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ABSTRACT

The availability of genomewide dense markers brings opportunities and challenges to breeding programs.
An important question concerns the ways in which dense markers and pedigrees, together with phenotypic
records, should be used to arrive at predictions of genetic values for complex traits. If a large number of markers
are included in a regression model, marker-specific shrinkage of regression coefficients may be needed. For
this reason, the Bayesian least absolute shrinkage and selection operator (LASSO) (BL) appears to be an
interesting approach for fitting marker effects in a regression model. This article adapts the BL to arrive at a
regression model where markers, pedigrees, and covariates other than markers are considered jointly.
Connections between BL and other marker-based regression models are discussed, and the sensitivity of BL
with respect to the choice of prior distributions assigned to key parameters is evaluated using simulation. The
proposed model was fitted to two data sets from wheat and mouse populations, and evaluated using cross-
validation methods. Results indicate that inclusion ofmarkers in the regression further improved the predictive
ability of models. An R program that implements the proposed model is freely available.

GENOMEWIDE dense marker maps are now avail-
able for many species in plants and animals (e.g.,

WANG et al. 2005). An important challenge is how this
information should be incorporated into statistical mo-
dels for prediction of genetic values in animal and plant
breeding programs or prediction of diseases.

A standard quantitative genetic model assumes that
genetic uið Þ and environmental eið Þ effects act additively,
to produce phenotypic outcomes yið Þ according to the
rule yi ¼ ui 1 ei . The information set now available for
predicting genetic values may include, in addition to
phenotypic records, a pedigree, molecular markers, or
both.

Several methodologies have been proposed for in-
corporating dense marker data into regression models.
A distinction can be made between methods that explic-
itly regress phenotypic records on markers via the re-
gression function ui ¼ g xi ; bð Þ, where xi is a vector of
marker covariates and b is a vector of regression
coefficients, e.g., g xi ;bð Þ ¼ x9ib, and those that view
genetic values as a function of the subject and use

marker information to build a (co)variance structure
between subjects. The first group of methods includes
standard Bayesian regression (BR) with random coef-
ficients, i.e., a Bayesian model where regression coef-
ficients are assigned the same Gaussian prior, and other
shrinkage methods such as Bayes A or Bayes B of
Meuwissen et al. (2001), and specifications described
in Gianola et al. (2003). The second type of approach
was suggested by Gianola et al. (2006) and Gianola

and van Kaam (2008), who proposed using reproducing
kernel Hilbert spaces regression (RKHS), with the
information set consisting of SNP (single-nucleotide
polymorphism) genotypes, possibly supplemented by
genealogies. As discussed in De los Campos et al. (2009),
in this approach, marker information is used to create a
prior (co)variance structure between genomic values,
ui , Cov ui ; uj

� �
¼ K xi ; xj

� �
s2

a, where K : ; :ð Þ is some
positive-definite function and s2

a is a parameter to be
estimated from the data.

The two types of approaches lead to predictions of
genomic values for quantitative traits. An advantage of
explicitly regressing phenotypes on marker covariates is
that the model can produce information about genomic
regions that may affect the trait of interest. However, a
main difficulty is that the number of regression coef-
ficients (p) is typically large, even larger than the
number of records (n), with p ? n. Therefore, a crucial
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aspect is how this methodology can cope with the curse
of dimensionality and with colinearity.

With whole-genome scans, many markers are likely
to be located in regions that are not involved in the
determination of traits of interest. On the other hand,
some markers may be in linkage disequilibrium with
some QTL or in regions harboring genes involved in the
infinitesimal component of the trait. This suggests that
differential shrinkage of marker effects should be a
feature of the model, as noted by Meuwissen et al.
(2001). Tibshirani (1996) proposed a regression
method (least absolute shrinkage and selection opera-
tor, LASSO) that combines the good features of subset
selection (i.e., variable selection) with the shrinkage
produced by BR. Recently, Park and Casella (2008)
presented a Bayesian version of the LASSO method
(Bayesian LASSO, BL) and suggested a Gibbs sampler
for its implementation. Alternatives to the Gibbs sam-
pler of Park and Casella are discussed in Hans (2008).
While the BL described by Park and Casella is appealing
for the reasons mentioned above, it does not accom-
modate pedigree information or regression on (co)va-
riates other than the markers for which a different
shrinkage approach may be desired.

Several authors have considered combining pedigree
and marker data into a single model in the context of
QTL analysis (e.g., Fernando and Grossman 1989;
Bink et al. 2002, 2008). Here, in this spirit, the BL is
modified and extended to accommodate pedigree
information as well as covariates other than markers.

The main objectives of this article are to (1) discuss
the use of BL and related methods in the context of
linear regression of quantitative traits on molecular
markers, (2) evaluate the sensitivity of BL with respect to
the choice of the prior for the regularization parameter,
(3) extend the BL so that pedigrees or regressions on
covariates other than markers can also be included in
the model, and (4) evaluate the methodology using data
from a self-pollinated wheat population and an outcross
mouse population. The article is organized as follows:
the first section, bayesian lasso, introduces the BL as
presented in Park and Casella (2008) and discusses
connections between BL and closely related methods,
such as those proposed by Meuwissen et al. (2001) or
variants proposed by other authors. monte carlo

study evaluates the sensitivity of BL with respect to
the choice of prior for the regularization parameter.
bayesian regression coupled with lasso presents an
extension of BL, treating effects of different types of
regressors with different priors. In data analysis, the
proposed methodology is applied to two data sets
representing a collection of wheat lines and a popula-
tion of mice. concluding remarks are provided in the
final section of the article. An R function (R Develop-

ment Core Team 2008) that fits the model and data sets
used in this article are made available (see supporting
information, File S1 and File S2).

