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Introduction
In oncology randomized clinical trials, the time-to-event(TTE) 

type of endpoints such as progression-free survival (PFS) and overall 
survival(OS), are commonly used as the primary or key secondary 
endpoints for comparing the experimental treatment and active control/
placebo. In practice, the proportional hazard (PH) is usually assumed 
to characterize the treatment benefit over time of TTE endpoints 
and calculate the required sample size. With the PH assumption, the 
hazard ratio (HR) between treatment arms is a constant over time, and 
the corresponding testing hypothesis is expressed as

0 1: HR( ) = 1, : HR( ) = ,H t H t c

where < 1c . Recently, it is observed that the PH assumption does 
not hold in clinical trials investigating the cancer immunotherapies. 
Instead, a variety of non-PH pattens, such as the delayed treatment 
effect and the diminished treatment effect (e.g. Nivolumab)1,2 were 
observed.

It is well known that the log-rank test is most powerful when the 
PH assumption holds. However, when the PH assumption is violated, 
the log-rank test may yield suboptimal power when compared with 
other testing procedures.3,4 Therefore, extensive research has been 
conducted to explore alternative methods for handling the non-
PH scenarios. In literature, multiple alternative methods have been 
proposed. In this paper, we provide a review of six popularly used 
testing methods including the log-rank test,5 the weighted log-rank 
test,6 the optimal weighted log-rank test,7 the restricted mean survival 
time,8 the weighted Kaplan-Meier,9 and minimum P-value.10,11

Statistical methods for testing time-to-event 
data
Log-rank test (LR)

The log-rank test5 is the most popularly used methods for comparing 
two distributions of the TTE data. Its popularity is largely due to the 
fact that log-rank test is the most powerful test with PH assumption 
as the test statistic is essentially equivalent to the score test.5,12 Also 

the sample size planning based on the asymptotic property of log-rank 
test is convenient. However, researchers have pointed out that the log-
rank test may yield suboptimal testing power in many non-PH cases.4

Weighted log-rank test (WLR)

The weighted log-rank test is a natural extension of the log-rank 
test in order to provide a more flexible test statistic for handling the 
non-PH cases. The log-rank test becomes a special case of weighted 
log-rank test if a constant weight function over time is adopted. The 
Fleming-Harrington family ,p qL 6 is the most popular approach to 
specify weight functions as it consists a variety of weight functions to 
tackle different types of non-PH cases. The weighted log-rank test can 
yield robust power if a proper weight function is applied. Otherwise, 
the test statistics may cause a severe power loss, such as applying 1,0L
for the scenarios with delayed treatment effect.

Optimal weighted log-rank test (OptLR)

Recently, Liu et al.,7 further explore the optimal weight for the 
weighted log-rank test. The optimal weight refers to the weight 
function that maximizes the testing power within the weighted log-
rank test family. It is showed that with mild asymptotic assumptions, 
the optimal weight is expressed as

1 0( ) ( )= ,
( )

λ λ
λ
−

opt
t tw

t

where 0 1( ), ( ), ( )λ λ λt t t  are the respective hazard functions 
of control arm, treatment arm, and overall population. When PH 
assumption holds, it is straightforward that the optimal weight 
becomes a constant and thus log-rank test is most powerful. The key 
challenge for implementing the OptLR is regarding the estimation of 
hazard functions over time. The simulation results in Lin et al.,10 show 
that the optimal weighted log-rank test yields robust performance 
when delayed treatment effect is present. It is not surprising as the 
close form of optimal weight function can be derived in this setting. 
However, for other non-PH cases, further research needs to be 
conducted.
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Abstract

The proportional hazard (PH) is commonly assumed for claiming efficacy and 
planning sample size in randomized clinical trials with time-to-event (TTE) type of 
endpoints. It is well known that the log-rank test is the most powerful testing method 
when the PH assumption holds. In recent years, with the advancement of immuno-
oncology therapies, the non-PH scenarios, such as the delayed treatment effect and the 
diminished treatment effect, are frequently observed. A variety of alternative methods 
have been proposed for testing the time-to-event data while there is no uniformly most 
powerful method under the non-PH setting. In this paper, six popularly used methods 
for testing the TTE data are reviewed followed by a numerical comparison. 
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Restricted mean survival time (RMST)

In contrast to LR, WLR, and OptLR, which essentially estimate 
the difference of hazard functions, the RMST9 directly estimates 
the difference D  of two survival functions over a follow-up period 
(0, )L . That is,

1 0
0

= { ( ) ( )} ,−∫
L

D S t S t dt

where 0( )S t  and 1( )S t  are survival functions of treatment arm and 
control arm, respectively. The use of RMST is favored by physicians 
as its estimate D  has a clear clinical interpretation. For example, if 

= 3D  month with = 2L  years, then its clinical interpretation is that 
subjects receiving treatment is expected to survive 3 months longer 
during the first 2 year of treatment. In the setting of non-PH, Huang & 
Kuan4 show by the numerical simulation that the RMST yields more 
robust power performance than the log-rank test if parameter L is 
properly chosen. Furthermore, Tian et al.,13 show the power advantage 
of RMST over LR in certain non-PH scenarios theoretically.

