
POLLACK PERIODICA 
An International Journal for Engineering and Information Sciences 

DOI: 10.1556/606.2017.12.3.3 
Vol. 12, No. 3, pp. 23–32 (2017) 

www.akademiai.com 
 

HU ISSN 1788–1994 © 2017 Akadémiai Kiadó, Budapest 

RESISTANCE OF MEMBERS SUBJECTED TO 
COMBINED LOADS ACCORDING TO EC3 AND EC9 

 

Igor NIKO 
 

Department of Steel and Timber Structures, Faculty of Civil Engineering 
Slovak University of Technology in Bratislava, Radlinského 11 Bratislava, Slovakia 

e-mail: igor.niko@stuba.sk 
 

Received 31 December 2016; accepted 9 May 2017 

 Abstract: The aim of this article is to describe problems of members subjected to biaxial 
bending and axial compression force and the methods of their design. Members subjected to 
bending moments about two axes and axial compression force exhibit complex behavior. It is 
necessary to consider second order theory and imperfections when designing members like that, 
since they have noticeable influence on resistance in instability. There are examples shown in the 
article, using methods present in current European standards EN 1993-1-1 and EN 1999-1-1. 
Attention is drawn to differences in methods, both in applicability and practicality, in design of 
members with constant and linear bending moment. The purpose of presented paper is to show if 
the method, which is currently used in Eurocode for aluminum structures, can be also used for 
steel structures. 
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1. Introduction 

 Members subjected to biaxial bending and axial compression force show complex 
behavior. Either transverse loads, or end moment loads result in first order bending 
moments on members My,Ed and Mz,Ed. Furthermore, axial compression force will result 
in internal axial compression force NEd, but also a second order bending moment will be 
created (Fig. 1) possibly for both axis of bending. Biaxial bending by itself leads to 
complex deflection in both axes, which is not considered in approach presented in 
standards for practical reasons. Instead of one complicated expression, pairs of 
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interactions formulae are used in standards. Simplification like that is rarely on the 
unsafe side.  

 

 a) b) c) d) 

Fig. 1. Example of member a) subjected to eccentric load resulting in combined effect;  
b) with distribution of axial force; and c) bending moment; d) including second order effect 

 In general, distribution of internal forces is not constant, which presents another 
difficulty in determining the most loaded section on member. Beam columns are often 
present as parts of frame structures. In similar cases sway effects need to be taken into 
account. Unless a second order analysis with imperfections is carried out, stability of 
members subjected to combined loads must be checked using one of the methods 
present in current European standards. In [1] clause 6.3.3, two alternative methods for 
determining interaction factors are shown, another possibility is to use method 
presented in [2] clause 6.3.3. These methods are valid for doubly symmetrical cross 
sections resistant to warping. Clause 6.3.3 [1] requires two conditions (1), (2) to be 
satisfied when calculating the resistance of members subjected to axial compression and 
biaxial bending. It is also necessary to verify end section resistance. Determining 
resistance of beam columns requires analysis of behavior of both members in bending 
and in compression, while considering imperfections, both in steel and aluminum 
structures [3]-[9]. 
 It may seem incorrect to compare methods, which are seemingly for different 
materials, it is however important to note that method, which is currently presented in 
EC 9 has been used in Swedish standards for steel structures [10] and is also proposed 
to be included in EC 3 [11]. 

