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INTEGRAL EQUATIONS IN THE GENERAL
THEORY OF LIGHT ABSORPTION AND SCATTERINGPACS 78.67.-n

The problem of light absorption and scattering has been reduced to the solution of a singular
integral equation for the complex vector of electric field intensity inside a nanoparticle. The
dipole approximation is chosen as the initial one. The results of computing experiments testify
to an acceptable agreement between the approach proposed for the consideration of the electric
field inside a spherical nanoparticle and the results available for the optical and emission
properties of metal nanoclusters.
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1. Introduction
Researches of the processes of light absorption and
scattering by small particles have a long history (see,
e.g., [1–3]). The interest in those objects (small par-
ticles) is associated with the fact that their optical
and emission properties differ substantially from the
analogous properties of massive materials. In particu-
lar, in metal nanoparticles, there emerge the so-called
plasma resonances connected with collective oscilla-
tions of conduction electrons relatively to the nan-
ocluster lattice. The number of plasma resonances,
their frequencies, and decrements depend on the
nanoparticle shape: there is one plasma resonance
in the case of spherical nanoparticles, two in the case
of spheroidal nanoparticles, and three in the case of
ellipsoidal ones.

When metal clusters are irradiated with laser
pulses, besides the excitation of plasma resonances,
which results in the appearance of high local electric
fields near the cluster surface, the heating of electrons
in the conduction band also becomes possible. The
electrons become “hot”. As a result, various nonlinear
optical effects may appear. The electron heating is fa-
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vored by the features of the electron-lattice energy ex-
change in small clusters. Those features are reduced
to a decrease (in a quasioscillatory way) of the in-
tensity of electron-lattice energy exchange, when the
nanocluster sizes diminish [4]. Such a weakening of
the energy exchange arises, when the nanoparticle di-
mensions become smaller than the mean free path of
electrons.

Metal nanoclusters (MNCs) and their ensembles
find wide applications in science and engineering ow-
ing to their unique optical and emission properties. In
particular, MNCs are deposited onto surfaces in order
to change the reflective ability of a material [5]. Those
nanostructures are used for the optical recording of
information [6], in biosensorics and genetic engineer-
ing [7], to visualize cell structures [8], and, finally, in
medicine to treat cancer [9]. The more detailed in-
formation about the properties and applications of
nanostructures can be found, e.g., in [11–14].

2. Integral Relation
between the Current Density
and Electric Field Vectors: Ohm’s
Law in the Operator Form

The problem of light absorption and scattering by
MNCs is reduced to the solution of Maxwell’s equa-
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tions with corresponding boundary conditions. In the
case of spherical MNCs, the most general, consistent,
and widely applied theory of light absorption and
scattering is a theory developed by Mie [15]. However,
his theory, as well as the theories of the overwhelming
majority of other authors on this subject, is based on
the assumption that the current density vector j(r, 𝜔)
(here, r is the coordinate vector, and 𝜔 is the fre-
quency) is connected with the vector of the internal
electric field E(r, 𝜔) by the relation

j(r, 𝜔) = 𝜎(𝜔)E(r, 𝜔), (1)

where 𝜎(𝜔) is the electron conductivity of a metal
cluster.

Ohm’s law in the form (1) is valid for MNCs un-
der certain conditions. First, this is a possibility to
neglect the spatial dependence of the local internal
electric field. For ellipsoidal MNCs, the local internal
field is uniform, if the wavelength of the external elec-
tromagnetic field is much larger than the characteris-
tic MNC dimensions. Second, this is a possibility to
neglect the contribution of the surface electron scat-
tering to the dissipation. This conditon is satisfied, if
the MNC dimensions are much larger than the elec-
tron mean free path.

In the general case, the relation between the vec-
tors of current density and electric field induced by
this current should be found by solving the corre-
sponding Boltzmann equation. The internal electric
field E(r, 𝜔) forms the distribution function of elec-
trons over their velocities v’s. In the linear (in the
field) approximation, this distribution function can
be written as the sum

𝑓(r,v, 𝜔) = 𝑓0(𝜀) + 𝑓1(r,v, 𝜔), (2)

where 𝑓0(𝜀) is the Fermi distribution function, 𝜀 the
electron energy, and 𝑓1(r,v, 𝜔) the linear-in-the-field
correction to the equilibrium Fermi distribution.

The function 𝑓1(r,v, 𝜔) satisfies the linearized
Boltzmann equation

(𝜈 − 𝑖 𝜔) 𝑓1 + v
𝜕𝑓1
𝜕r

+ 𝑒E(r, 𝜔)v
𝜕𝑓0
𝜕𝜀

= 0. (3)

In addition, it also has to satisfy boundary condi-
tions. In the case of diffuse electron scattering at the
surface 𝑆 of a metal cluster, the boundary condition
looks like

𝑓1(r,v, 𝜔)|𝑆 = 0 at 𝑣𝑛 < 0. (4)

Here, 𝑣𝑛 is the electron velocity component normal
to the surface.

The aim of this work is to analyze the influence of
the MNC shape on the processes of light absorption
and scattering. For this purpose, it is enough to ad-
mit that the MNCs have the form of an ellipsoid. The
expediency of this choice consists in that the results
obtained for this shape can be extended (by deform-
ing of the ellipsoid curvature radii) to a wide spectrum
of shapes ranging from the disk to rod-like ones.

The solution of problem (3), (4) for the case of
ellipsoidal nanoparticles can be written in the form
[16, 17]

𝑓1(r,v, 𝜔) = −𝑓 ′
0(𝜀)

𝑡0∫︁
0

𝑑𝜏 𝑒−𝜈𝜏𝑒E(r′ − v′𝜏, 𝜔). (5)

Here, 𝑡0 is the characteristic of Eq. (3),

𝑡0(r
′,v′) =

1

𝑣′2

{︁
r′v′ +

√︀
(𝑅2 − 𝑟′2)𝑣′2 + (r′v′)2

}︁
, (6)

where r′ and v′ are the vectors of electron coordinates
and velocity, respectively, in the deformed coordinate
system (in which the ellipsoidal particle transforms
into a spherical one). The coordinates in the deformed
and undeformed systems are connected by the rela-
tions [16, 17]

𝑥𝑖 =
𝑅𝑖

𝑅
𝑥′
𝑖, 𝑣𝑖 =

𝑅𝑖

𝑅
𝑣′𝑖, (7)

where 𝑅𝑖 are the ellipsoid curvature radii, and 𝑅 =
= (𝑅1𝑅2𝑅3)

1/3. In the case of spherical particle, 𝑅 is
the sphere radius. In addition, the notation

