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Abstract We present a new approach called computational shape analysis, which utilizes a Fourier-
wavelet representation for characterizing shape features of 2-D forms commonly encountered in a wide
set of sub-disciplines within the biological sciences. The morphology of interest consists of the human
cranial base (CB) as depicted on lateral cephalometric radiographs. Given a complex irregularly
bounded form in Cartesian coordinate space, we first compute elliptical Fourier functions (EFFs) using
a set of closely-spaced pseudo-homologous (x, y) points, starting at basion, to create a precise analog
of the closed contour. This computed contour is then scaled (size-standardization) and rotated (posi-
tional-orientation) to provide for a common normalization. This insures that the representation is
invariant with respect to starting point, size and orientation. Utilizing the EFFs, global aspects of the
CB can then be extracted. The coordinates derived from the EFF were subsequently submitted to a
continuous wavelet transform (CWT). Wavelet coefficients were then computed to identify localized
features. The significant advantage of wavelets is that they are able to objectively identify changes in
boundary curvature, thereby depicting localized aspects not easily attainable with other methods. Uti-
lizing a sample of 297 Japanese cranial base outlines, statistically-significant differences in sex and
archeological age were found. Although archeological age differences were present, they were small
and largely random in character, suggesting stability in the CB structures. The presence of sexually
dimorphic differences is consistent with earlier data derived from studies of Macaca nemestrina. In the
current study, these differences in sexual dimorphism were present for every group starting with the
Yayoi period and continuing up to the Modern period. Consequently, one may infer that the pattern of
sexual dimorphism documented in the Japanese CB, is a primate pattern with an ancient evolutionary
history. Wavelets were particularly useful in objectively identifying this sexual dimorphism. The
results demonstrate that the Fourier-wavelet representation is a practical approach for numerically
describing and visually depicting both global and localized features.
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Introduction

“The study of form may be descriptive merely, or it may become
analytical. We begin by describing the shape of an object in simple
words of common speech: we end by defining it in the precise lan-
guage of mathematics; and the one method tends to follow the other
in strict scientific order and historical continuity,” quoted from
D’Arcy Thompson (1915), Morphology and Mathematics.

It has long been recognized that the human cranial base
(CB) acts as the major supporting structure for the brain and
plays a pivotal position in the growth and development of
the craniofacial complex (Bjork, 1955). There has also been
the implicit assumption over the last half century that CB

structures are relatively stable over both ontogenetic and
phylogenetic time, although there is a paucity of evidence
supporting this. While differences between males and
females (sexual dimorphism) for many morphological struc-
tures (stature, weight, etc.) have been widely recognized,
there is still little evidence available with respect to such
changes in the craniofacial complex. Documented changes
in the craniofacial structures tend to be primarily concerned
with size, with little emphasis on shape. In the CB, evalua-
tions of size and shape become quite complex, even when
confined to two-dimensions, and the collection of such mea-
surements is by no means a trivial endeavor. The introduc-
tion of this paper consists of two parts. The first part is an
extended discussion of a number of theoretical issues that
arise when measurement of form is considered. This is fol-
lowed by the second part, which is a somewhat intuitive
background for understanding Fourier descriptors, the Fou-
rier transform, the short time Fourier transform and finally,
wavelets. We felt that the rather extensive background dis-
cussion was justified for a better understanding and appreci-
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ation of wavelet theory.

Measurement of size and shape
What exactly do we mean by size and shape? How are

these concepts related to form? Notions of size, shape, and
form and their inter-relationships have been historically con-
troversial. A cursory look at Webster’s Unabridged Dictio-
nary (1983) reveals that form is defined as: “the shape or
outline of anything; figure; image; structure, excluding
color, texture and density.” Upon looking up shape one finds
matters becoming more confused and tautological, with
shape defined as: “... outline or external surface” or “the
form characteristic of a particular person or thing”. Accord-
ing to these definitions, ‘shape’ and ‘form’ can be consid-
ered as interchangeable, to be viewed as essentially
identical. Clearly, if this confusion between shape and form
is to be alleviated, these concepts require re-definition, and
this issue will be addressed in this paper. Moreover, besides
problems of definition, there is the more challenging con-
cern of how to measure size and especially the shape of
forms. The traditional view has tended to ignore problems of
measurement, on the grounds that a readily available
approach, universally used, seemingly yielded acceptable
results. This conventional approach consists of linear dis-
tances, angles, and ratios.
Difficulties continue to be present in spite of over a hun-

dred years of such easily gathered measures. For example,
little effort has been made to separate the effects of size and
shape within the conventional metrical approach (CMA). It
has been simply presumed that linear measures represent
size, and angles or ratios (proportions) define shape. This is
accurate only in the simplest sense. For example, consider
the commonly utilized cranial base angle (nasion-sella-
basion or NSB). This angular measure of the CB has been
and continues to be controversial (Lestrel et al., 1993). One
reason for this has to do, in part, with attempts to measure
complex biological forms with a method that is not particu-
larly suitable for that purpose. That is, CMA was designed
for the measurement of regularly-shaped, i.e., non-natural
(artificial) structures. It was never intended for the measure-
ment of irregular forms of the type encountered in the bio-
logical sciences.
Nevertheless, investigators continue to use such measures

seemingly unaware of the serious limitations that the use of
such measures entail. This is not to suggest that conventional
metrical measures such as the NSB cannot provide rough
estimates of the angulation of the CB. They, in fact, do pro-
vide such estimates. However, it remains unclear as to what
these CB angulation estimates really mean, since such mea-
surements fail to describe the actual CB morphology as well
as any changes that are taking place in the CB over time.
Every angle is composed of two lines and three points.

Thus, changes at one, two or all three of the points (land-
marks) may be involved in the angulation of the NSB, but it
is not possible to identify precisely where the CB changes
are occurring without independent confirmation (Lestrel et
al., 1993). Thus, relying solely on NSB, it is not possible to
determine whether the increase in angulation is due to supe-
rior migration of nasion, inferior movement of sella or the
superior placement of basion. The NSB angle only reflects,

in some complex and uncertain way, the shifting (or migrat-
ing) of the three landmarks involved as a function of the
forces of bone resorption and deposition (Enlow, 1975). Any
changes in the actual CB structures remain unknown, and
thus, not measurable simply using the NSB angle or other
measures.
Another one of the deficiencies with CMA is illustrated in

Figure 1. It is not possible to re-construct the original form
from the measurements; that is, the information contained
within the CB is not preserved with CMA. Thus, with CMA
it is very difficult, if not impossible, to archive the measure-
ments so that they can be used to re-create precisely the form
at a later time. Such a ‘preservation’ or archiving capability
requires other methods (see FDs below).
Other objections that have been raised against the use of

the NSB angle are as follows: [1] nasion is not a cranial base
landmark, it refers to the frontal bone, [2] sella has no struc-
tural reference, and most critical, [3] the NSB angle does not
measure any actual aspect of the CB itself. Yet, it is this very
question, of where the changes are occurring, that is one of
the primary issues of interest in any analysis of the structures
of the craniofacial complex. If CMA, composed of dis-
tances, angles and ratios, suffers from shortcomings, are
there alternate methods that the researcher can draw on? The
answer to this question can now be answered in the affirma-
tive and will be addressed more fully later.
Finally, a separate issue is that biological organisms and

their structures are, of course, three-dimensional (3-D) and
this adds much more complexity in terms of the measure-
ment of size and shape. In fact, one such study, of the rabbit
orbit in 3-D, is instructive in terms of the difficulties that are
encountered (Lestrel et al., 1997). The discussion that fol-
lows will, consequently, be limited to two-dimensional (2-
D) data because of: [1] the relative ease in obtaining such
data and [2] measurement problems arising at that level need
to be resolved first.
Figure 2 is an attempt to illustrate this complexity in form.

Note that six attributes are illustrated here. These six are: [1]
scale (size), [2] outline (shape), [3] surface (texture), [4]
interior (patterning), [5] color and [6] spatial orientation.

Figure 1. The lateral view of the human cranial base with three
homologous landmarks, being described with the conventional
approach (CMA) composed of angles and distances. One of the limita-
tions of CMA is that it is not possible to subsequently re-create the
form from an archived data set consisting of traditionally derived mea-
sures.
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Other attributes may need to be considered for a complete
model of form. Of the above attributes, size and shape repre-
sent some of the more important ones from a quantitative
perspective, and these will be emphasized here.
Size is defined here as ‘scale’, and differences in size

between organisms are often readily visually apparent. Mea-
surement of size differences is not simple, because forms
also differ in shape, which can act as a confounding factor.
The use of CMA is particularly limited in this regard.
Shape is defined here as ‘outline’, and differences in

shape between organisms are based on the boundary or con-
tour in 2-D. The shapes of two organisms (limited to 2-D,
but can be conceptually extended to 3-D), are identical, if
and only if, their boundary outlines completely coincide
everywhere (geometric congruence property). This requires
that if one of the forms is smaller than the other, size scaling
will also be required. Thus, the appropriate approach for
examining differences in shape requires as a first step, the
scaling of the forms so that they are equal in size. This can
be accomplished for 2-D bounded forms by standardizing on
area. For open curves, area is inadmissible so other standard-
izing approaches have been discussed, such as the perimeter
(van Otterloo, 1991). For purposes here, the CB outline is
scaled such that the bounded area becomes a constant value
(see methods section). Finally, two other normalizations
schemes have been proposed. One is based on Fourier
energy considerations (Cesar and Costa, 1996) and the other
the major axis (Cesar and Costa, 1998).
However, such a definition of shape, is of necessity,

incomplete. It is incomplete in the sense that besides the
overall boundary, many other aspects within a form also
reflect the ‘shape’ attribute (e.g., consider the antero-supe-
rior border of the zygoma leading anteriorly to the supra-
orbital ridge in Figure 2). As a consequence, two approaches
to computational shape analysis have been recognized.
These are: [1] boundary or contour-based and [2] region-
based (Costa and Cesar, 2001). Nevertheless, the first shape
definition, based on the boundary outline or contour, is
intended as a starting point of reference here with respect to
the Japanese CB and amply illustrates the complexities asso-
ciated with measuring shape.

Textural considerations are largely involved with the two
attributes: surface (texture) and interior (patterning). These
two elements are intended to model: [1] the surface configu-
ration of a form and [2] the interior structure (i.e., for exam-
ple the cellular matrix of bone). The spatial orientation
attribute refers to the orientation of a form in 2-D space (or
3-D space). A common orientation for superimposition is
needed for the comparison of forms. While the color
attribute is seemingly self-explanatory, problems of its mea-
surement in terms of reflectance, luminescence, etc., remain
to be fully explored in a biological context. Finally, it is
again to be re-iterated that other attributes may need to be
developed for a complete model of form.
But even this more complete model has to be joined with

actual measurements before it can be reasonably applied to
biological data such as the CB. This immediately raises three
questions: [1] can measurements be objectively derived, [2]
what measurements are appropriate and, [3] how many mea-
surements are sufficient? The implications flowing from the
first question have been scarcely addressed in spite of over a
century of measurement. It is argued here that the very selec-
tion of measurements (e.g., consider a set of distances or
angles) imparts subjectivity to the scientific endeavor. With
respect to the appropriateness of a measure, it can be noted
that the choice of a different set of measures taken on the
same object, may have a decided effect on the final outcome.
The third issue, sufficiency, has also received inadequate
attention. How can we be sure that we have measured the
total morphological form? It will be argued that sufficiency,
in terms of the number of measurements used, remains an
important and vexing problem which has been insufficiently
recognized.
The complexities involved in the measurement of the

other attributes such as the interior (patterning) and the sur-
face (texture), as well as color, are certainly resolvable and
necessary for a complete model of form. But they will be
ignored for the time being. They represent work for the
future. The research presented here will be confined largely
to the size and shape properties of the Japanese CB.

The problem of homology
Before we turn to the alternative methods proposed here

as alternatives to CMA, we need to briefly consider the issue
of homology. Considerable controversy has ensued as there
are two rather diverse approaches (O’Higgins and Johnson,
1988; O’Higgins, 1997). These are traditional or biological
homology and geometric homology. Traditionally, homol-
ogy was never considered in terms of landmarks or points,
but rather solely in terms of whole structures. Owen first for-
malized it in 1843 as the same organ in different animals
(Owen, 1846). In contrast, the raw data for geometrical
homology are landmarks, which are presumed, (if not
always satisfying the criterion) to be in some sense ‘homol-
ogous’. Homology in geometric terms has been defined as a
one-to-one mapping between corresponding points on dif-
ferent forms (Bookstein, 1991). Moreover, these points must
also be biologically equivalent between organisms; other-
wise, an analysis even if based on homologous points, can
become biologically irrelevant. See Lestrel (1997a) for a
more detailed discussion of some of the problems inherent

Figure 2. A number of attributes for determining form. Six such
attributes are shown here: [1] scale (size), [2] outline (shape), [3] sur-
face (texture), [4] interior (patterning), [5] color and [6] spatial orien-
tation. Potentially, other attributes may be indicated but they are not
shown here.
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with these definitions of homology. We will need to return to
this seemingly inescapable issue of homology.