THE BAYESIAN LASSO

Tibshirani (1996) proposed using the sum of the
absolute values of the regression coefficients (or L1

norm) as a penalty in regression models, to simulta-
neously produce variable selection and shrinkage of
coefficients; the proposed methodology was termed
LASSO. In LASSO, estimates are obtained by solving
the constrained optimization problem

min
b

X
ðyi � x9ibÞ2 subject to

X
j

jbj j # t

( )
; ð1Þ

where xi is a vector of covariates, b is the corresponding
vector of regression coefficients, and t is an arbitrary
positive constant. Above, it is assumed that data are
centered, i.e., yi has zero mean. Optimization problem
(1) is equivalent to

min
b

X
ðyi � x9ibÞ2 1 lðtÞ

X
j

jbj j
( )

ð2Þ

(e.g., Tibshirani 1996), for some value of the smooth-
ing parameter l tð Þ$ 0. It is known that the solution to
(2) may involve zeroing out some elements of b, and
there are many ways of illustrating why this may be so.
One manner is to examine the shape of the feasible set
in (1) (e.g., Tibshirani 1996); another way is to consider
the Bayesian interpretation of the LASSO. From (2), it
follows that the solution can be viewed as the posterior
mode in a Bayesian model with Gaussian likelihood,
p y jb; s2

e

� �
¼
Qn

i¼1 N yi j x9ib; s2
e

� �
, and a prior on b that

is the product of p independent, zero-mean, double-
exponential (DE) densities; that is, p b j lð Þ ¼

Qp
j¼1

ðl=2Þexp(�ljbj jÞ. In contrast, BR is obtained by
assuming the same likelihood and a prior on b that is
the product of p independent normal densities; that is,

p b js2
b

� �
¼
Qp

j¼1 exp �ðb2
j =2s2

bÞ
� �

=
ffiffiffiffiffiffiffiffiffiffiffi
2ps2

b

q� �
, where

s2
b is a variance parameter common to all regression

coefficients. The difference between these two priors is
illustrated in Figure 1: the DE density places more mass
at zero and has thicker tails than the Gaussian distribu-
tion. From this perspective, relative to BR, LASSO
produces stronger shrinkage of regression coefficients
that are close to zero and less shrinkage of those with
large absolute values.

Parameter l, sometimes referred to as a regulariza-
tion parameter, plays a central role: as it approaches
zero, the solution to (2) tends to ordinary least squares,
while large values of l penalize the L1 norm of b,

P
j jbj j,

highly. In the Bayesian view of LASSO, l controls the
prior on b, with large values of this parameter associated
with more informative (sharper) priors.

By construction, the non-Bayesian LASSO solution
admits at most n � 1 nonzero regression coefficients
(e.g., Park and Casella 2008). This is not desirable in
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models with dense marker-based regressions since, a
priori, there is no reason why the number of markers
with effectively nonzero effects should be smaller than
the number of observations. This problem does not
arise in BL, which is discussed next.

A computationally convenient hierarchical formula-
tion of a DE distribution is obtained by exploiting the fact
that the DE density can be represented as a mixture of
scaled Gaussian densities (e.g., Andrews and Mallows

1974; Rosa 1999), where the mixing process of the
variances is an exponential distribution. Following Park

and Casella (2008),

bj � DEðbj j lÞ ¼ l

2
e�l jbj j

¼
ð‘

0

expð�ðb2
j =2s2

j ÞÞffiffiffiffiffiffiffiffiffiffiffi
2ps2

j

q
2
64

3
75 l2

2
exp � l2

2
s2

j

� �	 

ds2

j :

Above, bj is the unknown effect of the jth marker and s2
j

is a variance parameter (measuring prior uncertainty)
associated with bj . Using this, Park and Casella (2008)
suggested the following hierarchical model (BL),

Likelihood : pðy jb; s2
e Þ ¼

Yn
i¼1

N ðyi j x9ib; s2
e Þ ð3Þ

Prior : pðb; s2
e ; t2; l2Þ ¼ pðb js2

e ; t2Þpðs2
e Þpðt2 jlÞpðl2Þ

¼
Yp

j¼1

N ðbj j 0; t2
j s2

e Þ
" #

x�2 s2
e jd:f :; S

� �

3
Yp

j¼1

Expðt2
j j lÞ

" #
Gðl2 ja1; a2Þ:

ð4Þ

Above, N yi j x9ib; s2
e

� �
and N bj j 0; s2

et2
j

� �
are normal

densities centered at x9ib and 0, with variances s2
e and

s2
et2

j , respectively; x�2 s2
e jd:f :; S

� �
is a scaled-inverted

chi-square density, with degrees of freedom d:f. and
scale S , in this parameterization, E s2

e jd:f :; S
� �

¼ S=
ðd:f :� 2Þ; Expðt2

j j lÞ ¼ ðl2=2Þexpð�ðl2=2Þt2
j Þ is an ex-

ponential density indexed by a single parameter, l, and
G l2 j a1; a2ð Þ is a Gamma distribution, with shape
parameter a1 and rate parameter a2.

The role of the t2
j ’s becomes more clear by changing

variables in (3) and (4) from bj to bj* ¼ t�1
j bj . After this

change of variables, the product of the likelihood
function and of the joint prior for the regression
coefficients, N ðy j Xb; Is2

eÞN ðb j Diagft2
j gs2

eÞ, be-
comes N y j X*b*; Is2

e

� �
N b* j Is2

e

� �
, where X* ¼

X Diag tj

� �
and b* is a vector of regression coefficients

with homogeneous variance. Thus, one way of viewing
this class of regression models is as a standard BR model
with additional unknowns, Diag tj

� �
, which assign dif-

ferent weights to the columns of X, with tj /0 being
equivalent to removing the jth covariate from the model.

Park and Casella (2008) presented a set of fully
conditional distributions that allows fitting the BL
model via the Gibbs sampler. Some of these distribu-
tions are discussed next, to illustrate main features of
the algorithm.