𝜈 = 𝜈 − 𝑖𝜔 (8)

was introduced in Eq. (5).
Knowing the velocity distribution function of elec-

trons in the form (2) and (5), it is possible to deter-
mine the relation between the current density and the
field that induces it:

j(r, 𝜔) =
2 𝑒

(2𝜋~)3

∫︁
v 𝑓(r,v, 𝜔) 𝑑3(𝑚𝑣) =

=2 𝑒2
(︁ 𝑚

2𝜋~

)︁3∫︁
𝑑3𝑣 v(−𝑓 ′

0(𝜀))

𝑡0∫︁
0

𝑑𝜏 𝑒−𝜈𝜏 E(r′−v′𝜏, 𝜔),

where 𝑚 is the electron mass. This formula can be
rewritten in the operator form

j(r, 𝜔) = Σ(E)(r, 𝜔), (9)
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where Σ(E) ≡ −2𝑒2
(︀

𝑚
2𝜋 ~

)︀3 ∫︀
𝑑3𝑣v𝑓 ′

0(𝜀)
∫︀ 𝑡0
0

𝑑𝜏𝑒−𝜈𝜏×
×E (r′−v′𝜏, 𝜔 ) is a linear integral operator. Expres-
sion (9) generalizes relation (1) to the case of small
clusters. In other words, we obtained Ohm’s law for
small clusters in the operator form. If we neglect the
coordinate dependence of the internal electric field in
Eq. (9), suppose that only one scattering mechanism
(either in the bulk or at the surface) dominates, and
account for the relation

𝑓 ′
0(𝜀) =

𝜕𝑓0
𝜕𝜀

≈ −𝛿(𝜀− 𝜀F),

where 𝜀F is the Fermi energy, integral (9) can be cal-
culated. As a result, we obtain Ohm’s law [16, 19] in
the form (1). In this case, the conductivity of a spher-
ical nanoparticle looks like [16, 19]

𝜎(0)(𝜔) =
𝑛0𝑒

2

𝑚

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜈

𝜔2 + 𝜈2
at 𝜈 ≫ 𝜈𝑠;

3

2

𝜈𝑠
𝜔2

[︂
1− 2

𝜈𝑠
𝜔

sin
𝜔

𝜈𝑠
+ 2

(︁𝜈𝑠
𝜔

)︁2
×

×
(︂
1− cos

𝜔

𝜈𝑠

)︂]︂
at 𝜈 ≪ 𝜈𝑠.

(10)

Here, 𝜈𝑠 = 𝑣F
2𝑅 is the frequency of electron oscillations

(from wall to wall), 𝑣F the Fermi velocity, and

𝑛0 =
1

3𝜋2

(︁𝑚𝑣F
~

)︁3
the electron concentration. In the case of elliptic
nanoparticle, the conductivity becomes a tensor, pro-
vided that the electron mean free path is larger than
the particle size [16, 17, 19]. The components of this
tensor are quoted in the cited works.

Hence, for a simple expression describing the rela-
tion between the current and the field, like Ohm’s
law (1) or (10), to be applicable, while studying
the optical properties of MNCs, two conditions have
to be satisfied. First, the internal electric field
has to be spatially uniform. This condition demands
that the MNC dimensions should be much smaller
than the wavelengths, at which the particle is irradi-
ated. Second, if the particle is not spherical, the bulk
scattering has to dominate; otherwise, the conductiv-
ity will be a tensor quantity. For the bulk scattering
to dominate, the electron mean free path has to be
much shorter than the nanoparticle size. If those con-
ditions are not satisfied, Ohm’s law for small clusters
in the operator form (9) has to be used.

In the general case, the coordinate dependence
of wave components both inside and outside the
MNC can be found by solving Maxwell’s equa-
tions with regard for relations (9) and the corre-
sponding boundary conditions for the field compo-
nents. From the viewpoint of obtaining the analyt-
ical results, this is rather a complicated mathe-
matical problem. The method of hybrid numerical-
analytical solution of integral equations derived on
the basis of Maxwell’s equations making allowance
for a real relation between the current and the
field [see Eq. (9)] is much more promising in this
case, because there is no necessity to satisfy the
boundary conditions for the field components in this
approach.

3. Research of the Optical
Properties of Metal Clusters
on the Basis of Integral Equations

Consider a dielectric matrix with dielectric permittiv-
ity 𝜖(𝜔). The matrix includes a metal nanoparticle, in
which external fields induce an electric charge with
the density 𝜌 and a current with the density j. The
Fourier transforms of Maxwell’s equations describing
this system look like

rotE(r, 𝜔) = 𝑖 𝑘0B(r, 𝜔), (11)

divB(r, 𝜔) = 0, (12)

𝜖(𝜔) divE(r, 𝜔) = 4𝜋𝜌(r, 𝜔), (13)

rotB(r, 𝜔) = −𝑖 𝑘0𝜖(𝜔)E(r, 𝜔) +
4𝜋

𝑐
j(r, 𝜔). (14)

where 𝑐 is the light speed, and 𝑘0 = 𝜔/𝑐. The charge
and current densities can be expressed in terms of the
polarization vector density:

𝜌(r, 𝜔) = −∇P(r, 𝜔), (15)

j(r, 𝜔) = −𝑖 𝜔P(r, 𝜔). (16)

The differential equations (11)–(14) together with
relations (15) and (16) can be reduced to integral
equations (see, e.g., review [18]). In particular, for
the electric component of an electromagnetic wave,
the following equation holds:

E(r, 𝜔) = E0(r, 𝜔) +

∫︁
𝑆0(r, r

′, 𝜔)P(r′, 𝜔) 𝑑r′. (17)
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Here, E0(r, 𝜔) is the vector of electric field strength
for the external wave (the field in the absence
of a nanoparticle), and the susceptibility tensor
𝑆0(r, r

′, 𝜔) equals

𝑆0(r, r
′, 𝜔) =

{︀
−𝑘2𝑇1(ℜ)− 𝑖𝑘𝑇2(ℜ) + 𝑇3(ℜ)

}︀ 𝑒𝑖𝑘ℜ

𝜖(𝜔)
,

(18)
where the notations

𝑘2 = 𝑘20𝜖(𝜔), ℜ = r− r′

were introduced. In addition, 𝑇𝑖(ℜ) in Eq. (18) stand
for the diad tensors

𝑇1(ℜ) =
1

ℜ3
{ℜ ⊗ ℜ − 𝐼ℜ2}, (19)

𝑇2(ℜ) =
1

ℜ4
{3ℜ⊗ ℜ− 𝐼ℜ2}, (20)

