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ABSTRACT

A novel multipoint method, based on an approximate coalescence approach, to analyze multiple linked
markers is presented. Unlike other approximate coalescence methods, it considers all markers simulta-
neously but only two haplotypes at a time. We demonstrate the use of this method for linkage disequilibrium
(LD) mapping of QTL and estimation of effective population size. The method estimates identity-by-descent
(IBD) probabilities between pairs of marker haplotypes. Both LD and combined linkage and LD mapping
rely on such IBD probabilities. The method is approximate in thatit considers only the information on a pair
of haplotypes, whereas a full modeling of the coalescence process would simultaneously consider all hap-
lotypes. However, full coalescence modeling is computationally feasible only for few linked markers. Using
simulations of the coalescence process, the method is shown to give almost unbiased estimates of the effec-
tive population size. Compared to direct marker and haplotype association analyses, IBD-based QTL map-
ping showed clearly a higher power to detecta QTL and a more realistic confidence interval for its position.
The modeling of LD could be extended to estimate other LD-related parameters such as recombination

rates.

XTENSIVE genotyping of individuals for tens to
hundreds of thousands of SNP markers is becom-
ing common as automated high-throughput techniques
are established (WANG et al. 2005). These detailed ge-
notype data provide important information about link-
age disequilibrium (LD) between the genes or markers.
LD, in turn, can be used to test hypotheses about the
evolutionary history of the population (HAYES et al.
2003), to map QTL (CARLSON et al. 2004), and to esti-
mate the recombination rate at each position along a
chromosome (L1 and StepHENS 2003). Thus, extract-
ing maximum information from the pattern of LD
observed is very important.

LD, as pointed out by CHAPMAN and THOMPSON
(2003), occurs because multiple gametes inherit a chro-
mosome segment from a common ancestor that is
identical by descent (IBD), i.e., inherited without any
recombination. HAYES et al. (2003) used this under-
standing of LD to define a measure of LD called chro-
mosome segment homozygosity (CSH) as the probability
that random chromosome segments sampled from a
population are IBD.

According to coalescence theory, the mutations at all
loci (markers and QTL) are independent given the
coalescence tree(s), i.e., given the IBD structure of the
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haplotypes (Hupson 1993). Hence, markers provide
information about QTL alleles only through their in-
formation on the underlying coalescence tree or IBD
structure. Therefore the logical approach to using LD
is to use the markers to infer the coalescent tree or
properties of it and then to use the coalescent tree to
infer properties of the population (e.g., effective size) or
to map QTL or to discover recombination hotspots. In
line with this approach, all QTL mapping methods can
be described conceptually as following three steps:

1. Calculate the probability G;; that two individuals carry

chromosomes that are identical by descent at the pu-

tative QTL position.

Compare the similarity in phenotype to G;;.

3. The position of the QTL that maximizes the likeli-
hood of the phenotypes given G; is the estimated
position.

o

Linkage mapping of QTL also follows this approach,
except that Gy; is here solely due to within-family IBD.
Unfortunately, a full coalescent analysis of many linked
markers is not computationally feasible. Early multi-
pointIBD estimation methods assumed that the markers
provided independent information about the IBD status
(e.g, TERWILLIGER 1995). In the case of dense SNP
markers this assumption is clearly invalid. More recent
multipoint methods approximate the coalescence; for
instance, composite-likelihood methods consider markers
only two ata time (Hubpson 2001). An alternative approach
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(MeuwisseN and Gopparp 2001) is to model the coa-
lescence of all markers but only a pair of chromosomes
at a time, which fits with the definition of CSH and is
computationallymuch more tractable (can deal with thou-
sands of markers). This approach has been very useful
for mapping QTL (e.g., OLSEN et al. 2005) but it assumed
that genes in the current population derived, without
any mutation, from a base population that contained a
single copy of the QTL mutant a known number of gen-
erations ago. This is satisfactory provided the mutation
rate is negligible relative to the recombination rate, but
as the density of markers increases, this assumption is less
justified. Furthermore, MEUWISSEN and GODDARD (2001)
assumed that the effective population size and time since
the most recent QTL mutation were known. Here, we
extend their approach to overcome these limitations.