Fourier descriptors (FDs)
The last three decades have spawned a variety of new and

mathematically more sophisticated methods to circumvent
the limitations of CMA. These methods have been loosely
grouped under the term morphometrics. Morphometrics can
be viewed as a set of procedures, which facilitate the map-
ping of the visual information of form into a mathematical
representation. Some of the morphometric methods used to
analyze form can be placed into two broad categories,
homologous-point and boundary-outline methods. Detailed
discussions of these two contrasting views can be found in
Read and Lestrel (1986) and Lestrel (1997b, 2000). How-
ever, these methods tend to be viewed as largely independent
of each other because of the lack of a formal unifying model
(Richtsmeier et al., 2002; Lestrel, in press). One boundary-
outline technique of particular interest here, are Fourier
descriptors (FDs). FDs have been successfully utilized for
over three decades to quantify the outline of irregular con-
tours.
Ever since the publication of J.B.S. Fourier’s seminal

work on heat transfer in 1822, Fourier analysis has been of
major importance, both from a mathematical viewpoint as
well as an applied one (Grattan-Guiness, 1972; Herivel,
1975). Fourier analytic techniques continue to be exten-
sively used in very diverse fields (Lestrel, 1997b). Fourier
demonstrated that one can precisely reproduce almost any
complicated curve or function by using sine and cosine
terms of varying amplitudes and frequencies, which when
summed (or more accurately, integrated) will converge onto
any arbitrary curve (or function). This process, resulting in a
precise emulation of the curve or function, using sinusoidal
components, is called harmonic synthesis. This procedure of
harmonic synthesis is particularly useful in that FDs can be
used to re-create the outline of the form under consideration
(information-preserving property), in contrast to landmark
methods as previously discussed.
Fourier also showed that such a curve could be decom-

posed into separate elements (sines or cosines) as well.
Today, the use of Fourier descriptors (FDs) refers to this
decomposition of the function or curve into separate compo-
nents or harmonics and is known as harmonic analysis, or
more simply, Fourier analysis. These separate components
(amplitudes, power, phase, etc.) can be considered as com-
prising the Fourier representation of the curve or signal.
Another of these components is power, a measure of vari-
ance. Power is also called the power spectrum (all these
terms will be defined in some detail later). Useful discus-
sions can be found in Tolstov (1962), Kline (1972) and
Davis (1986).
Fourier analysis can also be viewed as a transformation of

data from one domain to another. In fields such as signal pro-
cessing, this transformation is from the time domain into the
frequency domain. In other fields such as pattern recognition
and the biological and earth sciences, the transformation is
generally from the spatial, rather than the time domain, into
the frequency domain. For purposes here, the spatial domain
refers to the data points that determine the boundary of the 2-

D form, and the frequency domain is defined in terms of a
new set of variables (coefficients) describing amplitude and
phase relationships. This has also been termed a decomposi-
tion of the spatial configuration (boundary) into frequency
components (amplitude and phase). Strictly speaking, all
FDs are transforming methods, not just the somewhat mis-
leadingly named Fourier transform (FT) to be discussed sub-
sequently.
Three aspects of Fourier analysis deserve comment, these

are: the period, the amplitude and the phase. Consider a sim-
ple sinusoidal function such as a sine wave, which repeats
over an interval (along the x-axis). The period, L, refers to
one complete cycle from 0 to 2� radians or 360 degrees. For
the CB, our structure of interest here, this cycle, [0, 2�], is
from the first point on the boundary to the last one. The fre-
quency, on the other hand, is the reciprocal of this period or
wavelength, f�1/L. This means that as the wavelength
(period) gets smaller, the frequency will increase. The fun-
damental frequency is given by the first harmonic, which is,
generally equal to the interval from [0, 2�] or [��, �]. The
next higher frequency is the second harmonic, which is one-
half the wavelength of the fundamental frequency, and so on.
The amplitude, in the Cartesian co-ordinate system, refers to
the maximum height of the waveform from the x-axis (mea-
sured along the y-axis). As the frequency increases, the
amplitude values tend to decrease. However, there may be
exceptions to this rule. Phase refers to the displacement of
the starting point of the waveform from the origin.
For example, the form of the sinusoidal curve, y�cos x, is

identical to y�sin x, except that it is shifted in phase by 90
degrees or �/2 radians. These three properties: period,
amplitude and phase provide a flexible system that can be
used to fit many forms. The spatial form under consideration
is made “periodic” in the sense that it is repeated over a set
interval (the period), usually from 0 to 2�. That is, the last
data point on the outline is followed by the first point, and
the process is repeated (Lestrel, 1980, 1982). If any observed
2-D form can be described with a set of discrete points (x, y)
on the boundary outline (generally equally spaced), then
such a structure, represented as a tabulated function, can be
fitted with a Fourier series.

The Fourier series
If we define the period over a 2� interval, we can simplify

the familiar discrete form of Fourier’s series in Cartesian
form to:

where a0 is a constant, an and bn are the Fourier coefficients,
n is the harmonic number and x refers to the points sampled
over the period along the x-axis, and N is the maximum har-
monic number. The a0, an, and bn coefficients are computed
from the following equations. While these are normally
defined as integrals (the continuous case), the ones here refer
to the discrete case, since actual data sets are usually in finite
tabulated form (i.e., in a table). Sampling along an outline
with even k divisions over the interval [��, �], allows the

[1]
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constant, a0, and the coefficients, an and bn, to be computed

as:

and

where n is the harmonic number, The limits n�0 and n�k�1
above follow from the trapezoidal rule for computing areas
(Harbaugh and Merriam, 1968; Lestrel, 1997b) and N is the
maximum harmonic, subject to Nyquist or folding frequency
requirements. For technical reasons having to do with signal
processing and the Fourier transform (FT), the frequency
spectrum (see below) is always symmetric (a mirror-image
along the time axis) so that one part can be discarded or
folded onto itself (Polikar, 1996).
The Nyquist frequency, is the maximum frequency, or

highest harmonic, that can be detected from the sampled
data. That is, sufficient samples (the data points on the bio-
logical form) must be taken to ensure that the peaks and val-
leys, the amplitudes in the frequency domain, will accurately
depict the original form in the spatial domain. This is neces-
sary to avoid noise or distortion, called ‘aliasing’, of the sig-
nal. Thus, the maximum number of harmonics, according to
the Nyquist frequency, cannot exceed 1/2 the number of
sampled data points (Newland, 1993).
The nth amplitude is defined as:

where An is the amplitude for the nth harmonic, an and bn are
the respective Fourier coefficients, and n is the harmonic
number. One procedure commonly utilized with FDs (and
EFFs to be described subsequently), is to plot the amplitude
(An) values as a function of the harmonic number, n. Since
the amplitude is a frequency component, this plot is called a
frequency spectrum. Moreover, from the amplitude one also
can derive the variance or “power”, which is defined as the
square of the amplitude and can also be plotted as a function
of the harmonic number. This plot is called the power spec-
trum. This latter graph of power versus harmonic is particu-
larly useful in that it is a description of the contribution that
each harmonic makes toward the total form, in terms of the
explained variance (Davis, 1986; Lestrel, 1997b).
The remaining property is phase. The phase angle for the

nth harmonic is computed as:

where the an and bn are again the coefficients for the nth har-
monic.
Two other procedures need to be briefly mentioned. These

are two normalizations termed positional orientation and
size-standardization (Parnell and Lestrel, 1977; Lestrel,
1980). Positional-orientation refers to two aspects: [1] the
orientation of the outline in space (the issue of phase) and [2]
the placement of the center from which the vectors to the
outline are constructed and measured (if in polar coordi-
nates). The first aspect can be controlled with judicious posi-
tioning of the outline prior to digitization. The second aspect
requires that a neutral center, the centroid, be computed. The
centroid is the only center from which the position of the
vectors remains invariant under rotation. The use of any
other center results in increased variability in the Fourier
coefficients (in a sense ‘noise’) due strictly to the position of
the center, and not to the variability in the outline (Parnell
and Lestrel, 1977; Full and Ehrlich, 1982).
The second normalization, size-standardization, is predi-

cated on the grounds that shape, in contrast to size, contains
considerable informational content of importance. This is
not to imply that size is unimportant, but rather to stress
again that measurement of shape can be unduly influenced
by size or scale. If size differences are at all appreciable, sub-
tle shape differences may be swamped and confounded.
Three normalization approaches have been suggested: [1]
based on the a0 or constant term, [2] based on the arc length
or perimeter of the outline and [3] based on the bounded
area. The first normalization refers to the constant of the
Fourier series, a0, which is defined as the mean of the vec-
tors from the centroid to the outline. Schwarcz and Shane
(1969) were probably the earliest to apply this approach.
Although this value is readily computed, and has been used
as a scaling factor to control for size, it has the impediment
that if the outline of interest departs significantly from a cir-
cle, the scaling factor will become increasingly inaccurate
(Lestrel, 1980).
The second normalization, based on the perimeter, was

discussed by van Otterloo (1991) as mentioned earlier, who
applied it in a pattern recognition context. A possible draw-
back with this normalization is that it is dependent on the
smoothness of the contour being sampled. That is, signifi-
cant differences could arise with a scaling factor based on
the perimeter. However, in the case of open rather than
closed (bounded) curves, perimeter may be the only practi-
cal choice. The third approach, the one advocated here, is
based on the area within the bounded outline (Lestrel, 1974).
FDs have been widely applied to structures ranging from

sedimentology in geology (Thomas et al., 1995) to the bio-
logical sciences such as cell biology (Pesce Delfino et al.,
1986; Strojny et al., 1987; Kieler et al., 1989; Diaz et al.,
1990), botany (Kincaid and Schneider, 1983; White and
Prentice, 1988; White et al., 1988) to anatomy (Lestrel,
1974, 1980, 1982, 1989b; Johnson, 1985, 1997; Inoue, 1990;
Lestrel and Kerr, 1992, 1993) to mention only a few.
While many of the above methods have provided new

data and useful information, FDs, and specifically elliptical
Fourier functions (EFFs) to be discussed in the next section,
are particularly well suited for characterizing the boundary
outline of irregular morphologies, such as those encountered

[2]

[3]

[4]

[5]

[6]
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in the craniofacial complex. Specifically, FDs also remove
one of the major deficiencies associated with the use of
CMA; namely the inability of CMA to allow for the precise
reconstruction of the shape of the form. Figure 3 illustrates
the ability of EFFs to accurately re-construct the original
CB, a particularly desirable goal in terms of archival of data.