𝑇3(ℜ) =
1

ℜ5
{3ℜ⊗ ℜ− 𝐼ℜ2}, (21)

where 𝐼 is the identity matrix.
Hence, in the general case, our task consists in the

solution of a system of two equations in the vec-
tor form. These are Eq. (17) and the equation for
the polarization vector density, which, according to
Eqs. (16) and (9), has the form

P(r, 𝜔) = − 𝑖
2 𝑒2

𝜔

(︁ 𝑚

2𝜋~

)︁3 ∫︁
𝑑3𝑣 v𝑓 ′

0(𝜀)×

×
𝑡0∫︁
0

𝑑𝜏 𝑒−𝜈𝜏 E(r′ − v′𝜏, 𝜔). (22)

An alternative way consists in analyzing and solving
the following integral equation for the complex vector
of electric field strength:

E(r, 𝜔) = E0(r, 𝜔)− 𝑖 𝑔

∫︁
𝑑3r′𝑆0(r, r

′)×

×
∫︁

𝑑3𝑣 v𝑓 ′
0(𝜀)

𝑡0∫︁
0

𝑑𝜏 𝑒−𝜈𝜏 E(r′ − v′𝜏, 𝜔), (23)

where

𝑔 ≡ 2 𝑒2

𝜔

(︁ 𝑚

2𝜋~

)︁3
. (24)

4. Approximate Solutions

As the zeroth approximation, let us assume that the
spatial dependence of the wave electric field in a metal
nanoparticle can be neglected. Formally, this assump-
tion corresponds to the passage to the limit 𝑘 → 0 in
Eq. (17).

Let E0 be directed along the axis 𝑂𝑧. Then the pro-
jection of Eq. (17) on this axis looks like (as 𝑘 → 0)

𝐸 = 𝐸0 +

∫︁
𝑑3𝑟′{𝑆0}𝑧𝑧𝑃𝑧, (25)

where

{𝑆0}𝑧𝑧 =
{︁
𝑆0(r, r

′, 𝜔)
}︁
𝑧𝑧

=
3ℜ2

𝑧 −ℜ2

ℜ5𝜖(𝜔)
. (26)

In the case of spherical nanoparticle, according to
Eq. (16), the projection of the dipole moment vec-
tor density on the axis 𝑂𝑧 equals

𝑃𝑧 = 𝑃 =
𝑖

𝜔
𝜎 𝐸. (27)

It is important to emphasize that the field 𝐸 and
the dipole moment density 𝑃 in Eqs. (17) and (25) are
complex-valued quantities. Therefore, the conductiv-
ity 𝜎 in Eq. (27) is also complex-valued, unlike that
in Eq. (10). In particular, for a spherical particle and
the bulk scattering, from Eqs. (8) and (16), we obtain

𝑃 = 𝑖
𝑛0𝑒

2

𝑚𝜔𝜈
𝜎 𝐸 = −

𝜔2
𝑝

𝜔2 + 𝜈2
𝜔 − 𝑖𝜈

𝜔
𝐸, (28)

where 𝜔𝑝 is the plasma frequency
(︁
𝜔2
𝑝 ≡ 4𝜋 𝑛0𝑒

2

𝑚

)︁
.

Now, let us substitute Eqs. (26) and (28) into
Eq. (25) and take into account that∫︁

𝑑3𝑟′
3ℜ2

𝑧 −ℜ2

ℜ5
= 𝑉

{︃
− 1

𝑅3 at 𝑧 < 𝑅;

3𝑧2−𝑟2

𝑟5 at 𝑧 > 𝑅.
(29)

Then, from Eq. (25), we obtain

𝐸(0) =
𝐸0

1 + 1
3

(︁
𝜖𝑀 (𝜔)
𝜖(𝜔) − 1

)︁ . (30)

Here,

𝜖𝑀 (𝜔) = 𝜖(𝜔)−
𝜔2
𝑝

𝜔2 + 𝜈2
𝜔 − 𝑖𝜈

𝜔
(31)

is the dielectric permittivity. Formula (30) is a known
result of the dipole approximation for the electric field
inside a nanoparticle.
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Fig. 1. Real part of the projection of the dipole moment density vector on the axis 𝑂𝑧. For
the input parameters, see Appendix

In the case where the surface scattering plays the
dominating role, the result for 𝜖𝑀 (𝜔) can be obtained
from Eq. (31), by using the formal substitution 𝜈 →
3
4𝑣F/𝑅.

Returning back to ellipsoidal metal nanoparticles,
one should bear in mind that, if the nanoparticle size
is smaller than the electron mean free path or has
the same order, the conductivity in such particles be-
comes a tensor quantity [16,17]. It can be shown that,
in this case, instead of Eq. (30), we obtain

𝐸
(0)
𝑗 =

𝐸0𝑗

1 + 𝐿𝑗

(︁
𝜖𝑗𝑗
𝜖(𝜔) − 1

)︁ , (32)

where 𝐿𝑗 is the depolarization factor, and 𝜖𝑗𝑗 the di-
agonal component of the conductivity tensor.

5. Spatial Dispersion Effect

Let the spatial dependence of the external field
E0(r, 𝜔) in relation (30) look like

E0(r, 𝜔) = E0𝑒
𝑖k r. (33)

Then, taking result (30) into account, the following
approximation is justified for the coordinate depen-
dence of the electric field inside the particle:

E(1)(r) =
E0𝑒

𝑖k r

1 + 1
3

(︁
𝜖𝑀 (𝜔)
𝜖(𝜔) − 1

)︁ . (34)

Formula (34) is valid for spherical MNCs. In the case
of ellipsoidal MNCs, a more general expression than
formula (34) should be used:

𝐸
(1)
𝑗 (r, 𝜔) =

𝐸0𝑗𝑒
𝑖k r

1 + 𝐿𝑗

(︁
𝜖𝑗𝑗(𝜔)
𝜖(𝜔) − 1

)︁ . (35)

Expressions for the diagonal elements 𝜖𝑗𝑗 of the ten-
sor of dielectric permittivity can be found in works
[16, 17].

Now, let us substitute expression (35), if the MNC
is ellipsoidal, or expression (34), if it is spherical, into
Eq. (22). Then we obtain

P(r, 𝜔) = − 𝑖
2 𝑒2

𝜔

(︁ 𝑚

2𝜋~

)︁3
𝑒𝑖k r ×

×
∫︁

𝑑3𝑣 𝑓 ′
0(𝜀)v(vE

(0))
1− exp[−(𝜈 + 𝑖kv)𝑡0]

𝜈 + 𝑖kv
. (36)

Here, E(0) is a constant complex amplitude of the
electric field inside the metal nanoparticle. It is de-
scribed by formula (30), if the MNC is spherical, and
by formula (32), if it is ellipsoidal.