Location parameters: In the Gibbs sampler of Park

and Casella (2008), the fully conditional distribution
of the regression coefficients is multivariate normal with
mean (covariance matrix) equal to the solution (inverse
of the coefficient matrix) of the system of equations,

X9Xs�2
e 1 Diagðt�2

j s�2
e Þ

h i
b̂ ¼ X9ys�2

e : ð5Þ

Recall that ordinary least-squares estimates are obtained
by solving X9Xb̃ ¼ X9y and that the counterpart of (5) in
BR is ½X9Xs�2

e 1 Is�2
b �b̃̃¼ X9ys�2

e . A key aspect of BL
is that it produces a shrinkage that is marker specific,
contrary to BR. Since s2

e is a scaling factor common to
all regression coefficients, the differential shrinkage is
due to the t2

j ’s. If t2
j is large, i.e., a large variance is

associated with the effect of the jth marker, the quantity
added to the diagonal will be small. Conversely, if a
small variance is associated with the effect of the jth
coefficient, t�2

j will be large. Adding a large constant to
the jth diagonal element shrinks the least-squares
estimates toward zero and reduces the variance of its
fully conditional distribution.

Variances of the regression coefficients: An impor-
tant aspect of the algorithm is how samples of the
regression coefficients affect realizations of the varian-
ces of marker effects. In BL, the fully conditional
posterior distributions of the t�2

j ’s can be shown to be
inverse Gaussian (e.g., Chhikara and Folks 1989), with
mean mj ¼ ðsel=jbj jÞ and scale parameter l2. For a given
sel, a small absolute value of bj will lead to a fully
conditional distribution of t�2

j with a large mean, which
in turn will generate relatively small values of t2

j .

Figure 1.—Densitiesofanormalandofadouble-exponential
distribution (both with null mean and with unit variance).
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The l parameter of the exponential prior: In the
standard LASSO, l controls the trade-off between
goodness of fit and model complexity, and this may be
crucial in defining the ability of a model to uncover
signal. Small values of l produce better fit, in the sense
of the residual sum of squares (l¼ 0 gives ordinary least
squares); as l increases, the penalty on model complex-
ity increases (in optimization problem (1) the feasible
set is smaller). On the other hand, in BL, l controls the
shape of the prior distribution assigned to the t2

j ’s. In
general, the exponential prior assigns more density to
small values of the t2

j ’s than to large ones, and this may
be reasonable for most SNPs under the expectation that
most of their effects are nil.

In BL l can be treated as any other unknown. If, as in
(4), a Gamma prior is assigned to l2, the fully condi-
tional posterior distribution of l2 is also Gamma, with
shape and rate parameters equal to p 1 a1 and
1
2

Pp
j¼1 t2

j 1 a2, respectively. The expectation of this
Gamma distribution is ðp 1 a1Þ=1

2

Pp
j¼1 t2

j 1 a2, so a
large value of

Pp
j¼1 t2

j will lead to a relatively small l,
and the opposite will occur if the sum of the variances of
the regression coefficients is small.

Relationship between LASSO and other regression
models used in genomic selection: Standard BR may
not be suitable for regressing phenotypes on a large
number of markers because shrinkage of regression
coefficients is homogeneous across markers (Fernando

et al. 2007). In contrast, in BL the variance is marker
specific, producing shrinkage whose extent is related to
the absolute value of the estimated regression coefficient.

Meuwissen et al. (2001) recognized that marker-
specific variances may be needed and suggested re-
gression models based on marginal priors that are also
mixtures of scaled-Gaussian distributions (‘‘Bayes A’’) or
mixtures of scaled-Gaussian distributions and of a point
mass at zero (‘‘Bayes B’’). In these models, the likeli-
hood is as in (3) and, in Bayes A, the prior is

pðb; s2
e ; s2

bÞ ¼ pðb js2
bÞpðs2

eÞpðs2
bÞ

¼
Yp

j¼1

N ðbj j 0; s2
bj
Þ

" #
x�2ðs2

e jd:f :; SÞ

3
Yp

j¼1

x�2ðs2
bj
jd:f :b; SbÞ

" #
:

ð6Þ

The first two components of (6), pðb j s2
bÞpðs2

eÞ ¼
½
Qp

j¼1 N ðbj j0; s2
bj
Þ�x�2ðs2

e jd:f :; SÞ, are the counterparts

of the first two components of (4), p bjt2ð Þp s2
e

� �
¼

½
Qp

j¼1 N ðbj j0; t2
j s2

eÞ�x�2ðs2
e jd:f :; SÞ, with s2

bj
¼ t2

j s2
e .

The difference between BL and Bayes A (or Bayes B) is
how the priors of the variances of the marker-specific
regression coefficients (s2

bj
in Bayes A and t2

j s2
e in BL)

are specified. At this level, Bayes A and BL differ in two
respects:

1. In Bayes A, the prior assumption is that the marker-
specific variances are independent random variables
following the same scaled-inverted chi-square distri-
bution with known prior degree of belief d:f :bð Þ and
scale Sbð Þ. In BL, the assumption is that these
variances are independent as well, but each following
the same exponential distribution with unknown
parameter l. The conditional (given l) marginal prior
in BL p b j lð Þ is DE, while in Bayes A pðbj jd:f :b; SbÞ is
a t-distribution. Although a t-distribution may place
more density at zero than the Gaussian prior of BR,
the density at zero is larger in the DE. This issue was
recognized by Meuwissen et al. (2001), leading to the
development of Bayes B.

Xu (2003) employed an improper prior for the
marker-specific variances; if d:f :b ¼ 0 and Sb ¼ 0,
then pðs2

bj
Þ ¼ s�2

bj
. Similar to the exponential prior,

this density decreases monotonically with s2
bj

. How-
ever, unlike the exponential distribution, where l

can be used to ‘‘tune’’ the shape of the distribution,
this prior does not have parameters to allow any
control. In addition, as noted by Ter Braak et al.
(2005), pðs2

bj
Þ ¼ s�2

bj
yields an improper posterior.