Elliptical Fourier functions (EFFs)
Elliptical Fourier functions (EFFs) are similar to other

FDs in that they also transform the spatial domain into the
frequency domain. EFFs, however, represent a specialized
FD, one that it is generated from a parametric formulation.
Parametric equations (Smail, 1953) are of the form: x�f(t),
y�g(t), which allows for the separation of the boundary con-
tour into separate x- and y-components. Computation is sim-
pler and faster in CPU terms since the required computations
do not use of integration. Integrals, Eqs. [2], [3] and [4], are
required for evaluation of the Fourier coefficients with con-
ventional FDs, Eq. [1], as well as the FT, Eqs. [10] and [11],
which are more complex (see below). In contrast, EFF coef-
ficients are computed using an algebraic approach.
Two of the constraints associated with conventional FDs

are not applicable to EFFs namely: [1] an even number of
intervals between points along the boundary outline and [2]
the need to sample the boundary as a power of two (also
required with FTs). As a consequence of the parametric for-
mulation, multi-valued functions are now acceptable (Rohlf,
1990). These latter two aspects, acceptance of multi-valued
functions and unequal spacing of points on the outline, con-
fer particular advantages to the use of EFFs, by allowing for
the numerical characterization of a much larger class of 2-D
forms than previously possible (details can be found in
Lestrel, 1997b, 2000).
The EFF equations were originally developed by Kuhl

and Giardina (1982) and represent a parametric solution set
up in the Cartesian coordinate system. The formulation con-
sists of a pair of equations (x and y) derived as functions of a
third variable (t). These parametric functions are set up as:

and

where n equals the harmonic number and k equals the maxi-
mum harmonic number. Solutions for the A0, C0, an, bn, cn
and dn coefficients are required (for details of the procedures
involved, see Kuhl and Giardina, 1982; Lestrel, 1989a, b,
1997b, 2000). Although this paper is largely limited to 2-D
forms, it is of interest that if the boundary of a form can be
modeled as a curve in 3-space (i.e., not as a volume), then
the above equations can be extended without difficulty with
the addition of a third parametric equation (Lestrel, 1997b).
This parametric Fourier series in z(t) is:

The E0, en and fn coefficients being computed in an identical
fashion to the 2-D case, Eqs. [7] and [8]. An application of
such 3-D EFFs to characterize the boundary of the rabbit
orbit can be found in Lestrel et al. (1997).
From these equations one can derive the usual values of

amplitude and phase. However, a number of other estimates
of certain geometric properties such as the area, perimeter,
centroids and moments, have also been utilized (Kiryati and
Maydan, 1989; van Otterloo, 1991). Since the above para-
metric formulations, either in 2-D or for a 3-D curve in
space, produce ellipses, they provide a number of additional
measures that are potentially useful as ‘similarity measures’
for clustering and discriminant procedures. These are ellipse
area, perimeter, semi-major and semi-minor axes, as well as
angulation of the major ellipse axes with the x-axis or with
respect to other ellipses. All these estimates are separately
computed for each harmonic.

Homology maintained
Earlier, the issue of homology was raised and it is now

examined within the framework of FDs. A limitation with
conventional FDs, as well as FTs, has been the use of
equally-spaced data. If homology of points is an issue (and
with craniofacial data such as the CB data, it is), then it
becomes apparent that it is not possible to incorporate
homologous landmarks (irregularly located on the bound-
ary) into a traditional FD, since equal divisions or intervals
have to be maintained. Thus, one of the early criticisms of
FDs was that the homology of points across forms was lost,
and with it, the localization of boundary features.
With EFFs, this problem has been rectified. Homology is

now maintained by a specific computational procedure. The
first homologous predicted point is computed to be at the
same location on the Fourier approximating (interpolating)
function as the first observed point on the digitized form.
The second and subsequent predicted points are computed
so that they have the same arc length from the first computed
point as their counterpart (observed) landmarks do from the
first digitized point on the original, digitized form. This is
equivalent to moving or translating the observed co-ordi-

Figure 3. The lateral view of the human cranial base being fitted
with a Fourier descriptor (FD); specifically, an elliptical Fourier func-
tion (EFF). Such an approach is information preserving, in that it
allows for the subsequent re-creation of the form from the measure-
ments.

[7]
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nates of the polygonal representation of the form, onto the
EFF curve. The pseudo-homologous points are mapped
from the digitized curve onto the EFF (Wolfe, 1997). These
points have been termed pseudo-homologous; after the sug-
gestions of Sneath and Sokal (1973). The mapping error
must be kept very small since it is incumbent upon the inves-
tigator to keep the residual, the difference between the
observed points and the predicted points derived from the
EFF, as low as practically possible. Mean residual values
based on all points should not rise above 0.1 percent, prefer-
ably less. That is, these values need to be well below the
errors arising from such tasks as: [1] locating the points and
[2] digitizing them.
These EFF computations maintain the homology of the

points, and the entire form. While some loss is inevitable in
regions of sharp curvature, this is usually minor and local-
ized. Point homology can now be maintained, with the
caveat that a sufficient number of homologous or pseudo-
homologous points must be initially available. That is, the
sampling along the boundary outline must always be com-
posed of closely-spaced points to insure a close fit between
the observed data and the predicted EFF. This technique can
be considered as the first tentative step toward a model that
now integrates the homologous point data with the boundary
outline information (Lestrel, 1997b).
Numerous papers have appeared since the publication of

the Kuhl and Giardina (1982) algorithm. These papers have
ranged widely, from botanical applications (White and Pren-
tice, 1988; White et al., 1988), and cell biology (Diaz et al.,
1989, 1990, 1997; Nafe et al., 1992) to craniofacial struc-
tures such as the maxilla and mandible (Lestrel, 1987,
1997b; Ferrario et al., 1990, 1991; Lestrel et al., 1991).
While the initial emphasis was directed toward pattern rec-
ognition (Lin and Hwang, 1987), publications, dealing with
the shape of mosquito wings (Rohlf and Archie, 1984), and
the outline of Mytilus edulis shells (Ferson et al., 1985) rep-
resent the initial extension of EFFs to a biological context.
Rohlf and Archie (1984) compared the shape of mosquito
wings using three FDs. These were conventional FDs,
another FD approach (Zahn and Roskies, 1972), as well as
EFFs. They found that EFFs produced the most satisfactory
results in terms of discrimination.

Cranial base studies using EFFs
A study of the primate cranial base in norma lateralis

using EFFs normalized for size produced an almost perfect
classification using discriminant functions (Lestrel et al.,
1988). Of the four primate adult groups: [1] H. sapiens
(n�31); [2] P. troglodytes (n�22); [3] G. gorilla (n�10); and
[4] M. nemestrina (n�29), only one chimpanzee (P. troglo-
dytes) was misclassified as a gorilla. A more recent primate
study applied EFFs to characterize the shape of the cranial
base in Macaca nemestrina (Lestrel et al., 1993). This study
represented an extension of previous work using conven-
tional FDs (Lestrel and Moore, 1978; Lestrel and Sirianni,
1982). Statistically significant changes were found for both
sex and age. The age changes consisted of a gradual length-
ening in the anteroposterior direction, with a simultaneous
narrowing in the superoinferior direction. An elongation of
the dorsal clivus, as well as an anterior migration of the

hypophyseal fossa, was observed. These results have some
bearing on the current study (see discussion). Work has also
focused on precisely delineating the location of 2-D shape
changes in the lateral view of the cranial base in shunt-
treated hydrocephalics compared to normal age and sex
matched controls (Lestrel et al., 1994; Lestrel and Huggare,
1997).
Thus, FDs, and EFFs in particular, can be considered as

useful mathematical representations for numerically and
visually documenting the global shape changes in complex
2-D morphologies encountered in the craniofacial complex.
We now turn to another FD, this Fourier representation is
called the Fourier transform or FT.

The Fourier transform (FT)
For a clearer understanding of wavelets, to be discussed

subsequently, we need to briefly introduce the widely used
Fourier transform (FT) and its newer ‘cousin’ the fast Fou-
rier transform (FFT). In signal processing, transforms often
provide information not easily obtainable from the original
signal (the raw data).
This leads naturally to the question of what is a transform?

A simple transform that everyone is generally familiar with
is the procedure of taking logarithms. Here the transform is
a procedure that simplifies the process of long division and
multiplication. Figure 4 shows this procedure in a schematic
fashion. On the left is the conventional approach; namely
long division. While on the right is the transform approach
which consists of looking up their log values, subtracting
and then looking up the anti-log to obtain the answer. The FT
is, of course, a bit more involved, but conceptually, the trans-
form principle is the same.
For purposes here, since we are not involved with signal

processing, which involves time as the major variable, we
focus on ‘spatial data’, such as the CB. We can transform
this ‘spatial data’ consisting of our measurements, from the
spatial domain into the frequency domain. Once we are in
the frequency domain, we will be dealing with sinusoidal
elements (sines and cosines) at different frequencies. These

Figure 4. An example of a simple transform is the procedure of
taking logarithms. By taking logs, subtracting, and then taking the
anti-log, one can bypass long-division.
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sinusoidal components include amplitudes, power and
phase. These parameters are again limited by the Nyquist
frequency. We begin with our data (closely-spaced points
along the CB boundary) and transform these into new fre-
quency components such as amplitudes, etc. This new set of
transformed variables can then be used for analysis and sta-
tistics. Some restrictions that must be met include: [1] the
closely-located points along the CB boundary are usually
sampled as a power of two (2n) such as 2, 4, 8, 16, 32, 64,
128, 256, 512 points, etc., and [2] the intervals between the
points must be of equal length. Note: Homology of points is
now lost. However, it should be noted that this power of two
restriction is technically not a mathematically-derived
restriction of the continuous FT, but rather a constraint of the
fast Fourier transform (FFT), a widely-used algorithm for
computing the FT (see below).
The continuous FT is a mapping from the time or spatial
(boundary) domain into the frequency domain, in an exactly
analogous way to FDs. The technique is composed of two
parts (called a Fourier transform pair), which are the Fourier
transform (FT) and the inverse Fourier transform (IFT). The
first part, the FT, identifies the different frequency compo-
nents (amplitudes) that characterize the function of interest,
or f(t). These Fourier amplitude coefficients are complex,
containing both real and imaginary sinusoidal components.
This new function, X(f), is defined as:

where x(t) is the waveform to be decomposed into a sum of
amplitude coefficients, X(f), as a function of the frequency.
Thus, X(f) is the Fourier transform of x(t), e is the natural log
base and i is imaginary, that is, equal to the square root of �
1. The exponential function, e�i2�ft, is called the kernel. The
X(f) term on the left of the integral sign refers to the fre-
quency domain. The x(t) term on the right of the integral sign
refers to either the time or spatial domain. In the case of the
CB it is the spatial domain and is defined as the sampling
function along the boundary of the form. This function, x(t),
is multiplied by a complex exponential term or kernel func-
tion, where f refers to the frequency along the x-axis, 2�
refers to the period along the x-axis and t refers, by conven-
tion, to the ‘time’ axis. In this case this is the ‘spatial’ axis
since we are dealing the boundary of forms. Note that the
basis or kernel function, e�i2�ft, above also equals cos
2�ift�isin 2�ift. This is an alternate expression (see Eqs. [12]
and [13] below). Note that the i before the sin term indicates
that the expression is complex.
It should be reiterated that the FDs (described earlier), as

well as the FT here, represent a decomposition of the bound-
ary contour (spatial domain) into different frequency sinuso-
ids (frequency domain). The continuous FT represents a
more general case, in that it can be used to analyze non-peri-
odic phenomena in contrast to FDs, which require that the
data be periodic. Non-periodic waveforms are those that do
not repeat themselves over a set interval. Thus, the FD is
simply a special case of the FT (Brigham, 1974; Challis and
Kitney, 1991).
In more technical terms, consider a periodic function

where each harmonic is separated by an amount �f�1/L,
where �f is the change in frequency and L is the period. In
brief, the FT is derived by taking the discrete Fourier series,
converting it to complex-exponential form and then taking
the limit so that the change in frequency, �f, approaches zero
as the period, L, approaches infinity (Brigham, 1974;
Ramirez, 1985). A periodic or non-periodic waveform,
given by f(t), can be transformed or decomposed from a
function over time, f(t), (or space when dealing with forms)
into a new function, containing sinusoidal frequency compo-
nents or amplitudes.
Once the different frequency sinusoids are obtained, they

can be combined to re-create the form used as a representa-
tion of the original function, f(t). For this purpose, a second
equation is required, which is the IFT. This allows one to
‘transform back’ from the frequency domain function, X(f),
and reconstruct the actual signal or spatial form, x(t). In
other words, to recreate the waveform, x(t), from its Fourier
transform:

The x(t) term now on the left of the integral sign refers to the
time or spatial domain. The X(f) term on the right is the Fou-
rier transform of x(t) and this function, X(f), is multiplied by
a complex exponential term or kernel function.
Alternatively, Eqs. [10] and [11] can be re-expressed in
terms of sine and cosines. Changing notation and simplify-
ing by setting the period equal to a 2� interval, gives the dis-
crete version of the Fourier transform (DFT) as:

and the inverse DFT as:

where the cosine term is the real nth component of the DFT
and its inverse, and the sine term refers to the complex nth
component and its inverse (modified from Ramirez, 1985).
While these equations are not generally used for computa-
tional purposes in contrast to Eqs. [10] and [11], they do
facilitate comparison with conventional FDs, and the EFFs
described earlier.
The DFT represents computational advantages when used

in conjunction with the FFT. Interestingly, it was the great
German mathematician, Carl F. Gauss (1777–1855) who
anticipated the FFT (Heideman et al., 1985). The FFT cuts
down the computer time required to calculate the transform
coefficients, which can become excessive as the number of
harmonics increase (Hamming, 1973; Bracewell, 1989).
Assuming that the number of multiplications involved
(ignoring additions and general overhead) are proportional
to CPU time, we can estimate the savings in CPU time.
Using the conventional FT, CPU time increases by n2 where
n is the number of points (samples), while with the FFT it

[10]

[11]

[12]
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only increases by n*log2 n. To make this more concrete, con-
sider a contour with 512 points. Assuming an arbitrary time
estimate, this would require 262,144 ms (or 4.37 min) with
the FT. With the FFT, this reduces to 4,608 ms (or 4.61 sec),
a 57-fold decrease or a 98.4% savings in CPU time! As a
consequence, the FFT is now the preferred computational
approach (Cooley and Tukey, 1965; Brigham, 1974;
Ramirez, 1985; Newland, 1993).