The angular and radial dependences of the real and
imaginary parts of the dipole moment vector density
projection on the axis 𝑂𝑧 in the case of spherical
nanoparticles are illustrated in Figs. 1 and 2. The an-
gular arguments of those dependences are explained
in Fig. 3. The knowledge of the dipole moment vec-
tor density makes it possible to calculate the vector of
electric field strength outside the nanoparticle using
formula (17). The result of corresponding calculations
is depicted in Figs. 4 and 5.

Let us obtain approximate analytical formulas for
integral (36) in two opposite limits:

|(𝜈 + 𝑖kv)𝑡0| > 1 (37a)

and

|(𝜈 + 𝑖kv)𝑡0| < 1. (37b)

Case (37a) corresponds to the dominating bulk scat-
tering. Provided that it is satisfied, we obtain from
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Fig. 2. Imaginary part of the projection of the dipole moment density vector on the axis
𝑂𝑧

Fig. 3. Orientations of the electric field strength vector and
the radius vector with respect to the spheroid symmetry axis

Fig. 4. Real part of the projection of the electric field strength
vector on the axis 𝑂𝑧 outside the nanoparticle

Fig. 5. Imaginary part of the projection of the electric field
strength vector on the axis 𝑂𝑧 outside the nanoparticle

Eq. (36) that

𝑃𝛼(r, 𝜔) =
𝑖

𝜔

∑︁
𝜎𝛼𝛽𝐸𝛽𝑒

𝑖k r, (38)

where 𝜎𝛼𝛽 are the components of the conductivity
tensor,

𝜎𝛼𝛽(k, 𝜔) = −2 𝑒2
(︁ 𝑚

2𝜋~

)︁3
×

× 𝑒𝑖k r

∫︁
𝑑3𝑣 𝑣𝛼𝑣𝛽

𝑓 ′
0(𝜀)

𝜈 − 𝑖(𝜔 − kv)
. (39)

If the surface scattering dominates, i.e. in case (37b),
we obtain from Eq. (36) that

P(r, 𝜔) = −𝑖
2 𝑒2

𝜔

(︁ 𝑚

2𝜋~

)︁3
𝑒𝑖k r

∫︁
𝑑3𝑣 v(vE(0))𝑓 ′

0(𝜀)𝑡0.

(40)
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Fig. 6. Angular and radial dependences of the absorbed energy density in the case of
spherical nanoparticle (for the input parameters, see Appendix)

In what follows, we are interested in the absorbed
energy density. It is equal to

𝑤(r, 𝜔) ≡ 1

2
Re {j(r, 𝜔)E*(r, 𝜔)} =

=
1

2
Re {−𝑖𝜔P(r, 𝜔)E*(r, 𝜔)} =

=
𝜔

2
Im {P(r, 𝜔)E*(r, 𝜔)}. (41)

Figure 6 illustrates the angular dependence of this
quantity normalized to the incident wave intensity.

Formula (41) demonstrates that we have to know
the projection of the vector P(r, 𝜔) on the field direc-
tion. Let the latter coincide with the direction of the
axis 𝑂𝑧. Then, in the case of spherical nanoparticle,
we obtain from Eq. (40) that

𝑃𝑧(r, 𝜔) = 𝑖 𝐸(0) 3𝑛0 𝑒
2

4𝑚𝜔

𝑅

𝑣F
×

× 𝑒𝑖k r

{︃[︂
1 +

1− 𝜉

2𝜉
ln

(︂
1 + 𝜉

1− 𝜉

)︂]︂
sin2 𝜃0 +

+
1

2𝜉

[︃
1+𝜉2

2𝜉
−
(︂
1− 𝜉2

2𝜉

)︂2
ln

(︂
1 + 𝜉

1− 𝜉

)︂(︀
3 cos2 𝜃0 − 1

)︀]︃}︃
.

(42)

Here, 𝜉 = 𝑟/𝑅, and 𝜃0 is the angle between the di-
rections of the field E and the vector r. While ob-
taining Eq. (42), we took into account that 𝑓 ′

0(𝜀) ≈
≈ −𝛿(𝜀− 𝜀F).

Now, let us substitute Eqs. (42) and (34) into for-
mula (41) to obtain an expression for the density of
the energy absorbed by a symmetric metal nanopar-
ticle in the case where the surface scattering plays a

Fig. 7. Dependence of the absorbed energy density (in rel.
units) on the point position in a nanoparticle

dominating role:

𝑤(r, 𝜔) =
3𝑛0 𝑒

2

8𝑚

𝑅

𝑣F

𝐸2
0⃒⃒⃒

1 + 1
3

(︁
𝜖𝑀 (𝜔)
𝜖(𝜔) − 1

)︁⃒⃒⃒2 ×

×

{︃[︂
1 +

1− 𝜉

2𝜉
ln

(︂
1 + 𝜉

1− 𝜉

)︂]︂
sin2 𝜃0 +

+
1

2𝜉

[︃
1 + 𝜉2

2𝜉
−

(︂
1− 𝜉2

2𝜉

)︂2

ln

(︂
1 + 𝜉

1− 𝜉

)︂(︀
3 cos2 𝜃0−1

)︀]︃}︃
.

(43)

From this formula and Fig. 7, one can see that the
absorbed energy density at the surface scattering sub-
stantially depends on the position of the point in the
nanoparticle (this position is fixed by the variables 𝑟
and 𝜃0, and does not depend on 𝜙0).

In particular, the energy density has a strongly pro-
nounced angular dependence near the particle sur-
face. At the same time, the dependence on the wave
incidence angle is absent at the particle center. The
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total absorbed energy equals

𝑤0 =

∫︁
𝑉

𝑑3𝑟 𝑤(r, 𝜔) = 𝑉
3

8

𝑛0 𝑒
2

𝑚

𝑅

𝑣F
×

× 𝜔4𝐸2
0

(𝜔2 − 𝜔2
𝑠)

2 +
(︁
𝜋
3

𝜔2
𝑝

𝜖(𝜔)
𝑣F
𝑅

)︁2 . (44)

Here, 𝜔𝑠 =
𝜔𝑝√
3

is the frequency of a plasma resonance
in a spherical MNC.

It is important to emphasize that the result ob-
tained for the total absorbed energy in the case of sur-
face scattering turned out identical to that obtained
in the dipole approximation [16], despite that now the
absorbed energy density substantially depends on the
coordinates.

The formula for 𝑤0 in the case of bulk scattering
can be obtained from expression (44) by formally sub-
stituting 3

4
𝑣F
𝑅 → 𝜈.