We present a method that predicts IBD probabilities
at putative QTL positions using information from many
dense markers. As part of the predictions, the effective
population size is estimated directly from the linked
marker data. Predictions are compared to true IBD states
and to direct association analyses using single markers
and marker haplotypes. The approach is general and
can be extended to effective population sizes that varied
in the past and to estimate recombination rates that vary
at different points in the genome.

THE MODEL

For each pair of gametes, i and j, define a vector (y;;)
summarizing the observed haplotypes where y;; = 1 if
the alleles are alike-in-state at position kand 0 if they are
not, where k = 1,..., [ and [ denotes the number of
marker loci. To simplify the notation, for the moment,
we suppress the ¢ subscript in what follows. That is, all
data and parameters are defined for the pair of gametes
iand j. The parameters for pair ; and j are connected
with the parameters for other pairs in a hierarchical
model. Underlying this observed y is a pattern of IBD
relationships described by the vector a. If the b4th
marker bracket is IBD, i.e., inherited as an IBD chro-
mosome segment from a common ancestor without any
recombination, the bth element of 77 is 1, and otherwise
itis 0, where a marker bracket denotes the chromosome
segment between two adjacent markers (including the
marker positions themselves). For example, the vector
7 = [1 11 0]' denotes that the first three brackets are
inherited IBD from a common ancestor and the fourth
bracket is not entirely inherited from one common
ancestor. The probability of observing y is thus

Ply) =) . Plylm) X P(m), (1)

where the summation is over all possible m-vectors,
P(y | ) states the conditional probability of observing
y given the pattern of IBD and non-IBD segments de-
noted by m, and P(m) is the prior probability of observing

this pattern of IBD and non-IBD segments. P(1) can be
factored because, once a recombination occurs, chro-
mosomes segments on either side of the recombination
are assumed to evolve independently in coalescence the-
ory. The latter assumes an unstructured population, z.e.,
no subpopulations or lineages. Therefore, we group el-
ements in 7 into IBD segments (continuous sequences
of I’s) and others. For example, w=[01101 0] consists
of two IBD segments, brackets 2 and 3 and bracket 5.
Therefore,
P(m=[011010]")=P(w=1[0110..])
XPw=[...010]'|w=[...0.]),
where a dot [.] denotes that the IBD status for this
bracketis not specified; i.e., itis not accounted for in the
probability calculation and could be either 0 or 1. This
allows the probability of a long sequence of data on a
chromosome to be factored into manageable pieces.
The prior probability of an IBD chromosome segment
that extends over n marker brackets is approximately

= 1/(4Ne + 1) @)

(HAYES et al. 2003), where 1,, is a vector of n ones, ¢ is
the size of the IBD segment in morgans, and N is
the effective population size. The approximation in (2)
assumes that the size of the segment, ¢, is small relative
to 1. Terms like the above P(w = [0 1 1 0]"), where the
IBD segment is bounded by non-IBD segments, can
be rewritten involving only unbounded IBD segments
as in Equation 2,

Pm=[0110]")=P(w=[.11])— P(w=[111.]")
—P@=[111])+Pm=[1111])

(MruwisseN and GoppARrD 2001), which follows from
rearranging the equations
Pm=[11])=P(w=[0110]")+P(w=[1110]")
+Pwm=[0111))+P(w=[1110]")

and

Pm=[111])=Pm=[1110]")+P(mw=[1111]").
Also, the conditional probability P(w = [0 1 0] | m =
[0..]") can be rewritten in terms of unbounded prob-
abilities of IBD segments as in Equation 2, using
Pa=[010]'|m=[0.]") = P@=[010]')/P@=[0.])
=1