Limitations of FDs, EFFs and FTs
One of the major drawbacks of FDs and FTs, is that while

they provide frequency domain information (the frequency
components such as amplitude and phase), they do not pro-
vide information with respect to where in the time domain
these frequency components occur. In signal processing
terms this means that while the spectral components in the
signal are measurable, their location in time is not known.
Equivalently, those components in the frequency domain
also do not provide any information about their location in
the spatial domain. Thus, while they are useful for capturing
the global aspects of a form, the localization or identification
of local aspects is not possible using Fourier coefficients or
their amplitudes. This arises because these coefficients (or
the amplitudes computed from them) are ‘smeared’, so to
speak, over the whole form. That is, each coefficient or
amplitude measures an aspect of the global or total form, but
not any single localized feature.
In other words, FDs and FTs cannot deal adequately with

signals or ‘spikes’ of short duration arising in the time
domain. In the case of the CB or other morphologies, this
would refer to the spatial domain where sharp curvature
changes on the boundary could be viewed as singularities. In
either case, such events of short duration, and of high fre-
quency, cannot be easily isolated and numerically character-
ized by the Fourier coefficients or their amplitudes. It is in
this sense that FDs and FTs are limited in their usefulness.
This is a consequence of the familiar Heisenberg uncer-

tainty principle applied to signal processing. Heisenberg’s
quantum mechanics principle states that you cannot simulta-
neously know the momentum and position of a moving par-
ticle. In signal processing this indeterminacy implies that
you cannot identify the location of a signal simultaneously
in the time (or space) and frequency domains. Namely, the
more localized or precise the spike is in the time domain or
the singularity in the spatial domain, the more uncertain is its
location in the frequency domain. Conversely, the more pre-
cise the frequency information is, the more vague will be its
location in time (or space). What is needed is a representa-
tion in which both the frequency components and their loca-
tion in time (or space) are identifiable, and this is called a
time-frequency representation. Thus, attempts at resolution
of this localization deficiency of conventional FDs and espe-
cially FTs, led to the development of new approaches such as
the short time Fourier transform (STFT) and eventually to
wavelets (Lestrel, 2000).
Utilizing a totally different approach, EFFs allowed for a

partial circumvention of this localization issue with the use
of distances from the centroid to selected aspects on the
boundary, thereby identifying localizing elements. However,
a serious drawback is that this procedure was and remains

subjective. Wavelets, on the other hand, provide a solution to
the problem, although they do not completely solve it, in the
sense that the uncertainly principle still applies (Hubbard,
1998). These two developments, the STFT and wavelets,
have been largely confined to signal processing and pattern
recognition engineering until recently (Nadler and Smith,
1993; Costa and Cesar, 2001). Both methods are briefly
reviewed in the next two sections.

The short time Fourier transform (STFT)
As mentioned above, the inability to identify position or

localization of singularities has spawned new methods. It is
of interest to note that the fact that the FT cannot be used to
detect local events has been known for two centuries, and
attempts to resolve this problem goes back to 1890 accord-
ing to Costa and Cesar (2001, page 471). The wavelet trans-
form (to be described in the next section) represents the most
successful response to date to the inability of earlier Fourier
methods to identify localized boundary phenomena. Prior to
the wavelet transform however, an earlier approach was
developed in an effort to deal with this lack of localization;
in effect, a revision of the FT. This was the windowed or
short time Fourier transform (STFT), which utilized a win-
dow concentrated around the origin. Recalling the FT as:

one can show that the window in this case can be viewed as
covering the whole interval so that the presence of transients
or spikes in the time domain (or singularities in the spatial
domain) will affect the whole Fourier representation. Conse-
quently, instead of these spikes or singularities being identi-
fied in the frequency domain, they become lost in the high
frequency components. It was to rectify this problem that the
STFT was developed.
Utilizing Eq. [10] we can add a window concentrated

around the origin, which is shifted, starting at t�0 in the time
domain (or s�0 in the spatial domain) along the time/bound-
ary representation. This procedure was aimed at selecting
only a small portion of the signal/boundary domain at a time.
This prevents the influence of signal events outside this win-
dow from unduly affecting the whole Fourier representation
(Costa and Cesar, 2001). Here the signal, x(t), is now multi-
plied by the window function, w(t), such that:

where b refers to the position of the window along the time/
boundary, the w*(t�b) term defines the width of the window,
with the * representing the complex conjugate (see Bolton,
1995, page 146 for an explanation of complex conjugates).
One can see that the STFT is simply the FT of the original

signal multiplied by the window. Shown here is the continu-
ous case of the STFT (there is also the discrete case—see
Lestrel, 2000 for its formulation). This approach yields a
time-frequency representation that allows for the identifica-
tion of the location of the frequency components in the time/
boundary domain. Specifically, using a narrow window
allows for more precise frequency information about events

[10]
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in the time/boundary domain.
While the STFT (which predates wavelets) represents a

substantial improvement over conventional FDs and FTs, it
is based on a window function that is concentrated around
the origin, one which has a constant width for all frequen-
cies. Thus, the problem with the STFT approach is that by
not being able to vary the window width, you are forced to
choose a relatively wide window to attain good resolution of
the frequency domain but at the expense of poor time resolu-
tion. Conversely, the choice of a narrow window to attain
good resolution of the time domain (to identify peaks and
other singularities) leads to poor resolution in the frequency
domain (Polikar, 1996; Hubbard, 1998).
The wavelet transform represents the next natural step,

allowing for a variable window shift in contrast to the con-
stant window, characteristic of the STFT. This has been
termed a multi-resolution approach, which is developed in
more detail in the next section. Multi-resolution simulta-
neously allows for the recognition of high frequency ele-
ments, which are narrow in width as well as low frequency
aspects, which are wide in width. This facilitates a much
more precise localization in both the time/boundary and the
frequency domains, providing wavelets with an advantage
with respect to the STFT (Costa and Cesar, 2001).

The continuous wavelet transform (CWT)
The number of publications dealing with wavelets is liter-

ally in the thousands now, indicating the power and general-
ity of the approach. Most of these papers, however, are still
largely confined to the fields of mathematics, physics, pat-
tern recognition, signal processing, machine vision and
allied fields; although, applications are beginning to appear
in other disciplines. In spite of the now undoubted useful-
ness of wavelets for characterizing the boundary outline of
biological forms, there remains a paucity of such papers in
the biological sciences. The following material is presented
in a largely intuitive manner, with no attempt at a rigorous
exposition (reference can also be made to the appendix,
which outlines the specific wavelet used in the preparation
of this paper). Readers who want to probe more deeply will
need to consult the relevant literature. In keeping with earlier
FD considerations, wavelets, as normally used in signal pro-
cessing, also consists of a transformation of the time (or sig-
nal) domain into the frequency domain.
Since we are dealing here with the CB, the transformation

is from the spatial domain into the frequency domain. In an
exactly analogous manner to FDs, EFFs and the FT, where
one derives coefficients based on the addition of sines and
cosines to approximate the signal, or the boundary of a form,
wavelets coefficients re-create the signal/boundary with the
addition of wavelets of different sizes and at different posi-
tions (Hubbard, 1998).
In contrast to FDs however, the wavelets components are

not sinusoidal. Thus, the first difference between FTs and
wavelets rests on the lack of this periodicity. The second dif-
ference is that, FTs, besides being based on sinusoidal func-
tions, also range over the period [��, �] for the continuous
case. Wavelets, in contrast, are of limited duration and rap-
idly tend to zero at both ends of the interval (compact sup-
port, specifically for the discrete case). This results in a

small ‘wave’, hence the name wavelets. Moreover, because
of their finite duration they are narrowly focused in either
time or space, and this allows for the identification of local-
ized information of the frequency components in the time/
boundary representation, a critical property missing with
conventional FDs or FTs (Lestrel, 2000).
Specifically, wavelets are also a time-frequency represen-

tation, in that they use a small or narrow window to access
high frequency components and a large or broad window to
view low frequency components. It is the division of the sig-
nal/boundary domain into levels that is defined as a multi-
resolution decomposition (Mallat, 1989). Wavelets have
been characterized as a zoom lens, in that it allows one to
focus on the broad landscape (low frequency components)
as well as zoom in on the details in the scene (high frequency
components). That is, the resolution of the wavelet trans-
form varies with magnification, so to speak.
Thus, the wavelet transform represents an alternative

decomposition of the spatial domain into two wavelet com-
ponents, one determining the magnification, or more prop-
erly, the scale or level and the other the position or location
along the boundary outline. These two variables are some-
times also called the dilation parameter (scale) and the shift-
ing parameter (position). The reason for these names will be
made clearer subsequently.
The notion of a zoom lens precisely illustrates what the

scale component represents. Namely, low scale values corre-
spond to high frequency components describing detailed
boundary information, while high scale values refer to low
frequency components which in turn correspond more
closely to global information (Polikar, 1996).
In the discrete case, this decomposition into the wavelet

components is also determined by the two, now familiar,
constraints: [1] the number of intervals on the boundary
must be equal and [2] the number of points, n, are subject to
the 2n restriction. The is analogous to the earlier FT when
utilizing the FFT approach. Thus, if the outline is sampled
with 64 points, a minimum of six levels are available
(26�64), with 512 points nine levels are possible (29�512),
etc. Each of these levels represents a different resolution or
scale (Strang, 1994). In contrast, with the use of the continu-
ous wavelet transform (CWT), the power of two restriction
does not apply. This is one advantage that makes the CWT
attractive and it will be subsequently used here.
The shapes of each of these wavelet components (deter-

mining the window) depend on what is called an analyzing
wavelet or scaling function. Once determined, the analyzing
wavelet forms the basis functions into which the form under
consideration will be decomposed in the frequency domain.
This analyzing wavelet plays a central role so its choice is
important (Newland, 1993; Kashi et al., 1996). The CWT, in
its simplest formulation, is set up as:

where b refers to the position factor and a to the scaling fac-
tor, f(t), is the function to be decomposed into wavelets, and
the Greek psi term, �(b, a, t), symbolically refers to the
basis function of the wavelet and represents the scaled and

[15]
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shifted versions of the analyzing wavelet. Thus, the C(b, a)
term on the left side of the integral represents the amplitude
coefficients, which are now in the frequency domain. The
f(t) is the sampling function of the boundary in the spatial
domain to be decomposed in the usual way, by being multi-
plied by the wavelet or basis function (see appendix). There-
fore, from Eq. [15], the wavelet amplitude coefficients, C(b,
a), are now a function of both position, (b), and scale, (a).
The actual process of calculating the CWT involves choos-
ing an analyzing or ‘mother’ wavelet from which one creates
copies or ‘daughter’ wavelets. The mother wavelet is
defined as:

where t refers to the time/boundary domain, a is the scale
factor and b is the translation factor. The 1/a term is used for
normalization across scales (Costa and Cesar, 2001; see
appendix).
Each of these copies are translations and dilations. Specif-

ically, one places the wavelet at the start of the function, f(t),
to be decomposed and computes C(1, 1), an amplitude coef-
ficient that determines how closely the wavelet is correlated
with the first signal/boundary section. One then repeatedly
shifts b-positions to the right and computes C(b, 1), coeffi-
cients until one reaches the end of the signal/boundary. One
then returns to the beginning of the function, f(t), but now
with the wavelet scaled, either dilated or compressed, and
computes a new scaled C(b, a) coefficient. One again shifts
to the right for increasing b-positions and continues the pro-
cess of computing C(b, a) amplitude coefficients for each
increasing a-scale. In this way, any discontinuity (or singu-
larity) or other changes in curvature along the boundary can
be identified.
Another way the wavelet formulation, Eq. [15], can be

viewed, is as a measure of the similarity or correlation
between the basis function, Eq. [16], and the actual signal/
boundary. The coefficients, C(b, a), are a measure of the
closeness of the signal/boundary to the wavelet at each scale
(Polikar, 1996). It is in this sense that for boundary analysis
the wavelet amplitude coefficients can be viewed as measure
of change in curvature (see results section). The magnitude
of these wavelet coefficients, C(b, a), can be defined as:

where �(b, a) and 	(b, a) refer to the real and imaginary
parts of the wavelet amplitude coefficients, C(b, a). The
complex modulus can then be derived in absolute terms
from (see Bolton, 1995, page 147 for details):

and viewed as a matrix of amplitude coefficients. This mod-
ulus function can be readily displayed in the Cartesian coor-
dinate system (see results section). If these wavelet
coefficients are squared, C(b, a)2, the display of these wave-
let coefficients is called a scalogram, which represents the

energy distribution, or variance, of the signal. This is analo-
gous to the power spectrum of conventional FDs and EFFs
(Antoine et al., 1997).
Of particular importance is the relationship of the scale,

the a term in C(b, a), the amplitude coefficients, to the fre-
quency. There is a reciprocal relationship between scale and
frequency. Scale, a, is inversely related to the frequency such
that 1/a 
 f, which implies that as the scale values increase,
the frequency decreases and visa-versa (Walker, 1999; Costa
and Cesar, 2001). The consequence of this critically impor-
tant relationship will become apparent in the results section.
In one sense, wavelet coefficients are equivalent to those

generated with traditional Fourier analysis (FDs). That is,
the coefficients, C(b, a), in Eq. [15] can be viewed as ampli-
tude measures in an identical way to the use of the an and bn
Fourier coefficients calculated from Eqs. [3] and [4] and
used to produce amplitudes (Eq. [5]). In the same vein, the
basis functions, �(b, a, t), are analogous to the sin nx and
cos nx terms depicted in Eq. [3] and [4]. However, the simi-
larity ends there, as wavelets are localized in both time (or
space) and frequency. This is in contrast to sine and cosine
waves, which extend infinitely over the interval, [��,� ] and
are incapable of localization in the frequency domain (Olson
et al., 1999).
Finally, it should be noted that while the continuous case

(CWT) is utilized with the CB data here, the discrete case,
DWT, is also often used. An advantage of the DWT is that it
eliminates much of the redundancy in terms of very small or
zero values of the amplitude coefficients, C(b, a), that com-
putationally arise with the CWT. There are various ways to
reduce this redundancy. One approach is to retain only those
wavelet coefficients with appreciable magnitude (local max-
ima). Another one is to calculate the transform skeleton of
the CWT (Antoine et al., 1997; Costa and Cesar, 2001).
While a large number of analyzing wavelets are possible,

they must satisfy certain constraints to be useful, so only a
few have been widely utilized. Some wavelets are more
suited to certain applications than to others. Wavelets that
have been utilized include the Haar wavelet, originally
devised in 1910, Daubechies D4, Morlet, Marr or Mexican
hat, Coiflet, etc., For the CB data here, the Mexican hat, a
Gaussian-based wavelet function (Antoine et al., 1997;
Costa and Cesar, 2001) was utilized as the wavelet of choice
(see appendix).
Applications of wavelets include signal processing, the

de-noising of data, EEG diagnostics, medical imaging,
music and speech synthesis, data and video compression,
seismic exploration, feature extraction, computer vision,
etc., the list is expanding rapidly (Strang, 1994; Kiltie et al.,
1995; Wunsch and Laine, 1995; Wilson, 1999). An example
of compression is the now familiar fingerprint data for the
Federal Bureau of Investigation (FBI) (Brislawn, 1996).
Wavelets are also being used in sedimentology to character-
ize particle shape. This latter research represents a continua-
tion of work that started with the early application of FDs
and FTs (Schwarcz and Shane, 1969; Ehrlich and Weinberg,
1970; Drolon, 1998; Drolon et al., 1999). So far, few appli-
cations in biology have utilized wavelets to characterize
boundary shape changes. Of three recent papers that have
appeared, one (Kiltie et al., 1995) dealt with textural dis-
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crimination, another one with growth (Fujii and Matsuura,
1999) from a curve-fitting perspective and a third one (Kashi
et al., 1996) with medical diagnosis. Only the last one char-
acterizing the shape of the corpus callosum, is particularly
relevant here in terms of shape and shape changes.

Computational shape analysis
If one is primarily interested in shape considerations of

form, not just global aspects but also the more localized fea-
tures, then wavelets become indispensable. This can be jus-
tified on the grounds that wavelets: [1] nicely circumvent the
difficulty of localization so characteristic of FDs and the
FTs, and [2] totally eliminate the subjectivity that arises with
EFFs. That is, wavelets provide, for the first time, an objec-
tive method that eliminates the unavoidable subjectivity
inherent in the selection of landmarks and the use of the cen-
troid distances.
In a schematic fashion, Figure 5 illustrates a two-pronged

scenario for combining EFFs with wavelets. One starts with
image acquisition from which features of interest are
derived. Analysis of the boundary then takes two paths,
EFFs are used for the analysis of global aspects of the form,
while wavelets are used for the analysis of the localized
aspects. As will subsequently be demonstrated, EFFs in con-
junction with wavelets, can be considered as a powerful new
tool for the quantitative analysis of form. It is this approach
that is utilized here.
This study represents a continuation of our research to

delineate the form of the primate cranial base (Lestrel and
Moore, 1978; Lestrel and Sirianni, 1982; Lestrel and Roche,
1986; Lestrel et al., 1993). The primary purpose of this study
was to explore the presumed stability of the CB in a skeletal
series of Japanese skulls (n�297) covering a time frame of
over 2,000 years. A secondary purpose was to ascertain the
presence of any differences in shape due to sexual dimor-
phism, differences already discerned earlier in Macaca nem-
estrina. A two-step approach was utilized to arrive at the
above goals. This involved: [1] the use of EFFs to delineate
the boundary outline and generate global shape parameters
of the CB, and [2] the use of wavelets to discern localized

changes in the CB boundary. The use of EFFs was predi-
cated on the fact that they are able to precisely reproduce the
outline of 2-D forms, thereby providing an analog of the
form. The second step involved in the application of the
CWT to the predicted boundary outlines derived from the
EFF, so that information about the localization of boundary
aspects could be objectively retrieved.

Materials and Methods

The radiographic sample
Lateral cephalometric records were available from the

Nihon University School of Dentistry at Matsudo, Chiba
Prefecture. The cranial data for this study consisted of 297
specimens divided into five archeological age samples. The
ages involved in the CB series were from the Yayoi, Kofun,
Kamakura, Edo and Modern eras. Although a few specimens
where available from the Jomon era (~10,000–300 BC),
their questionable condition and small sample size precluded
their inclusion in this study. The skulls of the Yayoi, Kofun
and Kamakura specimens are from collections housed at
Kyushu University, Fukuoka. The Edo specimens are from
the National Science Museum, Tokyo, while the Modern
samples consisted of students from the Nihon University
School of Dentistry at Matsudo.
The Yayoi material comes from two sites: the Doigahama

in Yamaguchi Prefecture and the Kanenokuma in north of
Kyushu. The Kofun sample comes from cave-type burial
sites from both the Tokyo as well as northern Kyushu areas.
The Kamakura specimens are largely from the Kanto region.
The Edo remains are derived from the Ikenohata site in
Tokyo (Details can be found in Ohsako, 2000).
The oldest group, Yayoi (ca. 300 BC–300 AD), consisted

of 64 specimens equally divided between females and males.
The next group, Kofun (300–593 AD), was comprised of 36
specimens, 16 females and 20 males. The Kamakura sample
(1192–1333) consisted of 27 specimens, 17 females and 10
males, while the Edo era (1603–1868) sample contained 64
specimens, 31 females and 33 males. The final group, Mod-
ern (ca. 1960�) involved 106 individuals. Of these, 26 were
female and 80 were male. All lateral cephalometric radio-
graphs were taken at 70 KV, 50 mA, and an exposure of 0.1
to 0.2 seconds (Ohsako, 2000).

Tracing procedures
Each radiographic image of the CB was carefully traced

onto dimensionally-stable matte acetate sheets using a
0.3 mm lead pencil. The CB on each lateral radiograph was
traced starting at basion proceeding along the dorsal clivus
to the dorsum sellae, then along the inferior border of the
hypophyeseal fossa, continuing anteriorly along the tubercu-
lum sellae to the intersection of the anterior cranial base with
the greater wings of the sphenoid (sphenoid registration
point-SE). The tracing then continued along the inferior bor-
der of the middle cranial fossa to the basilar process and ter-
minating again at basion to create a bounded outline (Figure
6).
A series of points were then precisely located according to

a specific protocol (Table 1, Figure 7). Figure 7 illustrates
the 54 points used to describe the boundary of the CB. A

Figure 5. Computational shape analysis utilizes a Fourier-wavelet
representation or model. This procedure consists of a dual approach:
[1] the computation of FDs, specifically the elliptical Fourier function
(EFF), for the characterization of global aspects on the boundary con-
tour and [2] the calculation of the continuous wavelet transform
(CWT) for the extraction of localized features (see text).
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horizontal line was constructed from basion (point 1, also
point 54) to the most inferior aspect of the hypophyeseal
fossa (point 20). The distance became Segment 1 or S1. A
perpendicular was then constructed from that tangent point
(point 20) to create point 43. The horizontal line, from

basion to point 20, was then continued anteriorly until it
extended past the SE point (point 32). A second vertical line
was then extended upward from the SE point (point 32),
until it intersected the horizontal line, this marked the limit
of Segment 2, or S2. Segment 1, S1, from basion (point 1) to
point 20, was then divided into eight equal divisions. These
eight divisions were marked and a series of seven vertical
lines drawn until they intersected the superior margin of the
CB as well as the inferior margin. These intersections gener-
ated points 5 to 11 on the superior margin and points 44 to 50
on the inferior margin. In a similar manner, the anterior hor-
izontal segment, S2, from point 20 to point 32, was also
divided into eight equal parts. Seven vertical lines were also
constructed here until they intersected the superior and infe-
rior margins. These intersections defined points 22 to 28 on
the superior margin and points 35 to 42 on the inferior mar-
gin. Point 43 is the intersection of a vertical line drawn from
point 20. As the areas around basion and SE represented
sharp changes in curvature, additional points were added.
These additional points were either bisections or trisections.
In this way, a set of closely-placed points on the CB bound-
ary has been defined. Some of these points were anatomical
landmarks such as basion, while others must be considered
as pseudo-homologous points (Sneath and Sokal, 1973).
Nevertheless, although these latter points are not strictly
homologous, they were precisely located according to the
above protocol (Table 1). These points were then labeled on
each tracing to keep track of the points during the digitizing
step.

Digitizing
Each CB tracing was oriented on a 12×12 inch Calcomp

digitizer as follows: The center of the digitizer, (0, 0), was
carefully identified and marked with a set of crosshairs that
extended vertically and horizontally to the edges of the digi-
tizer. Each tracing was placed on the digitizer so that point
20 was superimposed on the origin (0, 0) and the line from
point 1 (basion) to point 32 (SE) was made coincident with
the horizontal axis of the digitizer crosshairs. The orientation
of the CB was with the SE point aligned to the right of the
digitizer origin. All 54 points were then digitized clockwise
in succession and entered as data to an IBM personal com-
puter with a Pentium III 1.5 mhz processor. Points were sub-

Figure 6. The cranial base morphology as seen on a lateral radio-
graph. The contour was carefully traced for each specimen from
basion, along the hypophyseal fossa, then anteriorly along the inferior
border of the middle fossa to the basilar process, and terminating again
at basion.

Table 1.　Construction of the 54-point system used to describe
the cranial base outline

Points defining
line segments

Generated points

S1 S2 S1 S2

1–20 29, 32 8, 7 25, 39
1–8 20, 25 6, 49 23, 41
1–6 20, 23 5, 50 22, 42
6–8 23, 25 7, 48 24, 40
8–20 25, 32 10, 45 27, 37
8–10 25, 27 9, 46 26, 38
10–20 27, 32 11, 44 28, 36

Points located
on cb outline

Generated points

Above S1 Above S2 S1 S2

1–5 28, 32 4 29
16–20 20, 22 18 21
16–18 17
18–20 19
1–4* 29–32 2, 3 30, 31
13–16* 14, 15

Below S1 Below S2 S1 S2

1–50 29, 32 8, 7 25, 39
1–51 32-35* 51 33, 34
1–6 53
1–53 54
51–53 52

The two columns on the left define the line segments that were
bisected to produce the points shown in the two columns on the right.
Points 1, 12, 13, 16, 20, 32 and 43 represent anatomical or constructed
landmarks. The other points were classified as pseudo-homologous.
Line segments shown with an asterisk were trisected (refer to text and
Figure 7).