The total energy absorbed by an ellipsoidal metal
nanoparticle per unit time can be obtained from
Eqs. (40) and (41). If the particle has the ellipsoid-of-
revolution shape, and if the surface scattering plays
a dominating role, we have

𝑤0 =
𝑉 𝐸2

0

2

{︃
𝜎⊥𝜔

4 sin2 𝛼

(𝜔2 − 𝜔2
⊥)

2 + (𝐿⊥
4𝜋
𝜔 𝜎⊥)2

+

+
𝜎‖𝜔

4 cos2 𝛼

(𝜔2 − 𝜔2
‖)

2 + (𝐿‖
4𝜋
𝜔 𝜎‖)2

}︃
. (45)

Here, 𝜔⊥ and 𝜔‖ are the frequencies of plasma oscil-
lations across and along the ellipsoid symmetry axis,
respectively; 𝐿⊥ and 𝐿‖ are the corresponding polar-
ization coefficients; 𝜎⊥ and 𝜎‖ are the diagonal com-
ponents of the conductivity tensor; and 𝛼 is the angle
between the field E0 and the ellipsoid rotation axis.

Expression (45) was obtained for an MNC in vac-
uum (𝜖(𝜔) = 1). In this case,

𝜔⊥,‖ =
√︁
𝐿⊥,‖𝜔𝑝. (46)

Expressions for the diagonal components of the con-
ductivity tensor, 𝜎𝑥𝑥 = 𝜎𝑦𝑦 ≡ 𝜎⊥ and 𝜎𝑧𝑧 ≡ 𝜎‖, can
be found in work [16] for both the low- (𝜔 < 𝑣F/𝑅)
and high-frequency (𝜔 > 𝑣F/𝑅) cases. In particular,
for a prolate ellipsoid in the low-frequency interval,
we have [16]

𝜎⊥ =
9

8

𝑛0 𝑒
2

𝑚

𝑅⊥

𝑣F

{︃
1

2𝑒2𝑝

√︁
1− 𝑒2𝑝 +

+
1

𝑒𝑝

(︂
1− 1

2𝑒2𝑝

)︂
arcsin 𝑒𝑝

}︃
, (47)

𝜎‖ =
9

8

𝑛0 𝑒
2

𝑚

𝑅⊥

𝑣F

{︂
− 1

𝑒2𝑝

√︁
1− 𝑒2𝑝 +

1

𝑒3𝑝
arcsin 𝑒𝑝

}︂
, (48)

where

𝑒𝑝 = 𝑅⊥/𝑅‖.

Hence, for both ellipsoidal- and spherical-like
nanoparticles, if the surface scattering plays a domi-
nating role, the total energy absorbed per unit time
considered as a function of the electric field at the par-
ticle center has the same form as in the case of dipole
approximation. Only a redistribution of absorbed en-
ergy over the nanoparticle volume takes place, by
leaving the total absorbed energy invariable. It is not
so, if the bulk scattering dominates. As one can see
from Eq. (39), the absorbed energy is determined by
the conductivity, which is a function of k.

6. Conclusions

1. The relation between the vectors of current density
in a metal nanoparticle and electric field that induces
this current was obtained in works [16,17] in the most
general form of an integral equation, which is inter-
preted as Ohm’s law for small clusters in the operator
form.

2. The problem of studying the optical properties
of metal clusters has been presented by a mathemati-
cal model with the singular integral equation (23) for
the complex vector of electric field strength inside a
nanoparticle.

3. As a first variant of the solution of the integral
equation (23), we have selected an approach where
the dipole approximation is chosen as the initial one
for the electric field inside a nanoparticle. This way
allowed us to obtain rather compact expressions for
the vector of electric field strength in the first approx-
imation and for the polarization density vector in the
cases of ellipsoidal and spherical nanoparticles.

4. The approximate analytical expression obtained
for the dipole moment density vector in two opposite
limits – if only the bulk or surface scattering domi-
nates – is studied in detail.

5. The expression obtained for the energy den-
sity absorbed by a symmetric metal nanoparticle, in
which the surface scattering dominates, allows a con-
clusion to be drawn that this parameter substantially
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depends on the position in the nanoparticle. An im-
portant result is obtained that if the surface scatter-
ing plays a dominating role, the total energy absorbed
per unit time considered as a function of the elec-
tric field at the particle center has the same form as
in the dipole approximation for both ellipsoidal and
spherical nanoparticles. Only a redistribution of the
absorbed energy over the nanoparticle volume takes
place, by leaving the total absorbed energy invariant.

6. The results of computing experiments testify to
the acceptable consistency of the proposed initial
approximation for the electric field inside spherical
nanoparticles with the results available for the op-
tical and emission properties of metal nanoclusters
[11–14]. The substantive content of the computing ex-
periment consists, in particular, in the visualization
of the real and imaginary parts of the polarization
vector projection on the direction of the field inside
the particle, as well as the corresponding projection
of the vector of the electric field strength outside it.

APPENDIX
Results of computing experiments

The aim of computing experiments was to demonstrate the
capability of the mathematical model to describe the light ab-
sorption and scattering by metal nanoclusters with the use of
the integral equations (17), (22), or (23). To achieve this pur-
pose, it was necessary to solve some tasks, the main of which
can be formulated as follows.

∙ Choice of a method for the solution of the integral
equation (23). The difficulty consists in that the central
characteristic of this equation is a singularity of the integral
operator in the region occupied by the nanoparticle. Currently,
there is no general mathematical theory for the calculation of a
multidimensional singular integral (an analog of the principal
value of a one-dimensional singular integral). In the region out-
side the nanoparticle, Eq. (23) is a Fredholm equation of the
second kind in the vector form. Actually, the numerical realiza-
tion of its solution is reduced to the solution of a system of six
integral equations for the real and imaginary coordinate pro-
jections of the electric field strength vector E(r, 𝜔). This fact
allows us to draw a conclusion that there is no exact analyti-
cal method for the solution of Eq. (23). The choice has to be
made among one of the approximate methods of the numerical-
analytical character. This choice gives rise to the appearance of
an error inherent in the solution method, which can be rather
large by value.

∙ Construction of an algorithm that implements the
method proposed for the solution of integral equations
in the general theory of light absorption and scattering
by metal nanoclusters. The principal feature of the required
algorithm is the necessity to calculate multidimensional (two-

and three-dimensional) integrals of rapidly oscillating functions
(see, e.g., formula (12) and Fig. 13). As a basic integration tool,
the cubature formulas on the basis of bicubic approximating
splines [21] can be used.

∙ Software implementation of the algorithm of the
solution of integral equations. The aim of the software
algorithm implementation consists in the minimization of the
calculation time provided the acceptable level of the total error
of a result. This means, first of all, the choice of the optimum
number of mesh nodes in the integration interval.