As an alternative, these authors suggested to use
pðs2

bj
Þ ¼ s

�2 d�1ð Þ
bj

with 0 , d # 1
2 ; although this prior is

improper, it does not yield an improper posterior. As
with the exponential prior, pðs2

bj
Þ ¼ s

�2 d�1ð Þ
bj

is de-
creasing with respect to s2

bj
. Ter Braak (2006)

furthered discussed the role of d, which, as l in the
BL, controls the shape of the prior density on the
variance of the regression coefficients.

2. A second difference is that, in Bayes A, values of para-
meters d:f :b and Sb are specified as known a priori. On
the other hand, in BL there is an extra level in the
model: l2 is assigned a Gamma distribution, and
information from all regression coefficients is pooled.
This difference is illustrated in Figure 2: in Bayes A,
d:f :b and Sb control, as l does in BL, the trade-offs
between goodness of fit and model complexity.

Yi and Xu (2008) discuss an extension of Bayes A
where a prior is assigned to d:f :b and Sb, and these
quantities are treated as nuisances, as l is in BL.
However, as argued earlier, the DE seems to be a better
choice, if the assumption is that most markers have no
effect on the trait of interest.

MONTE CARLO STUDY

Although in the BL l can be treated as unknown, it is
not clear how sensitive results might be with respect to
the choice of hyperparameters a1 and a2. Park and
Casella (2008, p. 683) recognized that this may be an
issue: ‘‘The prior density for l2 should approach 0
sufficiently fast as l2/‘ (to avoid mixing problems)
but should be relatively flat and place high probability
near the maximum likelihood estimate.’’ The main
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problem of applying this recommendation is that
one does not know in advance what the maximum-
likelihood estimate is.

The sensitivity of BL with respect to the choice of the
prior distribution of l2 was investigated here by fitting
the model under different priors to simulated data. In
addition to the conjugate Gamma prior, we also consid-
ered (see File S1 and File S2)

pðl j a3; a4; maxÞ} Beta
l

max

a3; a4

� �
: ð7Þ

The above distribution gives great flexibility for speci-
fying a relatively flat prior over a wide range of values.
The uniform prior appears as a special case when
a3 ¼ a4 ¼ 1. When the Beta prior is used, the fully
conditional distribution of l does not have closed form;
however, draws from the distribution can be obtained
using the Metropolis–Hastings algorithm (see File S1
and File S2).

Data-generating process: Data were simulated in a
simple setting, such that problems could be identified
easily, while the phenotypic and genotypic structure
attempted to resemble those encountered in real data
sets.

Data were generated under the additive model,

yi ¼
X280

j¼1

xijbj 1 ei ;

where yi i ¼ 1; . . . ; 250ð Þ is the phenotype for individual
i, bj is the effect of allele substitution at marker j
j ¼ 1; . . . ; 280ð Þ, and xij is the code for the genotype

of subject i at locus j, xij 2 0; 1; 2f g. Residuals were

independently sampled from a standard normal distri-
bution; that is, ei � N 0; 1ð Þ.

Two scenarios regarding the genotypic distribution
were considered. In scenario X0, markers were in low
linkage disequilibrium (LD), with almost no correlation
between adjacent markers (Table 1). In scenario X1 a
relatively high LD was considered (Table 1).

The effects of allele substitutions bð Þ were kept
constant across simulations and set to zero for all
markers except for 10 (Figure 3). The locations of
markers with nonnull effects were chosen such that
different situations regarding effects of linked markers
were represented.

Choice of prior distribution of l: For each Monte
Carlo (MC) replicate, five variations of BL were fitted,
and four involved a Gamma prior l2 with the following
values of parameters: BL1; a1 ¼ 1; a2 ¼ 1 3 10�2f g;
BL2; a1 ¼ 2; a2 ¼ 2 3 10�3f g; BL3; a1 ¼ 4; a2 ¼f
1:5 3 10�3g; BL4; a1 ¼ 6; a2 ¼ 1 3 10�3f g. In BL5, the
prior on l was p lð Þ} Betaðl=100Þ ja3 ¼ 1:4; a4 ¼ 1:4Þ
(Figure 4).

Results: Table 2 shows the average (across 100 MC
replicates) of posterior means of the residual variance,
the regularization parameter, and the correlation be-
tween the true and the estimated quantity of several
features (phenotypes, genomic values, and marker
effects). Corr y; Xb̂

� �
is a goodness-of-fit measure,

Corr Xb; Xb̂
� �

measures how well the model estimates
genomic values, and Corr b; b̂

� �
evaluates how well the

model estimates marker effects.
The posterior mean and standard deviation of l were

influenced by the prior (Table 2). The posterior mean
was shrunk toward the prior mode, and the posterior
standard deviation was larger for more dispersed priors
(see Table 2 and Figure 4). These results suggest that
there is not much information about l in the type of
samples evaluated. On the other hand, model goodness
of fit and the ability of the model to uncover signal were
not affected markedly by the choice of prior. This
suggest that, while it may be difficult to learn about l

from data, inferences on quantities of interest (e.g.,
genetic values) may be robust with respect to values of l

over a fairly wide range. For example, differences in

Figure 2.—Graphical representation of the hierarchical
structure of the Bayesian LASSO (top) and Bayes A (bottom).
In the Bayesian LASSO, the variances of the marker effects are
s2

et2
j , j ¼ 1; . . . ; p, with counterparts s2

bj
in Bayes A.

TABLE 1

Absolute values of the correlation between marker genotypes
(average across markers and 100 Monte Carlo simulations) by

scenario (X0, low linkage disequilibrium; X1, high
linkage disequilibrium)

Adjacency between markers

Scenario 1 2 3 4

X0 0.091 0.089 0.090 0.001
X1 0.754 0.602 0.479 0.381
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Corr Xb; Xb̂
� �

or in Corr b; b̂
� �

were small when the
prior was changed.

