, virus-resistance was shifted into the direction 

of susceptibility and virus (TMV) replication was enhanced. On the other hand, external 

application of ROS-producing chemicals or H2O2 to tobacco leaves causes enhanced virus-

resistance if applied early, e.g. two hours after inoculation (Bacsó et al., 2011). From these 

results one can conclude that the action of high temperature on increased virus susceptibility 

is in a cause-and-effect relationship with suppression of O2
.-- production in tobacco leaves.  

 In another series of experiments we have immersed barley leaves into hot water (49oC) 

for 30 sec. and, 2 hours later, leaves were inoculated with the wheat powdery mildew fungus 

(Blumeria graminis f. sp. tritici). In response to this short heat-treatment, non-host resistant 

barley leaves turned partially susceptible to the fungus and levels of O2
.- were significantly 

reduced. A similar phenomenon was experienced when heat-treated barley was infected with 

a hemibiotrophic fungus (Bipolaris sorokiniana). This pathogen produces necrotic symptoms 

at the end of its life cycle in susceptible hosts. Multiplication of B. sorokiniana was enhanced 

and the tissue necroses were more pronounced in heat-treated barley, but the stimulated 

susceptibility was associated with elevated O2
.- production, which is an early signal of 

necrotization. In this case reduction in O2
.-production caused by heat treatment was 

counteracted and masked by the elevated O2
.- production caused by plant tissue necrotization 

(Király et al, 2013).  

 In order to further demonstrate that inhibition of O2
.- and H2O2 production in plants 

increases susceptibility, the mechanism of this process was also investigated by a different 

experimental approach. We inoculated an NADPH-oxidase mutant of Arabidopsis thaliana 

with viral and bacterial pathogens. In the rbohD “knock out” mutant the production of H2O2 

and supposedly O2
.- production is inhibited because  activity of  NADPH-oxidase has been 

knocked out. Pogány et al. (2009) have shown that this mutant turned to be more susceptible 

to symptoms induced by Alternaria brassicicola. According to recent results this mutant is 

also susceptible to bacterial infections (cf. Marino et al., 2012). Our unpublished experiments 

also demonstrated that the rbohD mutant Arabidopsis, which is inhibited in ROS-production 

and NADPH oxidase enzyme activity, is more susceptible to infections by both a viral and a 

bacterial pathogen. Preliminary experiments have shown that the mutant Arabidopsis plants 

regained their original resistance if leaves were externally treated with chemicals that generate 

ROS (e.g. riboflavine-methionin and glucose-glucose oxidase) or with H2O2.  

 In summary, through genetic and biochemical inhibition of ROS accumulation it has 

been demonstrated by us and others that several ROS may have a central role in plant 

resistance against viral, bacterial and fungus infections.  
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Induction of disease resistance in susceptible plants by external application of ROS 

 Our earlier publications have shown that it is possible to induce resistance in 

susceptible plants if we externally apply 50 mM H2O2 to leaves or treat susceptible leaves 

with chemicals (riboflavin-methionine, xanthine-xanthine oxidase) that induce ROS-

production (Hafez and Király, 2003; El-Zahaby et al., 2004). As a result of the action of ROS, 

pathogens are inhibited or killed, therefore typical disease symptoms cannot develop, however 

HR-type tissue necroses associated with the immune reaction are produced. If the originally 

susceptible plants (e.g. powdery mildewed barley) receive not only H2O2 or other ROS 

treatments that are able to cause resistance to the fungus but also antioxidants that can 

neutralize the actions of ROS, the plants remain susceptible. These results demonstrate that 

plant disease resistance may indeed depend on the killing action of certain ROS.  

When we applied H2O2 or several other ROS-producing compounds to leaves of 

Arabidopsis thaliana inoculated with Pseudomonas syringae pv. tomato DC3000, the number 

of pathogenic bacteria was significantly reduced, as compared to untreated but infected 

control plants. It was also shown (Bacsó et al., 2011) that externally applied H2O2 or ROS-

producing compounds can inhibit replication of TMV in a virus-susceptible tobacco (cv. 

Samsun nn) or decrease the number of local necrotic lesions (HR) in the tobacco cultivar 

Samsun NN that is resistant to TMV. It is important to note that external ROS can induce 

resistance only if it is applied not later than a few hours after inoculation. If reactive oxygen 

species are applied three days after virus-inoculation, they cannot induce resistance (Király et 

al, 2008; Bacsó et al. 2011). 

Our unpublished experiments demonstrated that if certain ROS are produced or 

accumulated in due time in plants, e.g. pepper, this may cause resistance to infection. We 

have shown that it is possible to transfer powdery mildew resistance of cherry pepper 

(Capsicum annuum var. cerasiforme) to sweet pepper (Capsicum annuum) by grafting. 

Several cultivars of cherry pepper exhibit almost full resistance to the pepper powdery mildew 

fungus (Leveillula taurica). If cherry pepper is the rootstock, it can transfer resistance to the 

grafted and originally susceptible sweet pepper scion. It was shown that the level of O2
.-, 

determined by nitroblue-tetrazolium chloride (NBT), is much higher in resistant cherry pepper 

than in susceptible sweet pepper plants. Following grafting and powdery mildew infection, 

O2
.- accumulated to high levels also in the originally susceptible scion, and leaves of the scion 

turned to be powdery mildew resistant. Interestingly, the grafting procedure stimulates O2
.--

accumulation in leaves of the scion even if the grafted plant is not infected with the fungus. In 
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correlation with these events, activity of NADPH-oxidase, the enzyme mainly responsible for 

O2
.--production caused by abiotic and biotic plant stresses (cf. Torres and Dangl, 2005; 

Marino et al., 2012), is also stimulated. We can conclude that O2
.- has a central role in this 

graft-transmissible resistance of cherry pepper to powdery mildew. 