∙ Interpretation of the results of computing exper-
iment. This is a comparison of the obtained results with
available concepts of theoretical and experimental character,
as well as with the results of available variants of analytical
calculations.

To solve the integral equation (23), we have selected an ap-
proach, in which approximation (30) is accepted as the initial
one for the electric field in a spherical nanoparticle. In this case,
representation (34) can be taken as the first approximation for
the vector of electric field strength E(1)(r, 𝜔), which can be
rewritten in the form

E(1)(r, 𝜔) =
3E0 exp(−𝑖kr)
2 +

𝜀𝑀 (𝜔)
𝜀(𝜔)

,

provided that the spatial dependence of the external field vec-
tor E0(r, 𝜔) is described by Eq. (33), in which E0 is a constant
vector directed along the axis 𝑂𝑧; and the ratio of dielectric
permittivities 𝜀𝑀 (𝜔)/𝜀(𝜔) is determined by the expression

𝜀𝑀 (𝜔)

𝜀(𝜔)
= 1−

𝜔2
𝑝

𝜔2 + 𝜐2
+ 𝑖

𝜔2
𝑝

𝜔2 + 𝜐2
𝜐

𝜔
,

where 𝜔2
𝑝 = 4𝜋 𝑛0𝑒2/𝑚 is the plasma frequency, and 𝜐 is a

phenomenological parameter that characterizes the frequency
of electron collisions in the nanoparticle bulk.

Using the expression for the electric field strength vector
E(1)(r, 𝜔) in formula (36), we obtain the following formula for
the polarization vector in the first approximation:

P(r, 𝜔) = 𝑖
9𝜔2

𝑝

16𝜋2 𝜔

exp(−𝑖kr)
[2 + 𝜀𝑀 (𝜔)/𝜀(𝜔)]

×

×
2𝜋∫︁
0

𝑑𝜙

𝜋∫︁
0

𝑑𝜃 sin 𝜃 u0(u0E0)
1− exp[−(𝜐 + 𝑖kvF) 𝑡0]

𝜐 + 𝑖kvF
.

In this formula,

u0 = vF/𝑣F = sin 𝜃 cos𝜙 i+ sin 𝜃 sin𝜙 j+ cos 𝜃 k

is a unit vector; k is a vector with the absolute value 𝑘 =

= |k| = 𝜔/𝑐, which is directed along the axis 𝑂𝑥, so that
kvF = 𝑘 𝑣F sin 𝜃 cos𝜙; 𝜃 is the angle between the vectors vF

and E0 (𝜃 ∈ [0, 𝜋]); 𝜙 is the angle between the vector k and
the projection of the vector vF on the plane 𝑥𝑂𝑦 (𝜙 ∈ [0, 2𝜋]);
𝜐 = 𝜐 − 𝑖 𝜔;

𝑡0 =
𝑎

𝑣F

(︃
𝑟

𝑎
cos𝛼+

√︂
1−

(︁ 𝑟
𝑎
sin𝛼

)︁2)︃
;
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𝛼 is the angle between the vectors r and vF (𝛼 ∈ [0, 𝜋]), so
that cos𝛼 = r vF/𝑟 𝑣F; 𝑎 is the nanoparticle radius;

r = 𝑟 (sin 𝛾 cos𝜓 i+ sin 𝛾 sin𝜓 j+ cos 𝛾 k)

is the radius vector of the point; 𝛾 is the angle between the
vectors r and E0 (𝛾 ∈ [0, 𝜋]); and 𝜓 is the angle between the
vector k and the projection of the vector r on the plane 𝑥𝑂𝑦
(𝜓 ∈ [0, 2𝜋]).

If the vector E0 is directed along the axis 𝑂𝑧, the projection
P
(1)
𝑧 (r, 𝜔) of the polarization vector can be written in the form

P
(1)
𝑧 (r, 𝜔) = 𝑖

9𝜔2
𝑝𝐸0

16𝜋2 𝜔
[2 + 𝜀𝑀 (𝜔)/𝜀(𝜔)]−1 exp(−𝑖kr)×

×
2𝜋∫︁
0

𝑑𝜙

𝜋∫︁
0

𝑑𝜃 sin 𝜃 cos2 𝜃
1− exp[−(𝜐 + 𝑖kvF) 𝑡0]

𝜐 + 𝑖kvF
.

For the preparation of the computation program, we quote a
specific formula for each multiplier in this expression in what
follows.

1. 𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐) = [2 + 𝜀𝑀 (𝜔)/𝜀(𝜔)]−1 =

=

⎡⎣(︃3−
𝜔2
𝑝

𝜔2 + 𝜐2

)︃2

+

(︃
𝜔2
𝑝

𝜔2 + 𝜐2
𝜐

𝜔

)︃2⎤⎦−1

×

×
[︃(︃

3−
𝜔2
𝑝

𝜔2 + 𝜐2

)︃
− 𝑖

(︃
𝜔2
𝑝

𝜔2 + 𝜐2
𝜐

𝜔

)︃]︃
;

2. 𝑟𝑒𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐) =

[︃(︃
3−

𝜔2
𝑝

𝜔2 + 𝜐2

)︃2
+

+

(︃
𝜔2
𝑝

𝜔2 + 𝜐2
𝜐

𝜔

)︃2]︃−1(︃
3−

𝜔2
𝑝

𝜔2 + 𝜐2

)︃
;

3. 𝑖𝑚𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐) =

[︃(︃
3−

𝜔2
𝑝

𝜔2 + 𝜐2

)︃2
+

+

(︃
𝜔2
𝑝

𝜔2 + 𝜐2
𝜐

𝜔

)︃2]︃−1(︃ −𝜔2
𝑝

𝜔2 + 𝜐2
𝜐

𝜔

)︃
;

4. exp(−𝑖kr) = cos(𝜔 𝑟 sin 𝛾 cos𝜓/𝑐)−

− 𝑖 sin(𝜔 𝑟 sin 𝛾 cos𝜓/𝑐);

5. 𝑡0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃) =
𝑎

𝑣F
×

×
(︂
𝑥(cos 𝛾 cos 𝜃 + cos(𝜓 − 𝜙) sin 𝛾 sin 𝜃)+

+
√︀

1− 𝑥2(1−(cos 𝛾 cos 𝜃+cos(𝜓−𝜙) sin 𝛾 sin 𝜃)2

)︂
;

6. 𝑥 = 𝑟/𝑎;

7.
1

𝜐 + 𝑖kvF
=

= 𝑧0(𝜔, 𝜙, 𝜃) [𝜐 + 𝑖𝜔 (1− 𝑐−1 𝑣F sin 𝜃 cos𝜙)];

8. 𝑧0(𝜔, 𝜙, 𝜃) = [𝜐2 + 𝜔2 (1− 𝑐−1 𝑣F sin 𝜃 cos𝜙)2]−1;