Figure 7. Plot of the 54 closely-spaced pseudo-homologous points
used to describe the cranial base contour. These points were precisely
located using a geometrically determined protocol as described in the
text (refer to Table 1).
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sequently plotted on a Hewlett-Packard HP-6p printer and
superimposed on the original tracing to check for errors.

Computation of EFFs
These points were then submitted to a specially written

program, EFF23, version 4.0, that computed EFFs for each
of the CBs. With 54 points, a maximum of 27 harmonics,
subject to Nyquist frequency requirements, were computed.
These 27 harmonics were considered more than adequate in
terms of fit. The fit with 27 harmonics was checked by cal-
culating the residual or difference between the observed
points and the predicted value derived from the EFF. This
residual is computed for each point and then averaged over
the whole CB. Figure 8 is a computer-generated view to
illustrate this curve fit. The dots represent the 54 points and
the EFF is shown with a solid line. The mean residual for an
individual case is shown as a stepwise procedure. The first
harmonic represents an ellipse. With 4 harmonics the resid-
ual is 1.71 mm, with 8 harmonics this value drops to
0.67 mm, and with 27 harmonics this value is 0.10 mm for
this particular specimen. The mean residual (X±SD) based
on a CB sample (n�65) was 0.095±0.014 mm. This value
was substantially less than the errors associated with both
the tracing and digitizing tasks. The 27 harmonics used to fit
the CB, consist of a matrix of 108 separate terms, four coef-
ficients (an, bn, cn and dn) for each harmonic and the two con-
stants (A0 and C0), which need to be computed for each CB
(Eqs. [7] and [8]).
Size-standardization was accomplished by scaling all

bounded CB outlines so that the area within was a constant
10,000 mm2. Positional-orientation was determined by rotat-
ing the major axis of the first ellipse (associated with the first
harmonic, shown in Figure 8) so that it was parallel to the
horizontal or x-axis as advocated by Kuhl and Giardina
(1982).
Since the EFFs closely fit the observed CB, they can be

considered as analogs of the actual CB boundary outlines.
They were then averaged for each age period (the archeolog-

ical eras), by sex and plotted. A set of ten sub-groups were
involved as there were five age periods and two sexes. These
plots were later averaged and superimposed on the centroid
to provide a visual assessment of the CB changes with arche-
ological age and sex. These 108-point plots (doubled from
54 to 108 to provide smoother outlines), treated as expected
data computed from the EFFs, were used to: [1] generate
global shape estimates of the CB, [2] compute distances
from the centroid to the boundary, and [3] generate the raw
data for wavelet analysis.

Computation of distances
One solution to the inability of identifying local features,

characteristic of FDs and FTs, is to use the EFFs in an alter-
native way. In an attempt to characterize localized aspects
along the CB boundary, a set of arbitrary distances were
computed from the centroid to selected aspects on the CB
margin. These were selected with only one criterion in mind,
which was to roughly cover the entire boundary outline. Fig-
ure 9 displays the thirteen distances that were chosen (D1–
D13). Table 2 provides approximate anatomical definitions
of these distances. These bisections between the existing
pseudo-homologous points were added to generate a
smoother CB margin for visual purposes.

Computation of wavelets
In an analogous way to EFFs, the wavelet representation

used here is also based on a parametric formulation (see Fig-
ure 10). This will be made more apparent later. Multi-resolu-
tion analysis starts with: [1] a form composed of a set of
closely-spaced sampled points on the boundary outline, [2]
the calculation of separate x- and y-coordinates (a paramet-
ric formulation) which are used to compute the wavelet
modulus, C(b, a), and [3] the extraction of significant char-
acteristics (singularities as local maxima, etc., or changes in
curvature) in the wavelet frequency domain.
Once the size-standardized and positionally-oriented

datasets of EFFs have been computed, they were used to
generate a set of 108 predicted points. These EFFs were then
averaged for each archeological period and for each sex.
These averaged 108-point files were then submitted as raw
data to a set of Matlab routines that computed the CWT.
Prior to computing the CWT, a number of separate steps
were required, one of which was that the data has to be set up
in parametric form; that is, x and y as function of t (t referring
to the position along the CB boundary). This procedure, as

Figure 8. Computer-generated lateral view of the cranial base out-
line. The dots represent the 54 observed points. The elliptical Fourier
function (EFF) is shown as a solid line and depicted as a stepwise pro-
cess to display the convergence of the function to an individual
observed cranial base outline. As the number of harmonics is added to
the series, the fit improves. With 27 harmonics, the average residual
was 0.10 mm for this particular specimen.

Figure 9. The cranial base distance system. The computed set of
13 distances from the centroid to the boundary outline. The number of
points has been doubled from 54 to 108 with bisections to insure a
smoother outline for visual purposes.
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well as the others, will be described in more detail below.

Homology revisited
The algorithmic procedures involved in the CWT compu-

tation, require the utilization of the FFT. Recall that the FFT
requires that the CB outline be divided into equal divisions
of a power of two. The CB outline was therefore divided into
512 evenly-spaced intervals. What is critical to note here is
that initial raw EFF data contains 108 unevenly-spaced
points (needed to maintain homology) in contrast to the 512
evenly-spaced points used by the CWT computation. Conse-
quently, it was necessary to map the 108 unevenly-spaced
points back into the 512 evenly-spaced points and visa-
versa. This was accomplished by running each 108
unequally-spaced data set through a specific routine that
generated a new file with 512 equally-spaced points (512
satisfying the power of two requirement), while maintaining
a precise mapping of the original 108 points (to the nearest
of the 512 points).
However, a caution with this approach needs to be men-

tioned, in that it is not possible to meaningfully average the
512-point files. There is no problem in averaging the origi-
nal 108-point files as homology is carefully maintained as
these points have been, so to speak, ‘locked’ onto the EFF
curve. Consequently, once the evenly-spaced 512-point files
are created, any semblance of homology is lost as a function
of the equal spacing. For this reason the 512-point files can-
not be averaged, the results being meaningless since, again,
homology is lost. However, they can be readily created from
the averaged 108-point files.

Parametric formulation
It will be recalled that the EFFs were based on a paramet-

ric formulation of the form: x�f(t), y�g(t), In a similar way,
a parametric formulation is required for the CWT. It is of the
form: u(t)�x(t)�iy(t) (see appendix). Procedurally, this was
then carried out on each of the expected point files, recalling
that there are now two of them at this stage; the original one
with 108 unequally-spaced points and the created one with
512 equally-spaced points. Both files are required. A routine
was then created to break each of these expected point files
(either the 108 one or the 512 one) into two separate addi-
tional files, one containing the x-coordinate and the other the
y-coordinate. Thus, four files for each of the ten groups
involved (age period and sex) were required. This paramet-
ric formulation is displayed in Figure 10.

Matlab scripts
At this stage one is ready to use the Matlab scripts origi-

nally developed by Roberto Cesar Jr. and slightly modified
by the senior author. Two scripts were involved. The first
one computed the wavelet amplitude coefficients, (or modu-
lus) as a matrix of C(b, a), terms. The second one computed
the differences between the mean male and female wavelet
amplitude coefficients.
The first script required the 108-point x- and y-coordinate

files and the 512-point x- and y-coordinate files respectively,
as input (Figure 10). Using these files as data, the second
derivative of the Gaussian wavelet was computed (see
appendix) and a color plot of the CWT produced, which is
intended as a visual display of the wavelet matrix (the mod-

Table 2.　The cranial base distance system

ID Distance from centroid to Vector number

D1 BASION 1
D2 MID ASPECT OF THE DORSAL CLIVUS 15
D3 INITIATION OF DORSUM SELLAE 20
D4 SUPERIOR ASPECT OF DORSUM SELLAE 26
D5 POSTERIOR ASPECT OF SELLA TURCICA MARGIN 30
D6 MOST INFERIOR ASPECT OF SELLA TURCICA MARGIN 37
D7 ANTERIOR ASPECT OF SELLA TURCICA MARGIN 45
D8 MID ASPECT OF THE ANTERIOR CRANIAL BASE 50
D9 ANTERIOR ASPECT OF THE ANTERIOR CRANIAL BASE 55
D10 SE POINT 65
D11 ANTERIOR ASPECT OF THE MARGIN OF LESSER WING OF SPHENOID 75
D12 MID ASPECT OF THE MARGIN OF LESSER WING OF SPHENOID 90
D13 POSTERIOR ASPECT OF THE MARGIN OF LESSER WING OF SPHENOID 95

The thirteen distances (D1–D13) used to describe aspects of the cranial base outline. Vector numbers are double the original point numbers (1–
54) since the EFF curve was generated with 2× the number of data points to insure a smoother curve fit (compare Figure 7 with Figures 9 and 19).

Figure 10. The parametric formulation required for both the ellip-
tical Fourier function (EFF) and continuous wavelet transform (CWT).
The parametrized x(t) curve is shown as a solid line, while the parame-
trized y(t) one is shown with a dashed line. The y-axis contains the
respective coordinate value, x or y. The x-axis refers to either: [1] the
512 evenly divided points along the cranial base outline derived from
the CWT, shown as the top row of numbers or [2] the 108 unevenly
divided points along the cranial base outline derived from the EFF,
shown as the bottom row of numbers (see text).
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ulus values). This color plot, is termed a ‘hot color map’ in
that small amplitude values are shown in blue, while larger
amplitude values are displayed toward the red, in effect a
temperature map (see results) These computed wavelet coef-
ficients were also saved for further analysis with the second
Matlab script.
Once the wavelet coefficients were computed and saved,

they were then utilized as data in the second script. This
script was designed to specifically display the differences
observed between females and males. This difference was
calculated by subtracting the female matrix from the male
one. Two (512×96) matrices of wavelet amplitude coeffi-
cients were involved. All color plots derived from the two
Matlab scripts, the two initial wavelet plots and the single
gender difference plot, were subsequently saved as TIFF
files for archiving and future visualization.

Results

Amplitudes as global measures
‘Computational shape analysis,’ as advocated here, is

composed of two elements: [1] measurement of the global
aspects of the form and [2] identifying the specific localized
entities presumed to be of equal if not greater importance in
a biological context. Both global and local aspects are neces-
sary in our attempts to develop a more complete model of
form (Figure 5).
Figures 11 and 12 display one approach of deriving global

information; namely, the use of a typical amplitude versus
harmonic number plot, or as defined earlier, a frequency
spectrum. Other global parameters could have also been
chosen from the EFF data, such as angulation of the major
axes of the computed ellipses, ratio of the major to minor
axes, areas of each of the ellipses, etc. The utility of these
latter parameters is briefly discussed elsewhere (Lestrel,
2000). Because the EFF is a parametric formulation, the x-
amplitude data (Figure 11) and y-amplitude data (Figure 12)
have to be viewed separately. As the pattern displayed is
basically similar for all age periods, only one group, in this
case the Edo age group, is shown here. The remaining plots
for the other age periods are not shown, because they are
very similar. If desired, they can be obtained from the senior
author.
Because the first harmonic amplitude has an overwhelm-

ing effect, as seen in the power spectrum values (explaining
over 95% of the variance in the x-direction and 92% of the
variance in the y-direction for this data) it tends to swamp
the effect of the higher terms. For this reason, it was
excluded so that the remaining amplitudes could be dis-
cerned better. Finally, it should be noted that for both Figures
11 and 12 the mean percentage amplitude values are a func-
tion of the total, which is the sum of harmonics 2 through 27.
While there are differences between males and females

for the Edo group, these differences are quite moderate and
tend to be somewhat random in character. It is important to
note that each of the harmonic amplitudes from 2 to 11 is
contributing an aspect to the total form. However, these mor-
phological CB aspects measured by the amplitudes are glo-
bal in nature. In other words, the effect of each amplitude is
spread out, or smeared as mentioned earlier, over the whole

CB boundary outline. If there were any localized differences
between the male and female samples, (and one can safely
assume that there are) this method would not detect them.
Thus, while amplitudes can be considered appropriate mea-
sures for estimating global aspects of form, they are largely
useless for identifying localized features. For those aspects
we have to turn to other approaches.