2. Calculation methods 

2.1. EN 1993 

 Method 1 presented in annex A of Eurocode 3 [1], [12] is based on transparency of 
the calculation by using formulas in which every factor represents single phenomenon. 
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Method 2 (annex B [1], [12]) is based on principle of global factors; therefore the 
calculation is less transparent compared to method 1. The aim of using lesser number of 
global factors is practicality.  
 The basis for interaction formulas is a single span member with hinged supports in 
both axes of bending and torsion, loaded by axial compression force and end bending 
moments or transverse load. Both methods presented in [1] are based on altering the 
formulas for flexural buckling to accommodate lateral torsional buckling. The result is 
calculation approach, which differentiates between members susceptible to torsion and 
those which are not. Members resistant to torsion sufficiently supported along the whole 
member, or members with closed sections will fail in flexural buckling. 
 Results of experiments and parametric studies on which the formulas are based on, 
represent mainly members with doubly symmetrical cross sections constant along the 
member. Because of that the usability of formulas is restricted to such members. It is 
possible however to adjust these formulas so they can be used for sections with one axis 
of symmetry [13]: 
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 Note: Calculation of interaction factors kyy, kyz, kzy, kzz, depends on chosen alternative 
method. NEd, My,Ed, Mz,Ed are the design values of the compression force and the 
maximum bending moments about the y-y and z-z axis along the member; ∆My,Ed, 
∆Mz,Ed respectively are the bending moments due to the shift of the centroidal axis for 
class 4 sections; χy, χz are the reduction factors due to flexural buckling; χLT is the 
reduction factor due to lateral torsional buckling; NRk, My,Rk, Mz,Rk are characteristic 
values of compression force and bending moments cross section resistances; γM1 is 
particular partial factor [1]. 
 Both methods are based on similar principles like equivalent bending moment and 
buckling length. The basis for equivalent constant bending moment is to replace real 
distribution of bending moment with constant distribution, using interaction factors 
(Fig. 2). 

2.2. EN 1999 

 Similarly to the approach in [1], first step is to verify cross section resistance [2]  
(cl. 6.2.9), and then the global member behavior. Cross section resistance in both elastic 
and plastic design depends on local buckling of parts of the section. Both Eurocodes 
take this into account by classification of cross sections. In case of combined loads, [2], 
[12] allows classification separately for stress from each type of load. The cross section 
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is not classified for combined stress, which means that for each type of load the class 
can be different. 
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where �yc, �zc, �c are interaction factors; �x is factor considering position of calculated 
section on member; �0 is factor considering softening due to heat affected zones [2]. 

 

Fig. 2. Example of equivalent constant bending moment principle 

 Members resistant in torsion should satisfy conditions (3) a (4) according to [2]  
cl. 6.3.3. In case of members susceptible to torsion, criterion (5) must be satisfied as 
well. Values of exponents and their significance can be found in [2]. Conservatively the 
values can be taken as 0.8 
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where γc is an interaction factor. Parameters �x a �xLT account for negative influence of 
local welds on aluminum alloys (heat affected zone), and influence of non-constant 
bending moment distribution  
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(Note: Based on the direction of deflection either χy or χz will be used.) 
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where xs is the smallest distance between calculated section and either a simple support, 
or point of contra flexure of the deflection curve for elastic buckling from axial force; lc 

is the buckling length of elastic buckling [2]. 

3. Worked examples 

 This chapter shows verification examples of members loaded by axial compression 
force and biaxial bending moments with various distributions. Verification is carried out 
according to [1], using both method 1 and 2, and also according to [2]. The results are 
compared. Three examples are calculated, first two are members with length of 7 m, and 
third one is a member of 5 m. All members are made of steel S235 with hot rolled 
doubly symmetrical I profile HEA200. Cross section properties were taken from 
literature. Elastic modulus in tension was taken with value of 210 GPa. All members are 
verified using both elastic and plastic cross-section considerations. Even though [2] 
allows separate classification for load types, either only elastic or only plastic properties 
are used in examples, to match [1] more closely. 

 Example 1 (Fig. 3) is a member with hinged supports in both axes of bending and 
forked in torsion, loaded by end bending moments with same magnitudes 
My.Ed=10 kNm, Mz.Ed=4 kNm, (�=1) and axial compression force NEd=250 kN. 
Distribution of (5) is shown in (Fig. 4). 

 Example 2 (Fig. 5) is a member with same dimensions as in example 1; the 
difference is in bending moment distribution, which is linear in this case, since the 
member is loaded by single end moment. This applies in both planes x-z and x-y (�=0). 
Distribution of (5) is shown (Fig. 6). 

 Example 3 (Fig. 7) was chosen to show an example where end section verification 
will be deciding. The member is 5 m long, with hinged supports and loaded by single 
end moment in both planes, with values My.Ed=20 kNm, Mz.Ed=20 kNm and axial force 
NEd=60 kN. Distribution of (5) is shown in (Fig. 8). 

 

Fig. 3. Example 1 with boundary conditions and first order bending moment distribution 
in planes x-z and x-y 
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Fig. 4. Interaction formula (5) on member in example 1 

Fig. 5. Example 2 with boundary conditions and first order bending moment distribution  
in planes x-z and x-y 

 

Fig. 6. Interaction formula (5) on member in example 2 
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Fig. 7. Example 3 with boundary conditions and first order bending moment distribution  
in planes x-z and x-y 

  

Fig. 8. Interaction formula (5) on member in example 3 

 Fig. 4, Fig. 6 and Fig. 8 show the distribution of utilization (5) along the member, to 
illustrate the significance of each part of the formula, as well as point out the necessity 
to check multiple sections. 