9. 𝑠0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃) = 𝑡0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃)𝑥0(𝜙, 𝜃);

10. 𝑥0(𝜙, 𝜃) = (1− 𝑐−1 𝑣F sin 𝜃 cos𝜙);

11. 𝑝𝑟0(𝑥, 𝜔, 𝛾, 𝜓) =

=

2𝜋∫︁
0

𝜋∫︁
0

{︁
𝑑𝜙 𝑑𝜃 sin 𝜃 cos2 𝜃 × 𝑧0(𝜔, 𝜙, 𝜃)×

× [𝜐 − 𝜐 exp(−𝜐 𝑡0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃))×

× cos{𝜔 𝑠0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃)}+ 𝜔 𝑥0(𝜙, 𝜃)×

× exp(−𝜐 𝑡0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃)) sin{𝜔 𝑠0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃)}]
}︁
;

12. 𝑜𝑚𝑣𝑝𝑟0(𝑥, 𝜔, 𝛾, 𝜓, 𝜙, 𝜃) = 𝜔 sin 𝜃 cos2 𝜃×

×𝑧0(𝜔, 𝜙, 𝜃)× [𝜐 − 𝜐 exp(−𝜐 𝑡0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃))×

× cos{𝜔 𝑠0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃)}+ 𝜔 𝑥0(𝜙, 𝜃)×

× exp(−𝜐 𝑡0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃)) sin{𝜔 𝑠0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃) }];

13.

Fig. 8. Plot of a rapidly oscillating function of a general form
𝑜𝑚𝑣𝑝𝑟0(𝑥, 𝜔, 𝛾, 𝜓, 𝜙, 𝜃) with 𝑥 ≡ 𝑟/𝑎 = 0.5, 𝜔 = 1016 s−1,
𝛾 = 𝜋/4, and 𝜓 = 𝜋/4

Formula (12) is an integrand for the determination of the
real-valued function 𝑝𝑟0(𝑥, 𝜔, 𝛾, 𝜓). This formula is presented
to demonstrate the complexity level at the calculation of mul-
tidimensional (two- and three-dimensional) integrals of rapidly
oscillating functions (see, e.g., Fig. 8).

14. 𝑝𝑖0(𝑥, 𝜔, 𝛾, 𝜓) =

=

2𝜋∫︁
0

𝜋∫︁
0

{︁
𝑑𝜙 𝑑𝜃 sin 𝜃 cos2 𝜃 × 𝑧0(𝜔, 𝜙, 𝜃)[𝜔 𝑥0(𝜙, 𝜃)−

− 𝜐 exp(−𝜐 𝑡0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃))× sin{𝜔 𝑠0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃)}−

−𝜔 𝑥0(𝜙, 𝜃) exp(−𝜐 𝑡0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃))×

× cos{𝜔 𝑠0(𝑥, 𝛾, 𝜓, 𝜙, 𝜃) }]
}︁
.

15. 𝑟𝑟𝑒P𝑧(r, 𝜔) = −
3𝜔2

𝑝

16𝜋2 𝜔
𝑝𝑖0(𝑥, 𝜔, 𝛾, 𝜓).

16. 𝑖𝑖𝑚P𝑧(r, 𝜔) =
3𝜔2

𝑝

16𝜋2 𝜔
𝑝𝑟0(𝑥, 𝜔, 𝛾, 𝜓).

17. The initial data:

𝜔 = 1016 s−1, 𝜔𝑝 = 1.37× 1016 s−1,

𝑣F = 1.39× 108 cm/s, 𝑐 = 3× 1010 cm/s,

𝜐 = 3.39× 1013 s−1, 𝑎 = 2× 10−6 cm.
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18. P(1)
𝑧 (r, 𝜔)/𝐸0 = 3[𝑟𝑒𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐)+

+ 𝑖 𝑖𝑚𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐)]×

× [cos(𝜔 𝑟 sin 𝛾 cos𝜓/𝑐)− 𝑖 sin(𝜔 𝑟 sin 𝛾 cos𝜓/𝑐)]×

× [𝑟𝑟𝑒P𝑧(r, 𝜔) + 𝑖 𝑖𝑖𝑚P𝑧(r, 𝜔)].

19. 𝑟𝑒P(1)
𝑧 (r, 𝜔)/𝐸0 =

= 3{[𝑟𝑟𝑒P𝑧(r, 𝜔) 𝑟𝑒𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐)− 𝑖𝑖𝑚P𝑧(r, 𝜔)×

× 𝑖𝑚𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐)] cos(𝜔 𝑟 sin 𝛾 cos𝜓/𝑐)+

+ [𝑟𝑟𝑒P𝑧(r, 𝜔) 𝑖𝑚𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐) + 𝑖𝑖𝑚P𝑧(r, 𝜔)×

× 𝑟𝑒𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐)] sin(𝜔 𝑟 sin 𝛾 cos𝜓/𝑐)}.

20. 𝑖𝑚P
(1)
𝑧 (r, 𝜔)/𝐸0 =

= 3{−[𝑟𝑟𝑒P𝑧(r, 𝜔) 𝑟𝑒𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐)−

− 𝑖𝑖𝑚P𝑧(r, 𝜔) 𝑖𝑚𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐)] sin(𝜔 𝑟 sin 𝛾 cos𝜓/𝑐)+

+ [𝑟𝑟𝑒P𝑧(r, 𝜔) 𝑖𝑚𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐)+

+ 𝑖𝑖𝑚P𝑧(r, 𝜔) 𝑟𝑒𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐)] cos(𝜔 𝑟 sin 𝛾 cos𝜓/𝑐)}.

21. 𝐸𝑧1 (r, 𝜔) = 𝐸0(r, 𝜔)+

+
3𝐸0(r, 𝜔)

𝜀(𝜔)
[𝑟𝑒𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐)+

+ 𝑖 𝑖𝑚𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐)]

∫︁
{𝑆0(r, r

′, 𝜔)}𝑧 𝑧 [𝑟𝑟𝑒P𝑧(r, 𝜔)+

+ 𝑖 𝑖𝑖𝑚P𝑧(r, 𝜔)] exp(−𝑖k r) 𝑑r′ = 𝐸0(r, 𝜔)+

+
3𝐸0(r, 𝜔)

𝜀(𝜔)
[𝑟𝑒𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐) + 𝑖 𝑖𝑚𝑧𝑛𝑒(𝜔𝑝, 𝜔, 𝜐)]×

×
∫︁ [︂

− 𝑘2
𝑅2

𝑧 −𝑅2

𝑅3
− 𝑖𝑘

3𝑅2
𝑧 −𝑅2

𝑅4
+

3𝑅2
𝑧 −𝑅2

𝑅5

]︂
×

× [𝑟𝑟𝑒P𝑧(r, 𝜔) + 𝑖 𝑖𝑖𝑚P𝑧(r, 𝜔)] exp[𝑖 (𝑘𝑅− k r)]𝑑r′.