Only a few cases are mentioned in the literature when disease resistance has been 

transferred from the rootstock to scion by grafting (Šutić, 1965; Vulić et al., 2013; Al-

Mawaali et al., 2013), however, the mechanisms were not described in any case. On the other 

hand, Molnar et al. (2010) and Dunoyer et al. (2010) reported that small interfering RNAs 

(siRNAs) that  are mobile elements, could be responsible for transfer of genetic information 

from the rootstock to scion or vice versa. Whether or not siRNAs are responsible for the 

stimulated O2
.- production and activated NADPH-oxidase in the grafted pepper scion, remains 

to be seen in the future.  

 

Symptom resistance caused by stimulated antioxidants 

Elevation of plant antioxidant capacity increases resistance to symptoms caused by 

necrotrophic pathogens (Waller et al., 2005; Barna et al., 2012; Harrach et al., 2013).  

Symptom resistance means that although disease symptoms are suppressed in the host, the 

infecting pathogen is not inhibited or killed after infection. This type of immunity may be 

useful in commercial farming because yield damage could be reduced. Symptom resistance 

can be induced by a mild ROS-treatment to the host. This causes a mild damage to tissues 

and, as a response, antioxidant activities will be stimulated (Halliwell and Gutteridge, 1999). 

Such a stimulated antioxidant capacity can diminish or inhibit ROS-induced necrotization 

associated with pathogen infections. The phenomenon of symptom resistance is analogous to 

animal vaccination, and could be regarded as “plant immunization”. However, we have shown 

that viral, bacterial or fungal pathogens are indeed not damaged in symptom-resistant plants 

only the development of necrotic symptoms is inhibited or suppressed (Hafez et al., 2012).  

Earlier, we experienced that tobacco cells selected in vitro for ROS resistance and later 

induced to produce callus tissues and regenerated to full plants, exhibit resistance to 

pathogens, toxins and abiotic stresses that cause necrotic symptoms in different plants (Barna 

et al., 1993; Darkó et al., 2009, 2011). Also in these cases stimulated antioxidants seem to be 

responsible for the inhibition of necrotic symptoms in the stressed or infected ROS-resistant 

plants.  

A different approach to create ROS-resistance in plants is overexpression of the iron-

binding protein ferritin.  We have shown that in such tobacco plants generation of the 
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hydroxyl radical (OH.) is inhibited due to the unavailability of free Fe resulting in enhanced 

resistance to pathogen-induced necrotic symptoms (Deák et al., 1999).  Breeding plants for 

symptom (ROS)-resistance to cell and tissue necrotization by in vitro selection could be a 

commercially useful resistance breeding method in the future.  
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Note added in proof 

 

Recently it was shown that a new type of plant disease resistance mechanism may 

revolutionize plant protection (Koch et al., 2013: Host-induced gene silencing of cytochrome 

P450 lanosterol C14α-de-methylase encoding genes confers strong resistance to Fusarium 

species. PNAS doi: 10.1073/pnas.1306373110). 
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Figure Legends 

 

 

Fig. l. A simplified scheme of animal (human) adaptive immunity.  

 

Fig. 2 The concept of “gene-for-gene resistance” cannot explain the immune diversity of 

plants. 

 

Fig. 3 Explanation of plant immune diversity: plant R-protein receptors do not directly 

recognize pathogen effectors as foreign proteins in most host/pathogen combinations 

that result in resistance. 

 

Fig. 4a, b Association of the “non-host” type of resistance with early superoxide (O2.-) 

accumulation in barley leaves (cv. Botond) and cucumber leaves (cv. Budai csemege) 

as visualized by nitroblue-tetrazolium chloride (NBT) staining. (a) Left two leaves: 

inoculated with barley powdery mildew (Blumeria graminis f. sp. hordei) (susceptible 

reaction). Right two leaves: inoculated with wheat rust (Puccinia recondita f. sp. 

tritici) (non-host resistance). (b) Left two leaves: inoculated with cucumber powdery 

mildew (Podosphaera xanthii) (susceptible reaction). Right two leaves: inoculated 

with tomato powdery mildew (Oidium neolycopersici) (non-host resistance). NBT 

staining was applied 24 hours after inoculation. 
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Animal (human) adaptive immunity 

Effector (antigen) Receptor (lymphocytes) 

Infinite effector-binding ability caused by  
somatic recombination (DNA rearrangement) 

Immune diversity  
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Plant non-adaptive immunity 

Immune diversity ???  

Effector protein (pathogen)  Receptor protein (plant) 

Concept of “gene-for-gene resistance”  

Many effector proteins  Only a limited number of  
R-protein receptors  
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Indirect recognition of non-self (effector) proteins in plants 

Effector: 

Receptor (R-protein): 

Induces modifications in certain self proteins 
(phosphorylation, proteolysis) 

Recognizes the effector-modified  self protein  
                (not the effector itself) 

Different effectors can modify the same self protein 

One R-protein receptor can indirectly recognize different effectors 

Immune diversity  
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