4. Results 

 The results were acquired using program written with MathCAD software. In first 
two examples according to [1] criterion 2 was deciding, meaning the member buckled 
perpendicular to axis z. Verification according to [2] distinguishes between buckling 
perpendicular to axis y (3), perpendicular to axis z (4) and lateral torsional buckling (5). 
In all cases criterion (5) was deciding. The place of a critical section varied (see Fig. 4, 
Fig. 6 and Fig. 8). According to [2] each section needs to be checked, therefore no 
further end section check is required, like it is with [1] (column titled U.CS in Table I, 
Table II). 
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Table I 

Results of interaction formulas according to [1] 

   C.my C.mz U.1 (1) U.2 (2) U.CS 
Example 1 EC 3 A Elastic 1 1 0.765 0.947 0.434 

Plastic 0.676 0.875 0.38 
EC 3 B Elastic 1 1 0.648 0.943 0.434 

Plastic 0.538 0.874 0.38 
Example 2 EC 3 A Elastic 0.668 0.738 0.588 0.824 0.434 

Plastic 0.5 0.754 0.38 
EC 3 B Elastic 0.6 0.6 0.493 0.845 0.434 

Plastic 0.428 0.794 0.38 
Example 3 EC 3 A Elastic 0.668 0.738 0.721 0.813 0.901 

Plastic 0.528 0.536 0.663 
EC 3 B Elastic 0.6 0.6 0.608 0.734 0.901 

Plastic 0.354 0.575 0.663 

Table II 

Results of interaction formulas according to [2] 

   U.F1 (3) U.F2 (4) U.LT (5) 
Example 1 EC 9 Elastic 0.49 0.878 1.028 

Plastic 0.476 0.823 0.868 
Example 2 EC 9 Elastic 0.441 0.804 0.883 

Plastic 0.431 0.769 0.784 
Example 3 EC 9 Elastic 0.302 0.824 1.043 

Plastic 0.246 0.583 0.662 

 Table I also contains values of equivalent constant moment factors Cm.y and Cmz, 
which had been calculated using both method 1 and 2. Comparison between elastic and 
plastic analysis in examples 1 and 2 is showing difference, which is caused by the fact 
that the prevailing load is result of axial force NEd=250 kN. In third example the plastic 
reserve is greater which corresponds with ratio of bending to axial loading. 
 Another set of examples is presented in Table III, where multiple steel rolled ‘I’ 
sections were checked. These sections were loaded by biaxial constant bending moment 
and compression force, with values of each load corresponding to one third of 
maximum load of individual effect, resulting in utilization close to 1.00. For comparison 
also finite element model was used, using RFEM software. Only elastic design was 
used. The table shows values of highest utilization in all checks in each method.  

5. Conclusion 

 While the approach in Eurocode 9 is more conservative, in the chosen examples it is 
shown that it is indeed possible to use it to determine resistance of steel beam-columns. 
The difference in utilization between three methods is relatively small. For calculation 
of chosen examples all three methods are applicable. From perspective of practicality, 
method in Eurocode 9 is the most desirable, since it contains only a small number of 
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formulas needed for verification. It is however necessary to verify several sections using 
those formulas, which can be time consuming in certain cases. Method A in Eurocode 3 
is less practical compared to other two, because it contains many formulas and factors, 
which increases the possibility of making a mistake. 

Table III 

Comparison of various ‘I’ rolled sections with FEM model 

RFEM EC 3 A EC 3 B EC 9 
IPE 300 Utilization 0.99 1.03 1.06 1.17
  Difference [%] 0.00 4.75 7.48 18.12
HEA 300 Utilization 1.05 1.09 1.04 1.16
  Difference [%] 0.00 4.47 -0.40 10.68
HEB 300 Utilization 1.04 1.09 1.05 1.16
  Difference [%] 0.00 4.45 0.23 11.34
HEM 300 Utilization 1.03 1.08 1.05 1.17
  Difference [%] 0.00 4.76 2.04 13.42
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