A relatively flat prior based on a Beta distribution
(BL5) produced a more dispersed posterior distribu-
tion of l, and mixing was not as good as when the
sharper Gamma priors (BL1–BL4) were used. For
example, the average (across MC replicates) effective
sample sizes (e.g., Plummer et al. 2008) for the residual
variance were 1468, 1155, 1091, 1138, and 578 for BL1–
BL5, respectively.

BAYESIAN REGRESSION COUPLED WITH LASSO

In practice, the information set available for pre-
diction of genomic values may include components
other than genetic markers. For example, data may
cluster into known contemporary groups (e.g., individ-
uals may be measured under different experimental
conditions), or a pedigree may be available in addition
to genetic markers. It is natural to treat the various
classes of predictors in a different way. From a penalized-
likelihood point of view, this amounts to using penalty
functions that are specific to each class of predictors.
From a Bayesian standpoint, treating predictors differ-
ently may be achieved by assigning different priors. A
straightforward extension of the BL is described next.

The data structure is denoted as yi ; xri
; xli ; IDif gn

i¼1,
where yi is the phenotype of subject i, xri

is a vector of
covariates that is treated as in a standard BR with a normal
prior and variance common to all regressions, xli is a set of
covariates whose effects are assigned adouble-exponential
prior as in BL, and IDi is a label that allows tracking
subjects in a pedigree. The equation for the data is

yi ¼ m 1 x9ri br 1 x9li bl 1 ui 1 ei ;

where m is an intercept, br and bl are regressions of yi on
x9ri

and x9li , respectively, ui is an infinitesimal genetic

effect pertaining to individual i for which the prior
(co)variance structure is determined by a pedigree, and
ei � N 0; s2

e

� �
is a model residual, assumed to be

identically and independently distributed of other
residuals. The likelihood function is

pðy jm; br; bl; ui ; s2
eÞ

¼
Yn
i¼1

N ðyi jm 1 x9ri br 1 x9li bl 1 ui ; s2
eÞ: ð8Þ

Prior specification (4) is modified as

pðm; br; bl; u; s2
e ; s2

r ; s2
u ; t2; lÞ

¼ N ðm j 0; s2
mÞN ðbr j 0; Is2

r Þ
Yp

j¼1

N ðbjl j 0; s2
et2

j ÞN u j 0;As2
uÞ

�
3 x�2ðs2

e j Se; d:f :eÞx�2ðs2
r j Sr; d:f :rÞx�2ðs2

u j Su ; d:f :uÞ

3
Yp

j¼1

Expðt2
j j lÞ

" #
pðlÞ;

ð9Þ

where s2
m, s2

r , and s2
u are the variances of m, bjr , and ui ,

respectively; d:f : and S are prior degrees of freedom and
scale parameter of the corresponding distributions; A is
a (co)variance structure computed from the genealogy
(for example, a numerator-relationship matrix); and,
p lð Þ is the prior on l that may be as in (4) or (7).

In the model defined by (8) and (9) all fully
conditional distributions (except that of l if a non-
conjugate prior is chosen for l) have closed form, so a
Gibbs sampler (with a Metropolis–Hastings step) can be
used to draw samples from the joint posterior distribu-
tion (see File S1 and File S2). To distinguish the above
model from the standard BL we refer to it as Bayesian
regression coupled with LASSO (BRL).

Figure 3.—Positions (chromosome and marker number)
and effects of markers (there were 280 markers, with 270 with
no effect).

Figure 4.—Unnormalized density of the five priors evalu-
ated in the MC study (BL1–BL4 use Gamma priors on l2,
and BL5 uses a prior for l based on a Beta distribution;
the densities in this figure are the corresponding densities
for l).
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DATA ANALYSIS

Two data sets were analyzed with the BRL model. The
first set pertains to a collection of wheat lines (see File S1
and File S2); the second set contains information from a
population of mice (publicly available at http://gscan.
well.ox.ac.uk).

The wheat data set is from the Global Wheat program
of the International Maize and Wheat Improvement
Center (CIMMYT). This program conducted several
international trials across a wide variety of environ-
ments. For this study, we took a subset of 599 wheat lines
derived from 25 years of Elite Spring Wheat Yield Trials
(ESWYT) conducted from 1979 through 2005. The
environments represented in these trials were grouped
into four macroenvironments. The phenotype consid-

ered here was average grain yield performance of the
599 wheat lines evaluated in one of the macroenviron-
ments. An association mapping study based on a re-
duced number of these ESWYT trials is presented in
Crossa et al. (2007).

The Browse application of the International Crop
Information System (ICIS), as described in http://
cropwiki.irri.org/icis/index.php/TDM_GMS_Browse
(McLaren et al. 2005), was used for deriving the
relationship matrix A between the 599 lines, and it
accounts for selection and inbreeding.

A total of 1447 Diversity Array Technology (DArT)
markers were generated by Triticarte (Canberra, Aus-
tralia; http://www.triticarte.com.au). The DArT markers
may take on two values, denoted by their presence or
their absence.

TABLE 2

Posterior mean of residual variance, s2
e , regularization parameter, l, and correlation between the true and estimated value for

several items (y, phenotypes; Xb, true genomic value; b, marker effects; all quantities averaged over 100 MC replicates)

s2
e l Corr y; Xb̂

� �
Corr Xb; Xb̂

� �
Corr b; b̂

� �
Meana SDb Meana SDb Meanc SDb Meanc SDb Meanc SDb

Low linkage disequilibrium between markers (X0)
BL1 0.909 0.088 24.110 1.883 0.640 0.039 0.657 0.070 0.328 0.062
BL2 0.990 0.095 35.986 4.944 0.615 0.044 0.661 0.073 0.332 0.061
BL3 1.035 0.096 45.506 6.755 0.601 0.045 0.660 0.074 0.329 0.059
BL4 1.093 0.098 63.748 9.200 0.584 0.044 0.657 0.077 0.323 0.056
BL5 1.006 0.104 41.920 11.570 0.610 0.050 0.660 0.073 0.330 0.059

