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Introduction
Recent leaps in the field of oncology and therapeutic research of 

nano diagnostic and nano therapeutic agents has grave importance 
improvements in the use of nanoscale metal particles as a solid carrier 
for thesite-specific delivery of drugs release process.1-8 The comfort 
factors in using nanoscale metal particles are attained from their 
capability to increase the aqueous solubility of hydrophobic drugs 
compound, enhanced the circulation time of drugs in the blood, and 
repress or eliminate fast renal drugs excretion. Nevertheless, the 
clinical success of these agents is crucially related to the efficacy of 
the tiny particles to guide the chemotherapeutic drugs to the targeted 
cell at a designated period of time with in the body. These individual 
conjugates metal particles dramatically increase the cell-specific drug 
accumulations.9-12 and opens up the possibility of internally controlled 
activation (the replacement) of the delivered drug where the 
therapeutic effect is required in affected cell. This efficacy primarily 
depends on their physicochemical properties that should fit well in 
the context as drug conjugates. Therefore, the efficacy, in this case, is 
defined as maintaining the required distribution of drugs from plasma 
into a particular tissue or cell, there by preventing possible normal 
tissues and cells’ damage within or close to the area being treated that 
might otherwise have. Nonetheless, the real challenge is a bit stiff still. 
The particles become thwart themselves and tend to halt the binding 
or producing the drug’s binding incompetency at thespecific receptor, 
and least of these is not capable of reacting by themselves into the 
pathways that led down to the drug inducement system andproduced 
the side effect.13-15 Thus the drug delivery system demanding nanoscale 
particles should be exploited ina very delicate ways that can improve 
the capabilities of the therapeutic agent to optimise and implement the 
system in a safe and precise manner.

Nanosize Ag and Au particles have been used in elixirs and 
tonics for medicinal application since time immemorial due to their 
exciting antimicrobial properties to manipulate the fluids to generate 
monodisperse and uniform droplets in micro size system.16-18 The 
therapeutic properties of these metal particles have been identified for 
thousands of years.19,20 Indeed, the look on Ag and Au nanoparticles 
as the promising carriers become heavily researched area focus to 
date where the efforts in the implementation of these particles in the 
oncology and therapeutic fields increasing. The exponential growth 
in the number of well-research examples dealing with nanoscale 

Ag and Au particles for diagnostic and theranostic applications 
comprehensively justifies their significant promises and impact of 
treatments’ efficacy is shown in (Figure 1). This exciting discovery 
towards diagnostic and theranostic applications are continuously 
merge their way into better medical implementation not only as drug 
delivery ‘transport’, but they themselves are the drugs.

Figure 1 Comparison of temporal evolution in the number of scientific papers 
published for Ag and Au particles in drug delivery. The total number scientific 
papers published for Ag particles is lower than Au particles approximately 284 
and 2423, respectively, for the past 10 years. (Source: ISI Web of Knowledge 
with the search terms under ‘drug delivery using Ag and Au nanoparticles’).

The assessment of the apoptotic potential of nanoscale Ag and Au 
particles with the diameter less than 100 nm have shown such great 
potential to facilitate site-specific drug delivery.21,22 Importantly, the 
diameter of the particles should not be more than 100 nm to avoid 
opsonisation and subsequent elimination of the immune system.23-26 
The advantages of using Ag and Au nanoscale particles for drug 
delivery applicationinclude the ability of these structures to:

I.	 Afford enhanced drug biodistribution to specific malignancies 
(subcellular) sites within the body

II.	 Protect the therapeutic molecules from detrimental effects (i.e. 
molecules degradation) during transport

III.	 Release an effective quantity of drug through control reduction 
of the active therapeutic molecules ideally in or around the 
vicinity of the malignant target
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Abstract

In the recent years, noble metal particles such as gold (Au) and silver (Ag) have been used 
progressively as efficient and safe nanoscale drug carriers in treating malignant as cites of 
cancerous cells. These single crystal structures of functionalised therapeutic particles with 
the size less than 100 nm in diameter had proven offered an excellent function to modulate 
the oxidative stress and toxicity at affected membrane cells particularly to achieve the site-
specific delivery of drugs. This mini-review will highlight the current advances of Au and 
Ag nanoscale particles as smart chemotherapeutic molecule carriers to these malignancies 
in impeding cancer cell activities locally. The paper also reviewed valuable insights of their 
efficacy in maintaining and precisely control the drugs release level within the therapeutic 
windows.
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IV.	 Avoid non-specific interactions at non-targeted sites, minimising 
the induction of adverse reaction effects.

V.	 Facilitate imaging and monitoring of the treatment efficacy as 
the contrast agents viewed under magnetic resonance imaging 
(MRI).