Centroid-based distances
One such approach consisted of choosing selected dis-

tances from the centroid to aspects of interest on the CB con-
tour (Figure 9, Table 2). Utilizing the thirteen distances (D1–
D13), a correlation matrix was calculated to reduce the
appreciable correlation among the variables. Variable pairs
with correlations equal to or greater than 0.8 had one vari-
able removed leaving seven out of the original thirteen.
These seven were then analyzed utilizing a two-way
MANOVA with two ‘group-effects’, archeological age and
sex. Table 3 displays the MANOVA table showing the two
‘between-group’ contrasts: type (five archeological age
groups) and sex (female versus male). These data are size
standardized (i.e., shape only) and positionally oriented
(insuring a common orientation in space). As statistically

Figure 11. Frequency spectrum as percentage amplitude versus
harmonic number plot for the mean parametrized x(t) Edo data.
Because the first harmonic tends to have an overwhelming effect, it
was removed so that the remaining amplitudes could be discerned bet-
ter. Only amplitudes 2 to 11 are depicted here. Values are in percent-
ages of the total (computed as the sum of the amplitudes for harmonics
1 through 27). Females and males are shown separately (see text).

Figure 12. Frequency spectrum as percentage amplitude versus
harmonic number plot for the mean parametrized y(t) Edo data.
Because the first harmonic tends to have an overwhelming effect, it
was removed so that the remaining amplitudes could be discerned bet-
ter. Only amplitudes 2 to 11 are depicted here. Values are in percent-
ages of the total (computed as the sum of the amplitudes for harmonics
1 through 27). Females and males are shown separately (see text).
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significant differences were found for both age and sex, this
allowed for the further computation of univariate F-tests.
Table 4 shows the univariate F-tests for both contrasts: group
and sex. For the type contrast, distances D1, D2, D3 and D4
were statistically significant and for the sex contrast, D2,
D4, D7 and D12 were significant. However, since the pres-
ence of significant systematic differences for sex was based
on a set of subjectively chosen distances, this prompted a re-
examination using wavelets.

Multi-resolution analysis
To alleviate the inevitable subjectivity in the choice of

measurements as seen with EFFs, wavelets were utilized.
The following figures have been embedded in a Cartesian
‘position-scale’ plane with the vertical axis representing the
scale levels and the horizontal axis displaying the position
along the CB boundary contour.
Figure 13 displays a 3-D plot of the Yayoi mean female

data. The position along the CB boundary is shown on the x-
axis, while the scale values are on the y-axis. The scale axis
starts with level 1 (highest frequency) and ends with level 96
(lowest frequency). The amplitude or modulus values (abso-
lute wavelet coefficients) are depicted on the z-axis. Note
that the wavelet amplitude values are quite small at level 1
(~0.00–0.08) and show a 100-fold increase by level 96
(~1.00–8.00).
Figure 14 is an ‘enlarged’ scale plot of the female Yayoi

data, but now limited to level 1 and level 96. Local disconti-
nuities (singularities) are now clearly delineated with level
1. Maximal wavelet values are associated with points 1, 25
and 63, which reflect the sharpest changes in the curvature
along the CB contour. However, by level 96, this precise
localization is largely lost, although the major or gross shape
changes in the CB contour are being maintained. Note that
while the major peaks associated with level 96, approximate
those seen with level 1, their position along the CB boundary
is now imprecise. This figure clearly shows that as the CWT

Table 3.　Two-way MANOVA displaying 
the two ‘between-group’ contrasts

Contrast Wilks’ Lambda Rao’s R

TYPE*** 0.471 4.403
SEX*** 0.889 2.634
TYPE×SEX 0.823 1.059

***p�0.001
type (group, five archeological ages) and sex (females and males)

Figure 13. A 3-D plot of the continuous wavelet transform (CWT)
for the mean Yayoi female data. The y-axis depicts scale levels 1
through 96 (every 10th one). The x-axis shows the position along the
CB contour and the z-axis displays the wavelet amplitude coefficients
derived from the CWT. Note that the CWT wavelet magnitude values
for the scale levels, from the smallest (level 1) to the largest (level 96),
differ by a factor of 100.

Table 4.　Univariate F-tests derived from the two-way MANOVA

Main contrast: Group

Variable Among-mean-square Within-mean-square F-ratio Probability

D1 211.03 37.097 5.689 p�0.001
D2 41.28 15.961 2.586 p�0.05
D3 102.58 15.560 6.593 p�0.001
D4 46.39 18.771 2.472 p�0.05
D7 20.87 24.997 0.835 ns
D9 47.09 26.323 1.789 ns
D12 10.79 7.791 1.385 ns

Main contrast: Sex

Variable Among-mean-square Within-mean-square F-ratio Probability

D1 0.33 37.097 0.009 ns
D2 100.40 15.961 6.291 p�0.05
D3 8.91 15.560 0.573 ns
D4 163.78 18.771 8.725 p�0.005
D7 144.01 24.997 5.761 p�0.05
D9 5.38 26.323 0.204 ns
D12 71.94 7.791 9.234 p�0.005
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begins to increasingly blur the precise locations on the CB
contour at larger scale values, acting in analogous way to a
smoothing function, only some of the curvature information
is still being retained.
Figure 15 illustrates the CWT as a color plot for the mean

female Yayoi group. As before, the CWT was computed as a
matrix of modulus values or wavelet coefficients, Eq. [18],
each matrix containing 96 levels (scale) by 512 positions, or
49,152 element values. The 512 positions along the horizon-
tal or x-axis have now been mapped back into the 108
unevenly-spaced points on the CB boundary as discussed
earlier. The 96 levels determining the scale are shown on the

vertical or y-axis. This figure has been embedded in a Carte-
sian ‘position-scale’ plane with the vertical axis representing
the scale and the horizontal axis the position along the CB
boundary. This plot can be thought of as looking down onto
the x-y plane (scale-position plane) of Figure 13, but with
the amplitude wavelet values (z-plane) now embedded (or
compressed) into the x-y plane.
For visibility, these amplitude values have been identified

with color, with the high frequency components in blue, and
the low frequency components in red. Color is used here to
indicate the strength of the signal. The ‘signal’ in this case
can be viewed as a measure of the curvature along the CB
margin. While the best resolution of the localized changes in
curvature are depicted with level 1, the actual magnitudes of
the CWT amplitude values at that level are rather low
(~0.00–0.08), hence the blue end of the color spectrum. In
contrast, if we look at highest computed scale level, level 96,
the amplitude values are substantial (~1.00–8.00), and are
therefore mapped into the red end of the color spectrum. It
should be noted that while the strongest wavelet signals (for
each scale level) are around points 1, 25 and 63, which show
strongly in the red part of the spectrum, it is at the blue end
of the spectrum (top of Figure 15) that the localization is the
most precise (reference should to be made to Figures 13 and
14 to facilitate an understanding of Figure 15).
Figure 16 displays the 3-D plot of the mean Yayoi male

data. The pattern is very similar to that of the Yayoi female
data. On closer scrutiny one can detect slight differences in
the curves depicting the scale levels. An ‘enlarged’ scale
plot of the male Yayoi data, again limited to level 1 and level
96 is shown in Figure 17. The pattern is again very similar to
that of the female Yayoi data, although, on closer analysis,
minor differences can be observed.

Figure 14. An enlarged 2-D plot for Yayoi female data. Displayed
here is the continuous wavelet transform (CWT) with just two scaling
levels. The amplitude values for level 1 are on the left y-axis. The
amplitude values for level 96 are on the right y-axis. Level 1 represents
a depiction of the high frequency components along the CB contour,
while level 96 shows the low frequency components. Maximal wavelet
values are identified for points 1, 25 and 63, reflecting sharp shape
changes in the curvature of the CB contour (see text).

Figure 15. Continuous wavelet transform (CWT) of the mean Yayoi female data. The y-axis refers to the scale (96 levels) and the x-axis repre-
sents the position (108 points) along the cranial base boundary. Color is now used to identify the magnitude of the wavelet coefficients. Dark blue
indicates regions of low wavelet amplitude value, while red indicates areas of high amplitude value. Particularly high values can be found at points
1, 25, 31, and 63, identifying regions of high curvature. Note: The 512 points cranial base points have been mapped back into the 108 points (see
text).
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Figure 18 displays the CWT as a color plot for the mean
male Yayoi group. Again, the wavelet amplitude values have
been identified with color; that is, the high frequency com-
ponents are blue, while the low frequency components are in
red. The overall pattern is very similar to that of the mean
female Yayoi group, although on closer analysis, minor dif-
ferences can be discerned. It is these differences that are of

biological interest and will be taken up subsequently.
To appreciate the significance of these wavelet amplitude

plots, especially the ones in color (Figures 15 and 18), it is
important to understand the relationship between the scaling
values (the ‘a’ along the y-axis) and the frequency. Recall
that scale, a, is inversely related to the frequency (1/a � f).
This indicates that as the scale values (levels) increase, the
frequency will decrease. Consequently, when viewing Fig-
ures 15 and 18, one needs to keep in mind that the amplitude
values (modulus) dealing with the position along the CB
outline (the ‘b’ along the x-axis) associated with the highest
frequency, are at the top of each plot. That is where the scal-
ing value (level), a, is the lowest. In contrast, the lowest fre-

Figure 16. A 3-D plot of the continuous wavelet transform (CWT)
for the mean Yayoi male data. The y-axis depicts scale levels 1 through
96 (every 10th one). The x-axis shows the position along the CB con-
tour and the z-axis displays the wavelet amplitude coefficients derived
from the CWT. Note that the CWT wavelet magnitude values for the
scale levels, from the smallest (level 1) to the largest (level 96), differ
by a factor of 100.

Figure 17. An enlarged 2-D plot for Yayoi male data. Displayed
here is the continuous wavelet transform (CWT) with just two scaling
levels. The amplitude values for level 1 are on the left y-axis. The
amplitude values for level 96 are on the right y-axis. Level 1 represents
a depiction of the high frequency components along the CB contour,
while level 96 shows the low frequency components. Maximal wavelet
values are identified for points 1, 25 and 63, reflecting sharp shape
changes in the curvature of the CB contour (see text).

Figure 18. Continuous wavelet transform (CWT) of the mean Yayoi male data. The y-axis refers to the scale (96 levels) and the x-axis repre-
sents the position (108 points) along the cranial base boundary. Color is now used to identify the magnitude of the wavelet coefficients. Dark blue
indicates regions of low amplitude value, while red indicates areas of high amplitude value. Particularly high values can be found at points 1, 25,
31, and 63, identifying regions of high curvature. The 512 points cranial base points have been mapped back into the 108 points (see text).
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quencies are at the bottom of each plot. This is where the
scaling value, a, is the highest. Moreover, these low fre-
quency components (shown largely in red) are, ‘blurred’, or
more spread out along the horizontal axis (this is clearly
depicted in Figures 14 and 17). These low frequency compo-
nents are characterizing aspects of the CB that are now less
localized and cover more of the morphology. In other words,
they are better at detecting structural homologies in contrast
to point homologies, which have more in common with sin-
gularities. The low frequency components describe the more
gradual changes in the CB contour, making them perhaps
conceptually closer to the notion of homology as originally
proposed by Owen in 1843.
While all this may be somewhat counter intuitive when

one is viewing these wavelet plots, it is completely in accord
with the results from conventional FDs as well as EFFs. The
low frequencies are responsible for the more global aspects
of form, while the higher frequencies are responsible for the
smaller localized features on the boundary of the form, even
if the precise locations of those features cannot be readily
identified in the frequency domain using FDs and FTs.
A particularly illustrative example of this relationship

between scale and frequency, using 2-D wavelets, can be
seen in Hubbard (1998, page 235). Which frequencies are
more important? The answer depends on the application.
Both frequencies, the high and low, and possibly even mid-
dle values may provide valuable information and be of
importance in computational shape analysis.
Recall that the wavelet is particularly sensitive to the pres-

ence of singularities and/or changes in curvature. This is
now clearly reflected in the CB boundary for the Yayoi data.
The highest frequencies are associated with what could be
roughly identified as singularities as seen at point 1 (basion)
and at point 63 (SE), regions of sharp curvature, while some-
what lower frequencies cover ranges of points that describe
regions with more gradual changes in curvature, such as
around points 22 to 27 (dorsum sellae), points 29 to 40 (sella
turcica) and points 45 to 47. What is particularly important
to recognize here is that these locations on the CB boundary
were identified and numerically described (maximal values
of the amplitude coefficients or modulus values) in a totally
objective manner.
Figure 19 shows the centroid-superimposition of the mean

female Yayoi group (solid line) on the male Yayoi group
(dotted line) for the area-standardized and positionally-ori-
ented data derived from the EFFs. While there were minor

differences present in the superimposition of the Yayoi gen-
der plots, the anterior displacement of the male trace in con-
trast to the female one, at the posterior aspect of the
hypophyeseal fossa, was particularly apparent. This system-
atic anterior displacement was seen in all groups-Kofun,
Kamakura, Edo and Modern periods- and is of particular
biological interest. This difference in sexual dimorphism
was further examined by subtracting the mean male CWT
amplitude coefficients from the mean female CWT coeffi-
cients.
In a similar way to Figures 14 and 17, Figure 20 displays

an enlarged plot of the mean gender differences in the CWT,
again limited to scaling levels 1 and 96. As can be seen from
Figure 19, the major difference between males and females
takes place around point 25, the anterior aspect of dorsum
sella. The localization is well documented with the high fre-
quency component (level 1). The picture, however, is not so
clear-cut at the lowest frequency component (level 96),
which seems to display other more spurious elements (noise)
along the CB boundary as well.
Figure 21 displays the difference CWT plot. One can now

see that the major differences between the mean female
Yayoi group and the mean male Yayoi group are concen-
trated around points 25 to 30 (hypophyseal fossa), and to a
considerably lesser degree around points 42 to 45. This pat-
tern is generally in accord with Figure 19. As a caveat, it
must be mentioned that the centroid superimposition (Figure
19) is slightly different (it is not a least-squares approach
that effectively minimizes the differences) from the results
of the subtraction (Figure 20), so while quite close to the
results displayed with the CWT difference plot, it is not
exact.
Results for Kofun, Kamakura, Edo and Modern periods

are not shown, simply because they are very similar to those
of the Yayoi and would take up too much space here. If

Figure 19. Size-standardized and positionally-oriented cranial
base (CB) superimpositions. Plot of the centroid-based superimposi-
tion of the mean Yayoi female (solid line) trace on the mean Yayoi
male (dotted line) trace. Note the anterior displacement of the dorsum
sellae aspect of the males with respect to females.