=P(m=1[010]")/[1 - P(w 1l

Thus, all these terms can be calculated by using (2) re-
peatedly. A factorization to computationally speed up
the summation in Equation 1 is described by MEUWISSEN
and GopDARD (2001).
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Conditional marker homozygosity: Let P(y, | ) de-
note the probability that marker locus k is observed
alike-in-state at a pair of gametes ¢and j, or not, given the
pattern of IBD and non-IBD segments, . For instance,
if 7 denotes that marker locus kis on an IBD segment of
size ¢, then locus k is alike-in-state if there was no mu-
tation before the gametes coalesce into their common
ancestor (looking back in time). If the nextlocus, k + 1,
is on another IBD segment, its evolution is assumed in-
dependent in coalescence theory, as mentioned before.
Iflocus kand k + 1 are on the same IBD segment, locus
k + 1is alike-in-state if no mutation occurred atlocus k& +
1. The probabilities of a mutation at locus k and locus
k + 1 are independent given the coalescence tree, i.e.,
given the time when the common ancestor occurs. When
the common ancestor occurs is unknown, but the vector
7 contains information on the size of the segment,
¢, which yields a prediction of the time since the com-
mon ancestor; i.e., the gametes are expected to have
coalesced 1/(2¢) generations ago (HAYES et al. 2003).
We assume that conditional on the size of the IBD seg-
ment, the probabilities of a mutation at any two (or more)
loci on this IBD segment are independent; i.e., we as-
sume that any remaining autocorrelation between the
mutation probabilities at adjacent marker loci will have
anegligible effect on our predictions. Thus, conditional
on the pattern of IBD and non-IBD segments, , the
(non-)alike-in-state probabilities of the marker alleles
are independent; i.e.,

Py |m) = P (y | ).

The conditional alike-in-state probabilities P(y | &) are
given in Table 1 and derived in the ApPENDIX. The
probability of a mutation is smaller for larger segments,
since larger segments coalesce earlier, giving less time
for a mutation. If the marker is on a segment that re-
combined, the common ancestor was probably more
distant in the past, because the segment had time to re-
combine, and the probability of a mutation is increased.
The values of P(y, | ) depend on the mutation rate, u, or
more precisely on 4Nu. Fortunately the method is not
very sensitive to the value of u used because the prob-
ability that two alleles are not alike is proportional to 4 Nu
in manysituations (see Table 1), and therefore we use an
artificially high value of w, i.e., 107°. An alternative is to
estimate 4Nu by the marker heterozygosity of the kth
marker, H;. Use of H, may also account for differences in
information content between the markers (e.g., SNPs vs.
microsatellites). However, since markers are used only if
they are polymorphic, marker heterozygosity does not
correctly predict 4Nu. We call the methods using muta-
tion rate IBDMUT and the method using marker hetero-
zygosity IBDHET.

Estimation of IBD at a putative QTL position: The
above model is adapted to estimate IBD between the
chromosomes at any position, which is called “the pu-
tative QTL position,” ¢, here. First, let y;* = 1 denote

TABLE 1
Probability of (un)equal marker alleles given the IBD pattern

APPENDIX
Probability” Value’ equation
Pl =0 | m=1,)° 4Ny Al
4Nc+ 1
4Nu(8 + 24Nc + 32N2¢?)
Py, =0 =[0]0]) A3
O =01 =010 —RNeF DN + 1)
4Nu(2 + 4Nc)
P(y, = = N — A
o =0[m=[]0]) ANCT 1 2

P(y,=1|m) 1— Py, =0]m)

“Where possible, the position of the marker kis denoted by
” within the vector of IBD and non-IBD segments .
* N, effective population size; u, mutation rate. Note that
4Nu may be approximated by marker heterozygosity, H, if
w is unknown.

“kis on an IBD segment of size ¢ (note that kmay be right at
the edge of this segment).

“k is in between two non-IBD segments, each of size c.

‘The marker is at the start of the chromosome and next to a
non-IBD region of size ¢. Due to symmetry, the same Equation
applies at the end of the chromosome.

«

that the QTL position is IBD, and the “*” denotes that
this is an auxiliary record, which is not actually observed
but should be accounted for when evaluating the prob-
ability of the pair of gametes. Second, using Equation 1
we calculate P(y,* = 1, y), i.e,, the probability that the
QTL is on an IBD segment, and the marker records y
occur. At the QTL position, ¢, we do not use Table 1 to
obtain P(y,* | ) values, but we set P(y,* = 1| ) = 1, if
7 indicates that the QTL is on an IBD segment, and
P(y,* = 1| ) = 0if ¢is surrounded by two non-IBD seg-
ments. Note that if 7 indicates that there is an IBD seg-
ment to the left of the QTL and a non-IBD segment to the
right, the QTL s still on an IBD segment since the marker
brackets are defined to include the loci that border them
(thus the IBD segment to the right was partly but not
entirely IBD, which is denoted by a 0 in ). Third, we
calculate the probability that the putative QTL position
is IBD given the marker data at the chromosome as

P(y*=1ly) = P(y,* = 1,y)/P(y), (3)

where P(y) is calculated using Equation 1 without con-
sidering the QTL locus (as in the previous sections).