High linkage disequilibrium between markers (X1)
BL1 0.917 0.088 23.770 1.621 0.607 0.039 0.699 0.071 0.294 0.050
BL2 0.991 0.093 36.168 4.163 0.569 0.044 0.705 0.074 0.300 0.046
BL3 1.030 0.095 45.572 5.735 0.551 0.045 0.704 0.076 0.296 0.044
BL4 1.078 0.097 62.373 8.435 0.529 0.046 0.700 0.079 0.291 0.043
BL5 1.003 0.099 41.072 9.724 0.564 0.051 0.704 0.074 0.299 0.046

a Mean (across 100 MC replicates) of the posterior mean.
b Between-replicate standard deviation of the estimate.
c Mean (across MC replicates) of the correlation evaluated at the posterior mean of b. The priors on l2 were as follows: BL1,

p l2ð Þ ¼ Gamma a1 ¼ 1; a2 ¼ 1 3 10�2ð Þ; BL2, p l2ð Þ ¼ Gamma a1 ¼ 2; a2 ¼ 2 3 10�3ð Þ; BL3, p l2ð Þ ¼ Gamma a1 ¼ 4; a2 ¼ 1:5 3ð
10�3Þ; and BL4, Gamma a1 ¼ 6; a2 ¼ 1 3 10�3ð Þ. In BL5, p lð Þ} Betaððl=100Þ ja3 ¼ 1:4; a4 ¼ 1:4Þ.

TABLE 3

Posterior means (standard deviations) of variance components for yield in wheat and body-mass index in mice,
and of l for each of the models, by data set

s2
e s2

u s2
r l

Wheat P 0.561 (0.058) 0.294 (0.056) — —
M 0.546 (0.046) — — 19.33 (2.43)
P&M 0.410 (0.055) 0.139 (0.046) — 18.32 (2.86)

Mice P 0.754 (0.038) 0.092 (0.041) 0.156 (0.030) —
M 0.741 (0.037) — 0.153 (0.026) 223.84 (25.78)
P&M 0.723 (0.032) 0.021 (0.009) 0.153 (0.026) 217.90 (26.26)

P, infinitesimal models using pedigree; M, model including regressions on markers, but not pedigree infor-
mation; P&M, model including an infinitesimal additive effect and regressions on markers; s2

e , s2
u , s2

r , and l,
residual variance, variance of the infinitesimal additive effect, variance of cage-effects, and smoothing param-
eter of the BL regression, respectively.
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The mouse data come from an experiment carried
out to detect and locate QTL for complex traits in a
mouse population (Valdar et al. 2006a,b). These data
have already been analyzed for comparing genome-
assisted genetic evaluation methods (Legarra et al.
2008). The data file consists of 1884 individuals (168
full-sib families), each genotyped for 10,946 polymor-
phic markers. The trait analyzed here was body mass
index (BMI), precorrected by body weight, season,
month, and day. Mice were housed in 359 cages; on
average, each litter was allocated into 2.84 cages.

Three models were fitted to each of the data sets: P
(standing for pedigree) is a pedigree-based model
where markers were not included; M is a model where
the only genetic component is the regression on
markers; P&M (standing for pedigree and markers)
includes regressions on markers and an additive effect
with (co)variance structure computed from the pedi-
gree. For both data sets, phenotypes were standardized
to have a sample variance equal to one, so that results
are easily compared across data sets.

In the mouse data set, br were the effects of cages
where groups of mice were reared. In the wheat data set,
the component x9ri

br was omitted because there was no
such set of regressors.

Models were first fitted to the entire data set. Sub-
sequently, a fivefold cross-validation (CV) was carried out
with assignment of individuals into folds at random.
The CV yields prediction of phenotypes ŷi;�f ( f¼ 1, . . . , 5)
obtained from a model in which all observations in the
fth fold were excluded. The ability of each model to
predict out-of-sample data was evaluated via the corre-
lation between phenotypes and predictions from CV.
Inferences for each fit were based on 70,000 samples
(after 5000 were discarded as burn-in). Convergence
was checked by inspection of trace plots and with

estimates of effective sample size for (co)variance
components computed using the coda package of R
(Plummer et al. 2008). Parameters of the prior distri-
butions were Se ¼ d:f :e ¼ Sr ¼ d:f :r ¼ Su ¼ d:f :u ¼ 1
and p lð Þ} Betaððl=400Þ ja3 ¼ 1:4; a4 ¼ 1:4Þ. This lat-
ter prior is flat over a wide range of values of l.

RESULTS AND DISCUSSION

Table 3 shows summaries of the posterior distribu-
tions of the variance components and of l by model and
data set. In both populations, a moderate reduction in
the posterior mean of the residual variance was ob-
served when the P&M model was fitted, relative to P.
Using model P in the wheat population gave a posterior
mean of heritability of grain yield of 0.34, while in the
mouse population the posterior mean of h2 of body-mass
index was 0.11. These results are in agreement with
previous reports (Valdar et al. 2006b and Legarra et al.

Figure 5.—Absolute values of the posterior means of effects of allele substitution in a model including markers and pedigree
information (P&M), by data set.

TABLE 4

Rank correlation (Spearman) between genetic values
estimated from models including different sources of
genetic information (pedigree, markers, and pedigree

and markers), by data set (mouse data set above
diagonal, wheat data set below diagonal)

Source of genetic information

Source of genetic
information Pedigree Marker

Pedigree and
markers

Pedigree — 0.715 0.729
Marker 0.802 — 0.986
Pedigree and
markers

0.927 0.944 —
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2008 for the mouse data and Crossa et al. 2007 for the
wheat data) for these traits and populations. The
inclusion of markers (P&M) reduced the estimate of
the variance of the infinitesimal additive effect, relative
to P. This happens because, in P&M, part of the
infinitesimal additive effect is captured by the regres-
sion on markers (e.g., Habier et al. 2007; Bink et al.
2008). In the model for body-mass index in M, the
variance between cages s2

r

� �
was reduced only slightly

when the effects of the markers were fitted.
Figure 5 gives absolute values of the posterior means

of marker effects. In the mouse data there are several
regions showing groups of markers with relatively large
estimated effects. This is not evident in the wheat data
set where fewer markers were available.