Both nanoparticles can be guided and held in desired sites due to 
their unique electrical and magnetic behaviours by either magnetic 
or electric fields and the resultant current induced the local heating 
effect in cancerous regions. This local heating enhances cancerous 
membrane oxygenation and chemosensitivity and that trigger the 
release of the loaded drugs or to causes cell death by temperature-
induced apoptos is.27 Practically, the implementation of these 
particles as nanotherapeutic agents is observed as light scattering 
contrast agents monitored under MRI during photothermal ablation 
treatment  via  region-specific magnetic targeting.At the same 
time, their potential as effective photothermal therapy carriers 
facilitates their significant endorsement as sufficient absorption 
antibodies. However, both particles also exhibitseveral drawbacks 
and challenges;notably, they have greater tendency to aggregate as 
they encountered with larger or smaller nanoscale particle counter 
parts, based on the same metal content.28,29 Therefore, a combination 
with synthetic polymers or also known as surfactantent rapped both 
particles in organic stimuli-responsive matrices that form well-
defined self-assemblies of polymeric nano metal structures. The 
layers of the adsorbed or covalently bound polymers act as an anti-
coagulant,preventing particlesre-aggregation. These polymeric metal 
particles facilitate the development of secondary functionalised 
metal particles attached to drugs or molecules that further protect 
them against recognition of immune system. These interactions are 
multivalent in nature, and thus the Ag or Au particles mimic the 
multivalent presentation of therapeutic substances on particles surface 
to make these functionalised nanoparticles having excellent qualities 
as good engineered particle carriers.

Nanoscale silver particles
In particular, nanoscale Ag particles are most frequently 

synthesised by chemical reduction method where the solutions of 
Ag precursor salt is chemically reduced in the presence of reducing 
agent. The system is further stabilised by surfactant which enhances 
stability (aggregation) and oxidation of the metallic Ag particles as 
a consequence of microscopic interaction such as the Van der Waals 
(between molecules and particles) and depletion forces (from excess 
surfactant).30 The properties of Ag particles for the therapeutic 
application does control by several factors include the morphology 
(size and shape), surface chemistry and surface charge as well as the 
state dispersion of particles.31,32

The functional properties influenced by the size and morphology 
of Ag particles mainly responsible for the de-localisation of the 
therapeutic drugs inside the malignancies. In most cases, particles 
with diameter size less than 120 nm were reported to be well suited 
for localised drug delivery applications due to the fact that they can be 
synthesised on a large scale with high monodispersed with almost no 
drug loss to the malignant sites. This point has previously been made 
by several authors.33,34 that the localisation behaviour of Ag particles 
within the malignant areas is dependent on the size as their direction 
can be sterically hindered in cellular matrix due to the mucoadhesives 
of encapsulated chemotherapeutic substances.35 The particle size 
of conjugate Ag particles along with their morphology does indeed 
give better surface chemistry effect which arises the opsonisation 
behaviour. The smaller the conjugate Ag particle size, the greater 

the accumulation inside the malignant sites that in turn shown better 
circulation and dispersion through different types of membrane cell.36 
However, smaller particles can also increase the cytoxicity inside the 
membrane cells if the adherence and degradation, as well as clearance 
circulation, are not fully understood although Ag particles modulate 
both oxidative stress and the cellular uptake efficiently.

Interestingly, surface chemistry role during clearance or uptake 
in circulation accommodates the facilitation of nanotherapeutic 
carriers when an abundance of small nanoparticles exist within the 
malignancies.37 Studies revealed that nanoscale Ag particles had 
shown a prolonged circulation type of the half-life nanoparticles 
which can escape from affected cell in the tissue effectively. Long 
circulation is needed in chemotherapeutic treatment where the drug 
degradation should be negligible, therefore, undergo apoptosis where 
the affected cell shrink and produced condensed morphology due to 
the increased distribution of drug compound.

In most cases, Ag particles are considered as one of the 
photothermal the rapeuticagents due to their de-localised nature 
behaviour that forming a sea of the conductive electron which 
increased thepolarisability of these charge carriers at the surfaces 
ofAg particles.38,39 (Figure 2). Since Ag particles is neutrally charged 
particles, their cytoxicity islower than the charged ones.The attractive 
force between conduction electrons of Ag particles and malignant 
membrane favour the adhesion rate onto the surface of the targeted 
cell. Small Ag particles with diameter size less than 100 nm prove 
to alter the malignant potential effectively as well as impedes its 
proliferation and induces fluidity of the affected cell sites.

Figure 2 An example of morphological changes caused by nanoscale Ag 
particle due to the apoptosis. Ag particles treated cell exhibited condensed 
morphology. (Reproduced from.38).