Estimation of effective population size: Itis well known
from coalescence theory (Hupson 2001) that it is possible
to estimate the product N X ¢, but not N separately. We
assume here that ¢ is known, which enables us to estimate
N. If ¢is unknown, but the relative distances between the
markers are known (from their physical map positions),
we may scale the marker distances such that they sum to
one, and the method described below will estimate N¢
instead of N, where cis the size of the chromosome.

We use the EM algorithm (DEMPSTER ¢t al. 1977) to
estimate N, where the IBD status between each pair of
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markers k£ and ! (k < [) is considered as missing data.
Assuming a starting value for N, the steps are as follows:

1. Estimate the probability that the entire segment be-
tween markers k and /is IBD, which is denoted by a
vector yi;* being the unity vector; i.e., yi1* = 1y,
where n = [ — k. We calculate for each gamete pair
and for each pair of markers £, [ the probability that
the entire segment between markers k and /is IBD,
Vi = l,, given the marker data and the current
estimate of N, similar to Equation 3,

Py, * = 1a|y) = P(yi,* = 1a,y)/P(y),

where P(y) is obtained from Equation 1, and P(yy* =
1,,,y) is also obtained from (1), using P(yy1* =1, | 7) =
1 if the segment between marker k and [ as denoted
by m is entirely IBD, and P(y;;* = 1,, | ) = 0 otherwise.
The probabilities P(y,* = 1, | y) are averaged over all
chromosome pairs to get populationwide estimates for
them, which are denoted by CSH, ;.

2. Nonlinear regression is used to obtain an updated
estimate of N, using the statistical model

CSH}CJ = 1/(4N X CkJ + 1) + ek’l, (4)

where ¢, is the distance between the markers k£ and
[ (in morgans), and ¢, is a random sampling error,
whose variance is assumed constant. If the updated
estimate of N deviates less than a factor 0.001 from
the old value, the algorithm stops; otherwise go to
step 1 and keep on iterating. The estimation of Nwas
adopted only in combination with the IBDHET method,
and the combined method is called IBDHETne.
Computer simulations to test the model: The ms pro-
gram (Hupson 2002) was used to generate SNP marker
data, which uses the standard coalescence approach
(Hupbson 1993) in which the random genealogy of a
sample is first generated assuming a neutral model of
inheritance, and then mutations are randomly placed on
the genealogy. An infinite-sites model of mutation is as-
sumed, and a finite-sites model of recombination, although
this number of sites was very large here (2,000,000 bp).
The size of the simulated segment was 2 cM, N = 1000,
the per base pair mutation rate was 10~%, and 200 hap-
lotypes were simulated. Only markers with a minorallele
frequency (MAF) > 0.1 were retained, and the 20 most
equidistant markers were used to span the 2-cM region.
Since the ms simulations resulted in an abundance of
markers, the 20 markers were close to equidistant. An-
other marker with MAF > 0.1 and that was as close as
possible to the midpoint of the segment was appointed
to act as the QTL. The QTL was thus approximately in
the middle between markers 10 and 11. A phenotypic
record was simulated for each haplotype using the equa-
tion p; = Q, + ¢, where Q;is the allele at the QTL posi-
tion (0 or 1) and ¢ is an environmental effect sampled
from N(0, 0.5). Compared to real-life situations, the QTL

effect of 1 was perhaps large relative to the environmental
variance, but most real-life QTL mapping experiments in
outbreeding populations collect >200 phenotypes. We
kept the number of phenotypes relatively small to be able
to analyze 100 replicated data sets in a reasonable time.