From a breeder’s perspective, a relevant question is
whether or not the P, M, and P&M models lead to different
ranking of individuals on the basis of the estimated
genetic values. Table 4 shows the rank (Spearman)
correlation of estimated genetic values. As expected, these
correlations were high, but not perfect. The correlation
between predicted genetic values from M and P&M was

larger than that of the estimates from P and P&M,
suggesting that the inclusion of markers in the model is
probably critical. This was clearer in the mouse data set,
where (a) the extent of additive relationships was not as
strong as in the wheat population and (b) a much larger
number of markers were available.

Figure 6 shows scatter plots of predicted genomic
values in P and P&M for both data sets. Although the
correlation between genetic values estimated from
different models was high, using P and P&M would lead
to different sets of selected individuals. The difference
was more marked in the mouse data set, illustrating that
the impact of considering markers in breeding deci-
sions depends on the data structure and on how
informative the pedigree and markers are. Also, the
dispersion of predicted genetic values was larger when
markers were fitted, and this is consistent with the
smaller posterior mean of the residual variance ob-
served for P&M (Table 3). An interpretation of this
result is that, in certain contexts, markers may help to
uncover genetic variance that would not be captured if
only pedigree-based predictions were used.

Figure 6.—Predicted genetic value using markers and pedigree (P&M) vs. using pedigree only (P), by data set.

TABLE 5

Rank correlation (Spearman) between phenotypic values or corrected phenotypic records and predictions from
cross-validation, by population and model (P, pedigree-based model; P&M, pedigree and marker information)

Wheat Mice

P M P&M P M P&M

Corr y; ŷ9½ �a 0.408 0.423 0.462 0.263 0.306 0.300
Corr ŷ*; ĝ9½ �b 0.423 0.594 0.602 0.109 0.211 0.225

a ŷ9 ¼ ½Eðy1 j û�1Þ9; . . . ; Eðy5 j û�5Þ9�, where û�f is the posterior mean from a model with the observations in
the fth fold excluded.

b ŷ*9 ¼ y1 � 1m̂�1 � Xb̂r;�1

� �
9; . . . ; y5 � 1m̂�5 � Xb̂r;�5

� �
9

� �
, where m̂�f , b̂r;�f are the posterior mean of the

intercept and of the regression coefficients of systematic effects from a model with the observations of the
fth fold excluded; and ĝ is the posterior mean, from CV, of genetic effects (sum of additive value and genomic
value in P&M).
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The aforementioned results indicate that incorpora-
tion of markers into a genetic model can influence
inferences and breeding decisions. In contrast, cross-
validation allows comparing models from the stand-
point of their ability to predict future outcomes. Table 5
shows the correlation between phenotypic records and
predictions from cross-validation. Two CV correlations
were considered:

1. Corr y; ŷ9½ � is the correlation between phenotypic
records and their prediction from CV. That is,
ŷ ¼ 1m̂ 1 Xrb̂r 1 ĝ, where ĝ ¼ û in P, ĝ ¼ Xlb̂l in M,
and ĝ ¼ û 1 Xlb̂l in P&M.

2. Corr ŷ*; ĝ9½ � is the correlation between the CV esti-
mate of the genetic value and phenotypic records
adjusted with CV estimates of nongenetic effects.
That is, ŷ* ¼ y � 1m̂ in the wheat population, and
ŷ* ¼ y � 1m̂� Xrb̂r in the mouse data set.

Overall, P&M models had better predictive ability than
models based on pedigrees or markers only. In the wheat
data set, the increases in the correlation observed when
markers were included in the model were 13% for
Corr y; ŷ9½ � and 42% for Corr ŷ*; ĝ9½ �. In the mouse data
set the relative increases in correlation were 14 and 100%
for Corr y; ŷ9½ � and Corr ŷ*; ĝ9½ �, respectively. We con-
clude that there are sizable benefits from using markers
for breeding decisions and that the relative impact of the
contribution depends upon data structure and on how
informative the pedigree and the set of markers are.

CONCLUDING REMARKS

Additive models with infinitesimal effects are ubiqui-
tous in animal and plant breeding. For many decades,
predictions of genetic values have been made using
phenotypic records and pedigrees, i.e., some sort of
family-based evaluation. Markers capture Mendelian
segregation and may enhance prediction of genomic
values, independently of the mode of gene action.

With highly dense markers, marker-specific shrinkage
may be needed. Priors on marker effects based on
mixtures of scaled-Gaussian distributions allow this type
of shrinkage and constitute a promising tool for
genomic-based additive models. This family of models
includes, among others, the t or DE distributions.
Models based on marginal priors that belong to the t
family have been proposed for marker-based regres-
sions (e.g., Meuwissen et al. 2001).

If the hypothesis that most markers do not have any
effect holds, a DE prior may be a better choice than the t.
For this reason, the Bayesian LASSO appears to be an
interesting alternative for performing regressions on
markers, at least under an additive model.

Our results indicate that in the type of samples that
are relevant for genomic selection (i.e., p ? n) the
choice of prior for l matters in terms of inferences
about this unknown. However, estimates of genetic

values and of marker effects may be robust with respect
to the choice of prior, over a wide range. To circumvent
the potential influence of the prior, we proposed an
alternative formulation of the BL where the prior on l is
formulated using a Beta distribution. Unlike the
Gamma prior, this prior allows expressing vague prior
preferences over a wide range of values of l.