Nanoscale gold structures
Au nanoparticles are extremely tiny solid balls made of gold 

with diameter vary from 5 to 100 nm.40 The Au nanoparticle can 
be synthesized by various method such as seed-assisted growth.41 
wet chemical.42 microwave assisted.43 laser ablation.44 and etc. Wet 
chemical is the most popular and commonly used method to synthesize 
Au nanoparticles. In this method the gold salt is reduced in the 
presence of reducing agent which also acts as stabilising agent. Where 
else, the capping reagent is used to control the growth and aggregation 
of the Au nanoparticles. Zeta sizer, transmission electron microscopy 
(TEM) and/or surface scan electron microscopy (SEM) are some of 
the methodologies used to characterize and determine the shape, size 
and size distribution of the synthesized gold nanoparticles.45

To date, a wide variety of sizes, shapes and structures of Au 
nanoparticles has been reported depending on the application at hand 
as shown in (Figure 3) Au nanoparticles have been shown as one of 
the promising and favarouble material in nanomedicine. These Au 
nanoparticles have been extensively studied and used as therapeutic 
agents (drug delivery).46 diagnosis agents.47 photothermaltherapy.48 
and imaging agents.49 Their tiny size, which meets the dimension 
of the most biological compounds, high surface area, relatively ease 
preparation, ease surface functionization make them particularly 
fascinating towards medical application. However, the interaction 
of Au nanoparticles with the surrounding biological environment 
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has a significant impact towards their biological activity, as such 
a methodical understanding of the behaviour and nature of the 
interactions is essential for proper designing of these nanoparticles for 
diagnostics and therapeutic applications.50

Figure 3 Wide range of potential biomedical application of Au nanoparticles 
depending on their synthesised size and shape (Reproduced from.40).

There are four main physical and chemical properties to which the 
Au nanoparticles have been tested shown to be promising candidate 
for clinical studies and biomedical applications: chemical inertness; 
surface properties; electronic structure; and optical properties. The 
high surface area and the relatively small number of ligands coated 
on smaller diameter particles cause reduced flocculation, where else 
the larger nanoparticles form insoluble aggregates. Additionally, the 
chemical inertness of this particle, facilitates gaining them in the wide 
range of shapes without compromising the high stability, low toxicity 
and immonugeneity which are essential for biomedical applications.51 
Recall, most of the practice employed Au nanoparticles (Figure 4a-
4c) have been put as the preferable particle structure as drug delivery 
vactors in theragnostic field.

Figure 4  SEM images of Au nanoparticles (a to c) and Au nano wires (d) 
obtained by seed-assistance and wet chemical methods. (Images provided by 
Trigueros lab).

Nevertheless,other Au nanostructures such as Au nanorods have 
also gained much attention due to their remarkable multifunctional 
properties especially in macrobiological system that needs the drug 
carriers to be half of the size of DNA molecule. For instance, Au 
nanorods not only can identify the attendance of tweak genes, but 
also assists reserchers to precisely spot the affected location of the 
changes.52 The assemblies of nanorods can simultaneously bind 
compacted genes and targeting the molceules in the acute way. The 
precise control of the size and structure of Au nanorods (Figure 4d) 
allows the efficacy in the chemotherapeutic treatment.

Presently, the controlled delivery of the active biomolecules in 
live cells or tissues to improve the therapeutic outcomes is one of the 

major targeted area in biomedicine.52 Nevertheless, the intracellular 
release of biomolecules in the areas of lession remains a major 
challenge. This due to the deficiency of physiological solubility of 
the biomolecules and also the low cell membrane permeability. Thus, 
higher dose usually preferred and this likely to cause side effects. The 
Au nanoparticles has been shown to have the potential to overcome 
this issues and become the ideal material for drug targeting and 
imaging-based detection. Due to their size smaller than the biological 
compounds, the active biomolecules can be loaded or attached to the 
surface of nanoparticles which allows delivering of those molecules 
directly inside the cells cytoplasm and cell organelles. Interestingly, 
apart from the size, this particle also exhibits high-density surface 
allowing high yield ligand anchorage, targeting cellular delivery, 
controlled intracellular release and ease the transmembrane delivery.52 
Specifically, in cancer therapy, the Au nanoparticles based vehicles 
found to enhance the “in vivo” and “in vitro” therapeutic activity of 
diverse chemotherapies such as breast cancer stem cells.44 doxorubicin 
on human glioma cells, human melanoma cell lines.39 temozolomide, 
and to promote crossing the blood barrier, thereby facilitating greater 
accumulation of drug in cancer cells.53

Conclusion
The serious implementation of high-throughput Ag and Au 

nanoparticles in the theragnostic system have devoted improved 
functionality result to date. While going forward, there are remains 
of the biggest challenge yet to be solvedin order to perceive the 
acceptance of these systems as first line treatment modalities. 
The pressing concern is to systematically deliver both Ag and Au 
systems in the mass balance for cancer therapies and diagnostics with 
efficient clearance or excretion with consideration of the subsequent 
accumulation of every microgram of these therapeutic drugs that 
are administered. It may also be better to eliminate myth and many 
common misapprehensions about Ag and Au nanoparticles include 
their high synthesis cost in amass scale and our relative lack of 
exposure to these systems throughout much of the 21st century.
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