The 100 data sets were analyzed using the QTL map-
ping by variance-components approach (GEORGE et al.
2000) and using the statistical model

P:}Lxlz()()‘f'q‘i‘e,

where W is the overall mean, q is a (200 X 1) vector of
QTL effects [assumed random with q ~ MVN(0, G(r?l);
MVN, multivariate normal distribution], and e isa (200 X
1) vector of environmental effects [e ~ MVN(0, Io?); I =
identity matrix]. The (200 X 200) matrix G contains the
IBD probabilities estimated at the putative QTL position
using the above methods, and the variance components (r?]
and o2 were estimated by residual maximum likelihood
(REML) using the computer package ASREML (GILMOUR
et al. 2000). ASREML also computes the REML likelihood
of the data given the G matrix, and a likelihood-ratio test
statistic (LRT) was calculated as twice the difference in
log-likelihood between the model including the QTL
effect, q, and the model excluding the QTL effect. This
LRT was calculated for every midpoint of 19 marker
brackets, i.e, assuming a putative QTL at each of the
midpoints, and the analysis that gave the highest LRT was
denoted the most likely QTL position.

In addition, some direct association analyses were
conducted where the phenotypes were directly regressed
on the marker effects (MARK1); i.e., for marker k the
model is p = p X Izp9 + my + e, where my isa (2 X 1)
vector of random marker effects [my ~ MVN(0, Io2 )]. A
second direct association analysis fits the effects of two-
marker haplotypes on the phenotypes (MARK?2); i.e., for
the kth marker bracket p = w X Iz + hy + e and hy is
the effect of the haplotype constituted by markers kand
k + 1 [hy ~ MVN(0, Io?)]. In these analyses my and hy,
were included as random effects to compare their LRTs
to that of the variance-component QTL analysis. Includ-
ing my and hy as random effects also has a Bayesian in-
terpretation in that they are assumed to have a MVN prior
distribution. Itis well known from Bayesian statistics that
the influence of the prior is small if there is a lot of in-
formation in the data, which is the case here since there
are relatively many records to estimate the two effects of
my and the four effects of hy. Thus, an analysis that treats
my, and hy as random effects, a Bayesian analysis with
MVN priors, and a conventional analysis that treats my
and hy as fixed effects (no use of prior information) are
all expected to give very similar results.

RESULTS

Figure 1 shows the average LRT profiles for all methods,
except IBDHETne (because the LRT profile of IBDHETne
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Ficure 1.—Average LRT profiles. ¢, IBDHET; O, IBD-
MUT; A, MARKI; X, MARK2.

was almost indistinguishable from that of IBDHET). All
the LRT curves are nicely centered around the true QTL
position at the middle of the chromosome segment; ¢.e.,
there was no bias in the position estimates. IBDMUT
and IBDHET had the highest LRT at the QTL position
and thus had approximately equal power to detect the
QTL. However, the LRT drops more quickly for the
IBDMUT analysis than for the IBDHET analysis when
moving away from the true QTL position, which sug-
gests that IBDMUT has a higher precision to map the
QTL. A reason for this may be that IBDHET estimates
the mutation rate from the marker data, which reduces
their information content and makes them less infor-
mative for positioning the QTL. This result also suggests
that accounting for differences in heterozygosity (in-
formation content) between markers does not improve
mapping precision, if the true underlying mutation rate
was the same for all the markers. The MARK1 and MARK2
methods are also unbiased but have substantially less
power to detect the QTL.

Although the distributions of the LRT values under
the null hypothesis of no QTL effect are expected to be
approximately the same, i.e,, a chi-square distribution
with the same degrees of freedom, we tested this as-
sumption by analyzing 100 replicated data sets where no
QTL effect was simulated. The fifth-highest LRT value
from these analyses yielded an estimate of the chromo-
some segmentwise critical significance threshold at P =
0.05, and these values were 3.48, 3.03, 3.34, and 3.34 for
MARKI1, MARK?2, IBDMUT, and IBDHET, respectively.
Hence, the critical significance thresholds of the four
methods are similar, and the differences in LRT values
in Figure 1 do translate into differences in power of de-
tecting the QTL.