Two data analyses carried out with the proposed
model showed that (a) markers may allow capturing
fractions of additive variance that would be lost if
pedigrees are the only source of genetic information
used, (b) considering markers has a sizable impact on
selection decisions, and (c) models including marker
and pedigree information had better predictive ability
than pedigree-based or marker-based models.
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Fully Conditional Distributions for Implementing the BRL (Bayesian Regression 
Coupled with LASSO) Model 

 
 

The fully conditional distributions of the unknowns in the Bayesian model of  [8] 

and [9] are given. The derivation uses standard results for Bayesian linear models (e.g., 

SORENSEN and GIANOLA, 2002), and results for the Bayesian LASSO (BL, PARK and 

CASELLA, 2008). 

 The joint posterior distribution is 
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 [10] 

The fully conditional distribution of any unknown is obtained by removing from the 

right-hand-side of [10] the components that do not involve that unknown. When conjugate 

priors were chosen, the remaining components are kernels of known distributions, as 

described next. 
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where, illirriii uyy −ʹ′−ʹ′−= βxβx* . The right-hand side of the above expression is 

recognized as the kernel of a normal distribution with mean [ ] 2*122 −−−− ∑+ εµε σσσ
i

iyn  and 

variance [ ] 122 −−− + µε σσn . In practice one can set 2
µσ  large enough so that an effectively flat 

prior is assigned to the intercept. 
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2. Regression coefficient with homogeneous-variance Normal prior ( )rβ .  
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where, illiii uyy −ʹ′−−= βxµ** . This is recognized as a multivariate-normal distribution 

(MVN) with mean vector (co-variance matrix) equal to the solution (inverse of the 

coefficient matrix) of the system of equations, 

[ ] .ˆ 2**22 −−− ʹ′=+ʹ′ εε σσσ yXβIXX rrrrr    [11a] 

Alternatively, if one wants to draw samples from the fully conditional distributions 

of each element of rβ , one has, 
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where, ∑
≠

−=
jk

rkrkiii xyy β** . The right-hand-side of the above expression is recognized as 

the kernel of a normal distribution with mean and variance equal to the solution (inverse of 

the coefficient in the left-hand-side) of, 
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3. Regression coefficient with heterogeneous-variance Normal prior ( )lβ .  
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where, irriii uyy −ʹ′−−= βxµ*** . This is recognized as a MVN distribution with mean 

vector (co-variance matrix) equal to the solution (inverse of the coefficient matrix) of the 

system of equations, 

{ }[ ] .ˆ 2***222 −−−− ʹ′=+ʹ′ εεε στσσ yXβXX lljll Diag   [12a] 

Again, if one whishes to draw samples form the fully conditional distribution of 

each of the elements of lβ , one has, 
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βxβx
 

where ∑
≠

−=
jk

lklkiii xyy β*** . The right-hand-side of the above expression is recognized as 

the kernel of a normal distribution with mean and variance equal to the solution (inverse of 

the coefficient of the left-hand-side) of the following equation, 
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4. Infinitesimal additive effects ( )u .  
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where, llirriii yy βxβx ʹ′−ʹ′−−= µ**** . This is recognized as a MVN distribution with mean 

vector (co-variance matrix) equal to the solution (inverse of the coefficient matrix) of the 

system, 

[ ] .ˆ 2****212 −−−− =+ εε σσσ yuAI u     [13a] 

It follows that each of the entries of u also has a fully conditional distribution that is 

normal (e.g., SORENSEN and GIANOLA, 2002), with the following mean and variance, 

 ( ) ( ) 11 |ar  ;  | −
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− =⎟⎟
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ik
kikiiii celseuVucrhscelseuE  [13b] 

where, iic  and irhs  are the ith diagonal element and the ith entry of [ ] 212 −−− += uσσε AIC  

and 2**** −= εσyrhs , respectively. 

 

5. Residual variance ( )2εσ .  
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where  ( ) uβXβX1yε −−−−=ʹ′= llrrn µεε ,..,1 , 
⎟
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⎠

⎞
⎜
⎜
⎝

⎛
=

j

lj
lj

β
β

τ
~ and ( ) .~,...,~~

1
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= lpl βββ  

 

6. Additive-genetic variance ( )2uσ .  
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where q is the order of the square matrix A. 

 

7. Scaling variables associated to marker effects  ( )2τ .  
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so that, each of the 2
jτ ’s are conditionally independent, 
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( ) ( ) ( ).,0 2222 λττσβτ ε jjjlj ExpNelsep ∝  

From results presented in PARK and CASELLA, the fully conditional distributions 

of the reciprocal of the 2
jτ ,s are Inverse-Gaussian. 
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8. LASSO smoothing parameter  ( )λ .  

 

PARK and CASELLA choose a Gamma prior for 2λ , in this case, 
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The above is the kernel of the density of a Gamma distribution, with parameters, 
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An alternative is to use a uniform prior: ( ) [ ]baUp ,2 =λ  with ba <≤0 . In this case, the 

fully conditional distribution is, 
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222 1
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Samples from the above distribution can be obtained by using rejection sampling, which 

may be implemented as follows: 

(i) sample a candidate from ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

p

j
jpG

1

22

2
1, τλ ; 

(ii) accept the candidate if ba ≤≤ 2λ , otherwise go back to (i). 

 

A more general formulation may be obtained by using the Beta distribution.  Let 
max
λ

λ =
~ , 

where 0>max  is an upper bound on λ , and ( ) ( )43 ,
~~

ααλλ Betap = . It follows that, 
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If 143 ==αα  this gives a uniform prior forλ  (note that this is different than a uniform 

prior on 2λ ). When a Beta distribution is used the fully conditional distribution ( )elsep λ  

does not have closed form, however one can use the Metropolis-Hastings algorithm to 

obtain samples. In our implementation, at iteration t, we use the following algorithm: 
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(ii) Let tλ and 2
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(iii) Sample ( )1,0|~ uUu  

(iv) Set ct λλ =+1  if ur ≥ , otherwise set tt λλ =+1 . 



G. de los Campos et al. 

 

8 SI 

FILE S2 
 

Raw data and the BRL.rda program are available in a compressed file at 
http://www.genetics.org/cgi/content/full/genetics.109.101501/DC1. 
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