Weighted Kaplan-Meier (WKM)

The WKM (Pepe & Fleming9) is a extension of the RMST by 
imposing a weight function on the RMST test statistic. The WKM 
is motivated by the fact that the estimation of survival function ( )S t
becomes unstable when t gets close to L due to the high censoring 
and event rate. The WKM test statistic is expressed as

1 0
0

= ( ){ ( ) ( )} ,−∫
L

WKMD w t S t S t du

where the weight function is recommended to be a function of 
non-censoring rate 1( )C t and 0( )C t ,9 such as

1 0

1 0

( ) ( )( ) = .
( ) ( )+

C t C tw t
C t C t

That is to say, more weight is given to the survival estimates where 
censoring rate is low. It is shown that the WKM works better than 
LR and RMST when the overall censoring is heavy based on the 
simulation.9

Minimum P-value (MinP)

As there are no uniformly most powerful test for testing the non-
PH data, a versatile testing method MinP is proposed by Karrison.11 
The test statistic of MinP is expressed as

1= max(| |, ,| |),MinP mZ Z Z

where , = 1, ,iZ i m  could be any type of standardized test 
statistics. Clearly, the MinPZ  aims to include different types test 
statistics, and therefore becomes sensitive to a variety of non-PH 
scenarios. For example,

1,0 0,0 0,1= max(| |,| |,| |),MinP G G GZ Z Z Z

where 
.,.GZ  are WLR test statistic from Fleming-Harrington 

family. Intuitively, the power of MinPZ  should be robust in the 
scenarios of diminished treatment effect, PH, and delayed treatment 
effect scenarios, which has been demonstrated in Karrison.11 However, 
the challenge for implementation MinP is regarding the estimation of 
covarance matrix of 1( , , ) mZ Z  if the test statistics are not WLR 
within Fleming-Harrington family. In literature, Lin et al.,10 proposed 
a permutation method while it is quite computational intensive.

Simulations

To evaluate the numerical performance of the aforementioned 
methods, we perform numerical evaluation by simulation in different 
settings of PH and non-PH. Due to the nature of this review paper, we 
only include the following examples for illustration purpose. There 
are five scenarios considered as shown in Figure 1: 1. the PH; 2. the 
delayed treatment effect with a high cure rate; 3. the delayed treatment; 
4. the diminished treatment effect 5. the diminished treatment effect 
with crossed survival curves. For each scenario, the total sample size 
is 300 with analysis performed when 200 events are observed. For 
simplicity, no censoring is considered in the simulation examples 
and therefore WKM performs the same as RMST. Each simulation 
is replicated 5,000 times. The details of simulation scenarios are 
described as follows, and the simulation performance of LR, WLR (

(0,1) (1,0),L L ), OptLR, RMST, MinP are summarized in Table 1.

Figure 1 Simulation examples.
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Table 1 The Simulation results (Power/Type 1 error)

 Method  Scenario 0  Scenario 1  Scenario 2  Scenario 3  Scenario 4  Scenario 5

LR 0.053 0.791 0.94 0.262 0.486 0.492

(0,1)L 0.049 0.662 1 0.494 0.148 0.414

(1,0)L 0.051 0.741 0.62 0.132 0.585 0.973

OptLR 0.051 0.79 1 0.674 0.745 1

RMST 0.053 0.795 0.968 0.305 0.458 0.589

MinP 0.051 0.765 1 0.42 0.516 0.998

The control arm of each scenario follows exponential distribution 
with median survival 10 months. The Scenario 0 evaluates the 
performance of Type 1 error by setting the survival distribution of 
treatment arm in the same way.

a)	 For the Scenario 1, the treatment arm follows exponential dis-
tribution with hazard ratio (HR) 0.67.

b)	 For the Scenario 2, the treatment arm follows piecewise expo-
nential distribution with 1 2= 1, < 10; = 0.02,HR t HR  otherwi-
se.

c)	 For the Scenario 3, the treatment arm follows piecewise expo-
nential distribution with 1 2= 1, < 10; = 0.5,HR t HR  otherwise.

d)	 For the Scenario 4, the treatment arm follows piecewise ex-
ponential distribution with 1 2= 0.67, < 15; = 1.2,HR t HR  othe-
rwise.

e)	 For the Scenario 5, the treatment arm follows piecewise exponential 
distribution with 1 2 3= 0.1, < 5; = 0.5,5 < 10; = 2≤HR t HR t HR  
otherwise. 

From Table 1, it is evident that all the methods preserve the Type 
1 error strictly. The LR yields robust performance when the PH 
holds while a significant power loss is observed in multiple non-PH 
settings. The performance of WLR depends on the selection of weight 
functions, which is difficult to be properly pre-specified. The RMST 
performs similarly as LR, and its estimate has straightforward clinical 
interpretation. The OptLR and MinP yield strong performance in all 
scenarios. It worths noting that the good performance of OptLR could 
be due to the fact that the optimal weights in the simulation examples 
are easy to estimate.

Discussion
As illustrated in Section 2, a rich set of methods has been available 

for testing TTE data. However, there is no uniformly most powerful 
method in the non-PH setting. Therefore, it is important to conduct 
intensive numerical evaluation for understanding the operating 
characterics of different methods before decision making. Otherwise, 
a significant power loss could be caused due to the selection of testing 
method. Furthermore, the numerical evaluation needs to carefully 
designed via reviewing the historical data and the mechanism of 
action of investigational drug. For instance, the numerical evaluation 
for immuno-oncology compounds may focus on the delayed effect 
scenarios. For the further work, the theoretical development on 
comparing the efficacy of existing methods as Tian at al.,13 and the 

software development to facilitate the use of existing methods, such 
as R Shiny, could be interesting.
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