Table 2 shows the power of detecting the QTL and
mapping precision of the methods expressed as the mean
of the squared difference between the estimated and the
true position. As expected from Figure 1, IBDMUT has
the best precision, while IBDHET, IBDHETne, and MARK2
have similar precision. Power was calculated as the frac-
tion of the replicates where LRT > 11, which corre-
sponds to a nominal Pvalue of 0.001 assuming that LRT
is approximately chi-square distributed with 1 d.f. The
IBD-based methods all had substantially more power
than direct regression on marker (haplotypes).

TABLE 2

The mean square error of the position estimate (MSE), the
fraction of replicates with a QTL significant effect (power),
the fraction of the significant QTL, where the true
QTL position is within the 2-LOD-dropoff support
interval [P(QTL in interval)], and correlation
between estimated IBD probabilities and the
IBD probability given the tree (Corr)

Size of

MSE P(QTL in interval
Analysis (cM?)  Power® interval) (cM) Corr
IBDHET 0.072 0.94 0.97 0.82 0.576
IBDMUT 0.049 0.95 0.97 0.58 0.537
IBDHETne 0.071 0.94 0.97 0.78 0.576
MARKI1 0.088 0.83 0.11 0.11 0.357
MARK2 0.074 0.88 0.26 0.14 0.478

The IBD probability given the tree is used as the “gold stan-
dard” (see main text).
“A nominal Pvalue of 0.001 was used.

For the analyses where a significant QTL was detected
(LRT > 11), a 2-LOD-dropoft support interval was con-
structed for the position of the QTL, i.e, the interval
surrounding the QTL peak where the likelihood ex-
ceeds LogLiky,,x — 2 X In(10), where LogLik,,,y is the
natural logarithm of the maximum likelihood. If the
log likelihood was quadratic in the QTL position,
this support interval is expected to contain the QTL
in ~99.8% of the cases. VissCHER and GODDARD (2004)
show that the log likelihood is not quadratic, and hence
we expect somewhat <99.8% of the estimates to lie
within this interval. The number of replicates in which
the true QTL position was within the 2-LOD-dropoff
support interval was counted (Table 2). The number of
cases where the QTL was contained in the support
interval of the IBD-based analyses was ~3% less than
expected. The average size of the support interval shows
again that IBDMUT is more precise than IBDHET and
IBDHETne. For the methods based on direct regression
on the marker or haplotype, the 2-LOD-droffoff interval
does not seem to provide reliable support intervals. The
intervals seem much too short, such that the fraction of
cases where the true QTL is within the interval is very
low. These too short intervals are probably due to the
spiky LRT profiles that are obtained by these analyses.
Figure 2 shows an example replicate where all analyses
erroneously place the QTL at ~0.6 cM, but the correct
position of 1.0 cM is well within the LOD-2-support
interval of the IBD-based methods, whereas the spiki-
ness of MARKI] and MARK2 makes their LRT signal
drop quickly and rise again in an irregular manner. In
case of MARK2, one might even conclude that there are
two QTL in this region.

Another criterion by which to judge the different
methods of analysis is the correlation between the IBD
probability calculated from the markers and the “true”



2556 T. H. E. Meuwissen and M. E. Goddard

position (cM)

FiGUre 2.—Example of LRT profiles in a single replicate.
o, IBDHET; O, IBDMUT; A, MARKI; X, MARK?.

probability that the QTL alleles are IBD. The true prob-
ability depends on the length of the coalescence tree
joining the QTL alleles in the two gametes () and this
is provided by the ms simulation program of HupsonN
(2002). This allowed us to calculate the probability of
QTL alleles being IBD, i.e., no mutation since coales-
cence, given the coalescence tree as P(IBD | tree) =
exp(—20 X 7), where 6 = 4Nugrr, with ugrr, being the
mutation rate at the QTL position, and T is time till the
two haplotypes coalesce. Choice of 0 is somewhat arbi-
trary since it does not change the ordering of the prob-
abilities and so has only a small effect on the correlation
with the predicted IBD probability. We assumed 6 = 2,
since this seemed to give a spread in IBD probabilities.
These P(IBD | tree) were considered as the “gold stan-
dard,” since they are based on the true simulated length
of the tree that, of course, is not known in a real life sit-
uation, but is estimated using the information of linked
markers. The IBD probabilities given the tree were corre-
lated with the estimated IBD probabilities (Table 2), and
the correlations mirror the differences in power between
the methods. That is, the IBD methods have higher cor-
relations and higher power to detect the QTL than the
methods that use regression on the marker. The pre-
cision with which the methods position the QTL is prob-
ably more affected by how quickly the IBD probabilities
change when moving from one position to the next than
by the correlation between P(IBD | tree) and estimated
IBD probabilities.