22. 𝑟𝑒𝐸𝑧𝑖𝑛1 (r, 𝜔) =

=

𝑎∫︁
0

𝜌′2𝑑𝜌′
2𝜋∫︁
0

𝑑𝜓′
𝜋∫︁

0

𝑑𝛾′ sin 𝛾′
{︂[︂(︂

− 𝑘2
𝑅2

𝑧 −𝑅2

𝑅3
+

+
3𝑅2

𝑧 −𝑅2

𝑅5

)︂
𝑟𝑟𝑒P𝑧(r, 𝜔) +

(︂
𝑘
3𝑅2

𝑧 −𝑅2

𝑅4

)︂
𝑖𝑖𝑚P𝑧(r, 𝜔)

]︂
×

× cos[𝑘 (𝑅− 𝜌′ sin 𝛾′ cos𝜓′)]−
[︂
− 𝑟𝑟𝑒P𝑧(r, 𝜔)×

× 𝑘
3𝑅2

𝑧 −𝑅2

𝑅4
+

(︂
− 𝑘2

𝑅2
𝑧 −𝑅2

𝑅3
+

3𝑅2
𝑧 −𝑅2

𝑅5

)︂
×

× 𝑖𝑖𝑚P𝑧(r, 𝜔)

]︂
sin[𝑘 (𝑅− 𝜌′ sin 𝛾′ cos𝜓′)]

}︂
.

23. 𝑖𝑚𝐸𝑧𝑖𝑛1 (r, 𝜔) =

𝑎∫︁
0

𝜌′2𝑑𝜌′
2𝜋∫︁
0

𝑑𝜓′
𝜋∫︁

0

𝑑𝛾′ sin 𝛾′
{︂[︂

− 𝑟𝑟𝑒P𝑧(r, 𝜔)×

× 𝑘
3𝑅2

𝑧 −𝑅2

𝑅4
−
(︂
𝑘2
𝑅2

𝑧 −𝑅2

𝑅3
−

3𝑅2
𝑧 −𝑅2

𝑅5

)︂
×

× 𝑖𝑖𝑚P𝑧(r, 𝜔)

]︂
cos[𝑘 (𝑅− 𝜌′ sin 𝛾′ cos𝜓′)]+

+

[︂(︂
− 𝑘2

𝑅2
𝑧 −𝑅2

𝑅3
+

3𝑅2
𝑧 −𝑅2

𝑅5

)︂
𝑟𝑟𝑒P𝑧(r, 𝜔)+

+

(︂
𝑘
3𝑅2

𝑧 −𝑅2

𝑅4

)︂
𝑖𝑖𝑚P𝑧(r, 𝜔)

]︂
×

× sin[𝑘 (𝑅− 𝜌′ sin 𝛾′ cos𝜓′)]

}︂
.

24. 𝑟𝑒
𝐸𝑧1 (r, 𝜔)

𝐸0 (r, 𝜔)
= 1 +

3

𝜀(𝜔)

{︃[︃(︃
3−

𝜔2
𝑝

𝜔2 + 𝜐2

)︃2
+

+

(︃
𝜔2
𝑝

𝜔2 + 𝜐2
𝜐

𝜔

)︃2]︃−1(︃
3−

𝜔2
𝑝

𝜔2 + 𝜐2

)︃
𝑟𝑒𝐸𝑧𝑖𝑛1 (r, 𝜔)−

−
[︃(︃

3−
𝜔2
𝑝

𝜔2 + 𝜐2

)︃2

+

(︃
𝜔2
𝑝

𝜔2 + 𝜐2
𝜐

𝜔

)︃2 ]︃−1(︃ −𝜔2
𝑝

𝜔2 + 𝜐2
𝜐

𝜔

)︃
×

×𝑖𝑚𝐸𝑧𝑖𝑛1 (r, 𝜔)

}︃
.

25. 𝑖𝑚
𝐸𝑧1 (r, 𝜔)

𝐸0 (r, 𝜔)
=

3

𝜀(𝜔)

{︃[︃(︃
3−

𝜔2
𝑝

𝜔2 + 𝜐2

)︃2
+

+

(︃
𝜔2
𝑝

𝜔2 + 𝜐2
𝜐

𝜔

)︃2]︃−1(︃
3−

𝜔2
𝑝

𝜔2 + 𝜐2

)︃
𝑖𝑚𝐸𝑧𝑖𝑛1 (r, 𝜔)+

+

[︃(︃
3−

𝜔2
𝑝

𝜔2 + 𝜐2

)︃2

+

(︃
𝜔2
𝑝

𝜔2 + 𝜐2
𝜐

𝜔

)︃2 ]︃−1

×

×
(︃

−𝜔2
𝑝

𝜔2 + 𝜐2
𝜐

𝜔

)︃
𝑟𝑒𝐸𝑧𝑖𝑛1 (r, 𝜔)

}︃
.

The relative energy density absorbed by the particle equals

26. 𝑤(r, 𝜔)/|𝐸0|2 =
9𝜔

2
𝑖𝑖𝑚P𝑧(r, 𝜔)

[︃(︃
3−

𝜔2
𝑝

𝜔2 + 𝜐2

)︃2
+

+

(︃
𝜔2
𝑝

𝜔2 + 𝜐2
𝜐

𝜔

)︃2]︃−1

.
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П.М.Томчук, В.М.Старков, Д.В.Бутенко

IНТЕГРАЛЬНI РIВНЯННЯ
В ЗАГАЛЬНIЙ ТЕОРIЇ ПОГЛИНАННЯ I РОЗСIЯННЯ
СВIТЛА МЕТАЛЕВИМИ НАНОКЛАСТЕРАМИ

Р е з ю м е

У роботi проблема поглинання i розсiяння свiтла метале-
вими нанокластерами зводиться до розв’язку сингулярно-
го iнтегрального рiвняння усерединi наночастинки вiдносно
комплексного вектора напруженостi електричного поля. В
якостi першого варiанту розв’язання iнтегрального рiвнян-
ня вибрано пiдхiд, коли за початкове наближення прийняте
дипольне наближення. Обчислювальний експеримент вка-
зує на прийнятну узгодженiсть запропонованого наближе-
ння для електричного поля всерединi сферичної наноча-
стинки з вiдомими результатами для оптичних i емiсiйних
властивостей металевих нанокластерiв.
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