Figure 20. An enlarged 2-D plot showing Yayoi sexual dimor-
phism. Displayed here is the continuous wavelet transform (CWT)
with just two scaling levels. The amplitude values for level 1 are on the
left y-axis. The amplitude values for level 96 are on the right y-axis.
Level 1 represents a depiction of the high frequency components along
the CB contour, while level 96 shows the low frequency components.
Maximal wavelet values are present for point 25, reflecting the major
area of difference in curvature of the CB contour between the mean
male and female outlines Note that the CWT wavelet magnitude val-
ues for the scale levels, from level 1 to level 96, now differ by a factor
of 10 (see text).
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desired, interested parties can get the results for all groups
from the senior author.

Discussion and Conclusions

The numerical description of the shape of complex and
irregular 2-D morphological forms continues to present
challenging issues that need to be resolved. Earlier
approaches, such as EFFs, represent one of the advances
developed for quantitatively characterizing the contour of
complex morphologies of the type encountered in the bio-
logical sciences.
The computational shape analysis model advocated here,

with the Fourier-wavelet representation, is based on an
approach that partitions the shape of a form (defined as the
boundary or contour) into two aspects: global elements and
local features. To be able to analyze these two aspects, two
techniques need to be joined. These are the utilization of
EFFs and the application of CWTs. The initial use of the
EFFs is to generate invariance with respect to: [1] starting
point, [2] maintenance of point homology, [3] standardiza-
tion for size and [4] positional orientation. In addition, EFFs
produce a precise analog of the morphology under consider-
ation, difficult to generate with other methods. Once this
analog of the form has been created, EFFs can then be sub-
sequently used to compute amplitudes, phase, power, and a
host of other measures, which are all global estimates of the
shape of interest.
However, these global estimates are incapable of deriving

any information about localized elements on the contour of
the form. In particular, the presence of singularities or rapid
changes in the curvature of the boundary is missed with
these global parameters. This has been a serious limitation

with Fourier analytic methods since their inception. The
need to circumvent this restriction has led to alternative pro-
cedures, one of which has been to use EFFs for the compu-
tation of distances from the centroid to the boundary. While
useful, this approach has the undesirable drawback in that
these measures are subjectively chosen. What is required is
a methodology that identifies these changes in boundary cur-
vature in a completely objective fashion. The comparatively
recent development of CWTs finally provided the solution.
Recall that the wavelet is particularly sensitive to the pres-

ence of singularities and/or changes in curvature. This was
clearly reflected in the CB boundary for all age groups from
the Yayoi to Modern. The highest frequencies are associated
with what could be roughly identified as singularities as seen
at point 1 (basion) and at point 63 (SE), regions of sharp cur-
vature. Another region with considerable curvature changes
is at point 31. The lower frequencies cover ranges of points
that describe regions with more gradual changes in curva-
ture. For example, around points 22 to 27 (dorsum sellae),
points 29 to 40 (sella turcica) and points 45 to 47. It is partic-
ularly important to recognize that these locations on CB
boundary were identified and numerically described (maxi-
mal values of the wavelet amplitude coefficients or modulus
values) in a totally objective manner.
Two conclusions can be drawn about the current study of

the human CB: [1] although group differences were present,
they seemed to be quite small and largely random in charac-
ter, suggesting the presence of considerable stability in the
CB structures over time; and [2] the presence of systematic
differences between female and males. This latter conclu-
sion is consistent with earlier data derived from studies of
sexual dimorphism in Macaca nemestrina (Lestrel and
Moore, 1978; Lestrel and Sirianni, 1982; Lestrel et al.,

Figure 21. Continuous wavelet transform (CWT) differences. Sexual dimorphism between mean Yayoi females and mean Yayoi males is
depicted here. The y-axis refers to the scale (96 levels) and the x-axis represents the 108 points along the cranial base boundary. Color is used to
identify the magnitude of the wavelet coefficients. Dark blue indicates regions of low value, while red indicates areas of high value. High values
are present in the region defined by points 25 to 30. These points correspond to the largest difference between the male and female traces (refer to
Figure 19). The 512 points cranial base points have been mapped back into the 108 points (see text).
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1993). In the current study, these differences in sexual
dimorphism were present for every group starting with the
Yayoi period and continuing up to the Modern period. Con-
sequently, one may infer that the pattern of sexual dimor-
phism documented in the Japanese CB, is a primate pattern
with an ancient evolutionary history.
As demonstrated here, wavelet analysis is particularly

useful for the objective identification of major (and presum-
ably of biological significance) local features, difficult if not
impossible to identify easily with other methods, including
conventional FDs and FTs. The Fourier-wavelet model
allows for a more comprehensive numerical representation
of the shape and thus, able to quantify more completely the
visual information that is so readily observable in the biolog-
ical world around us.
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Appendix

The following appendix provides a brief exposition of the
particular wavelet used in the preparation of the data for this
paper. I am indebted to Roberto Cesar for providing materi-
als for this appendix.

Development of the CWT
If a curve can be represented as a trajectory of points in 2-

D space (based on a continuous mapping of the interval, �, of
real numbers so that u�I�R2), then the locus of these points
can be determined from an arc-length parametrization of the
type:

where t is the time/boundary domain, x and y are Carte-
sian coordinates and i is imaginary.
Let u(t) be a complex signal representing the boundary

contour to be analyzed. Its wavelet transform, known as a w-
representation (Antoine, et al., 1997), is defined as the con-
tinuous wavelet transform (CWT) of this signal as:

or recast into the Fourier domain as

where b∈R represents the shifting or position parameter,
while a
0 defines the dilation or scale parameter of the
CWT. The parameter space is defined as the upper half-
plane of R2, such that:

The analyzing wavelet �(t) should have a null DC compo-
nent (zero mean), which is known as the simplified admissi-
bility condition (Costa and Cesar, 2001). This condition
provides the CWT with an exact reconstruction or inverse
formula, ICWT, defined as:

where the normalization constant, c�, depends only on the
analyzing wavelet.
Equations [A–2] and [A–3] above, suggest two different

ways of implementing the CWT, i.e., by either using a con-
volution-like algorithm via the application of Eq. [A–2] or
the application of the Fourier property as defined by Eq. [A–
3]. That is, Eq. [A–3] defines the wavelet transform in the
Fourier domain, where �*(f) (as a complex conjugate) and
U(f) represent the Fourier transform (FT) of the wavelet �(t)
and of the contour u(t), respectively; that is, the FT of the
product of �*(f) and U(f).
We have adopted the latter (Eq. [A–3]) here. Therefore, in

our Matlab scripts the FT of the contour u(t) is calculated as
the first step with the application of a Fast Fourier Transform
(FFT) algorithm, while the Fourier version, �(f), of the
wavelet is calculated directly in the Fourier domain. The FT
terms, �(f) and U(f), are then multiplied following the defi-
nition of Eq. [A–3], and then, as a second step, the inverse
IFFT is taken (Figure. A–1).
The existence of the inverse formula (Eq. [A–5]) also

allows the signal, u(t), to be expanded in terms of the
wavelets:

which are the dilated (a) and shifted (b) copies of the ana-
lyzing or mother wavelet, �.
Also because of the existence of the inverse formula (Eq.

[A–5]), the w-presentation displays unicity. This implies that
any two different shapes will present uniquely different w-
representations. Further, the w-representation is also invari-
ant with respect to: [1] translation, by adding a constant

[A–1]

[A–2]

[A–3]

[A–4]

[A–5]

Figure A–1. Flowchart showing the algorithm development to cal-
culate the Fourier-wavelet representation. The left-hand column
depicts the procedures used to derive global frequency domain param-
eters. The right-hand column illustrates the method used to generate
localized contour information (adapted and modified from Khan,
2001).

[A–6]
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z�x0�iy0 to the signal, u(t); [2] size or scaling, by multiplying
the signal, u(t), by a constant c, given that the arc-length
parametrization is adopted; and [3] rotation, by multiplying
the signal by ei�, and shifting arc-length parametrization of
the contour by t0 (the origin) to adjust for starting point (see
Antoine et al., 1997; Costa and Cesar, 2001 for details).
Although the CWT is defined for continuous values of

a
0, it is important to discretize it in order to allow for com-
putational implementation. Many different discretization
schemes can be found in the wavelet literature. We have
used a logarithmic discretization scheme where the scale
parameter limits, amin, and amax, are taken in log units, and
exponential scale discretization steps are used. This
approach was motivated by the exponential variation in the
scale of certain forms such as fractals (although this also
applies to non-fractals). This topic is discussed in detail with
some comparative examples between discretization
approaches in Antoine, et al., (1997).

Choice of wavelet
From the definition of the CWT, it is clear that the chosen

analyzing wavelet � plays a central role. Two very common
analyzing wavelets for signal analysis are: the family of
wavelets defined by the Gaussian derivatives such as the
Morlet and Mexican Hat wavelets (Costa and Cesar, 2001).
The first wavelet to be introduced within the context of

wavelet theory was created by the French researcher J. Mor-
let. The Morlet wavelet is defined as a complex exponential
modulated Gaussian. Modulation insures that the Gaussian
distribution rapidly decays to zero in both directions on the
interval. The Morlet wavelet is a multiplication of the Gaus-
sian distribution with a sinusoidal such as a sine curve (Fig-
ure A–2). This yields a curve that is of limited extent or
width, i.e., as:

Here, the Morlet wavelet is defined with a complex expo-
nential where:

The Mexican Hat, also known as the Marr wavelet,
defined as the second derivative of the Gaussian. Since its
introduction by Marr and Hildreth (1980) as the choice for
edge detection, the second derivative of the Gaussian has
become one of the most popular analyzing wavelets. It is fre-
quently used to analysis boundary contour singularities and
defined as:

For purposes here, we chose the second derivative of the
Gaussian (Eq. [A–9]) as the analyzing wavelet Taking deriv-
atives of the Gaussian distribution generates a set of valid
wavelets, which are often used (Costa and Cesar, 2001).
These derivatives can be defined in terms of the FT, generat-
ing wavelets of the following form (Figure A–3). These sat-
isfy the requirement of compact support making them well-
localized. Note that the second derivative is symmetric. The
second derivative wavelet is particularly sensitive to the
presence of singularities; and thus, useful for investigation
of boundary contours of the kind presented in this paper.

Figure A–2. The Morlet wavelet is created by multiplying the
modulated Gaussian distribution by a sine wave. A. The dotted line
represents the product. B. The dotted line in (A) is now shown as a
solid line (adapted from Torrence and Compo, 1999).

Figure. A–3. Wavelet based on the second derivative of the nor-
mal or Gaussian distribution shown for different scaling levels (a). A.
An illustration of the modulated Gaussian distribution. B. The first
derivative is shown here. C. The second derivative used as the basis
for the mother wavelet in this paper (adapted from Costa and Cesar Jr.,
2001).
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