The estimate of N obtained by IBDHETne was on
average 1048 with a standard deviation of 289. A histo-
gram of the estimates is shown in Figure 3. It shows that,
although the distribution of the estimates of Nis cen-
tered around 1000, occasional estimates can be quite far
away from N = 1000. However, in most applications Nis
multiplied by another entity, e.g., mutation or recombi-
nation rate, which implies that the relative error of the
estimate of Nis more important than its absolute error.
Also, when judging the effective size of a population, the
relative error is more important than the absolute error
(e.g., 100 vs. 200 is an important difference whereas 1000
vs. 1100 is not). The relative error is obtained by trans-
forming N to the log scale (log-10 base was used here),
which gave an average of the estimates of log¢(N) of
3.00 with a standard deviation of 0.123. Using the nor-
mal distribution as an approximation, this implies that
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~60-70% of the estimates have a relative error <33%
(= (10%12 — 1) X 100%).

DISCUSSION

This article describes a novel method that predicts
IBD probabilities between pairs of haplotypes at pre-
defined positions on the basis of the similarity of the
marker alleles carried by the haplotypes. Itis a coalescence-
based method but differs from other coalescence methods
in that it is computationally feasible for many linked
loci, but considers only a pair of gametes at a time. The
method assumes that the haplotypes are known, i.e., that
the genotypes have been phased. In situations with high
marker density and/or large family sizes estimation of
phase is quite accurate. If the phase of a marker is
uncertain in haplotype i, this marker may be denoted as
missing, which implies that it is skipped in all y; vectors
involving haplotype i. The method extends our previous
method (MEUWISSEN and GODDARD 2001) by allowing
for mutation at the markers and by requiring no assump-
tions about the effective population size or the number
of generations since a “base” population. The method can
be used for many purposes that require an analysis of
LD because it models the process that causes LD, i.e., the
inheritance of chromosome segments without recombina-
tion from a common ancestor. For instance, the method
can be used to map QTL and to estimate effective popu-
lation sizes and could be extended to estimate recombina-
tion rate.

A commonly used strategy for QTL mapping is to
perform awhole-genome linkage or association analysis,
followed by fine mapping using association methods.
However, both linkage and association mapping alone
have limited power to detect QTL. Linkage mapping
does notuse the increased power due to association, and
genomewide association mapping suffers from multiple-
testing problems and false positive results (CARLSON
et al. 2004). The genomewide combined use of linkage
and association mapping is expected to relieve these prob-
lems, because it combines both sources of information.
The method presented is easy to extend to combined
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linkage and linkage disequilibrium (LLD) mapping by:
(i) applying the described method to estimate IBD prob-
abilities between the founder haplotypes of the geno-
typed pedigree and (ii) using linkage analysis information
to estimate within-family-based IBD probabilities between
founder and offspring haplotypes and among offspring
haplotypes (e.g., MEUWISSEN et al. 2002; PEREZ-ENCISO
2003). Prediction of IBD based on both LD and linkage
information, as described by (i) and (ii), is a convenient
way to combine both information sources for the map-
ping of QTL and is expected to detect more QTL and
map them more precisely than LD or linkage analysis
alone would do.

Although the described methodology does not di-
rectly estimate coalescence trees and times, it is based
on deterministic approximations of the coalescence
process. Since the method does not build a coalescence
tree for all the haplotypes, it neglects information from
other haplotypes when estimating IBD probabilities for
the haplotype pair ¢,j. This shortcoming is expected to
become less important as marker density increases,
since, at high density, the markers will be sufficiently
informative to directly indicate IBD regions when com-
paring pairs of haplotypes. Furthermore, multihaplo-
type identities are also ignored by QTL mapping by
variance-components methods, since it uses only the
IBD matrix of the haplotype pairs, G, to position the
QTL (GEORGE et al. 2000). An alternative approach to
ours is to leave the coalescent-with-recombination model
and calculate an ensemble of “likely” ancestral recom-
bination graphs using MINICHIELLO and DURBIN’s
(2006) approach, which can handle hundreds of markers
simultaneously. Further research is needed to compare
this approach to ours, with respect to power, mapping
precision, and computational requirements, but since
the method of Minichiello and Durbin does not require
an estimate of the effective population size, it will not
be able to estimate this parameter from the data.

Compared to direct association methods, i.e., that
directly regress the phenotypes onto the marker (hap-
lotype), the presented methods seem to have a higher
signal-to-noise ratio in that there is a higher power of
detecting the QTL, and the LRT profiles are more
smooth (Figure 2). Since the regression methods use
the same marker information, their peak LRT is often at
a similar position. Because two-locus LD is very variable
(HiLL and WEIR 1994), the LRT profile of MARKI is
much more erratic than that of multipoint IBD methods
presented here, which use the LD with all markers
simultaneously. This is, however, at the cost of a much
more complicated QTL mapping methodology.

The method presented can also be used to estimate
effective population size, N, or in case recombination
rates, ¢, are unknown p = 4Nc¢. We obtained an estimate
of Nthat was almost unbiased, and all 100 estimates of N
are within a factor of 2 from the true value. Perhaps the
best competitor to our estimator of p is that of L1 and

STEPHENS (2003), which was within a factor of 2 of the
truth in 68% of the replicates and was biased. As L1 and
STEPHENS (2003) remark, a factor 2 of the truth may not
sound very impressive in many statistical applications,
but in this setting this accuracy is hard to achieve (WALL
2000). Hence, the current method is competitive to all
other methods that estimate N or p from linked marker
data, which makes it attractive to extend the methodol-
ogy to estimate variations in recombination rates and
recombination hotspots. In a follow-up article we will
extend the nonlinear model (3) to a model that esti-
mates the recombination rate per marker pair as a function
of the distance between the markers in kilobases.

In summary, we believe this method is a useful al-
ternative to other coalescence-based methods for ana-
lyzing data on many dense polymorphic loci, because (i)
it can handle large numbers of closely linked markers;
(ii) at high marker density, its estimates of IBD proba-
bilities are expected to be similar to those of methods
that account for all marker haplotypes simultaneously;
and (iii) it can be used to estimate parameters that affect
LD since it is based on the modeling of the process that
generates LD.
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APPENDIX: PROBABILITY OF MARKER HOMOZYGOSITY CONDITIONAL ON THE IBD PATTERN

This appendix derives the probabilities of mutation occurring at a locus given in Table 1 of the main text. In a
genealogical tree, eventually, all lineages coalesce to the most recent common ancestor. Whether a haplotype pair has
identical marker alleles (homozygosity) or not depends on whether there was a mutation prior to the coalescence at
the marker locus or not. Note: in the following we are always looking back in time, so if the mutation occurred 10
generations ago and the coalescence 20 generations ago, the mutation was prior to the coalescence. We consider two
“events” (), namely “recombination” (R) and “coalescence” (C), and calculate probabilities of a “mutation” relative
to when these events occur, and £(t), R(¢), and C(?) specify also the time of the event. No mutation is denoted by M= 0,
no mutation prior to the occurrence of an event is denoted by M. = 0, and no mutation after the event by M= 0.

The derivation uses the following probabilities for looking back in time one generation for two gametes:

P(nomutation in either gamete) = P(M(1) = 0) = (1 — u)?
P(coalescence occurs) = P(E(1) = C(1)) = 1/(2N)
P(recombination occurs in one of the gametes) = P(E(1) = R(1)) =1 — (1 — ¢)? ~ 2c

P(coalescence occurs | Eoccurs) = P(E = C|E) =1/(2N)/(1/(2N) + 2¢)
= 1/(1 + 4Ne)

P(E(1) = 0) = P(no coalescence and no recombination) = (1 — 1/(2N)) X (1 — ¢)? =\
~1-1/(2N)—2¢
P(M(1)=0&E(1)=0)= (1 —u)?> X\ =q,

where u is the mutation rate, cis the size of the segment (in morgans), and Nis the effective population size.
Therefore the probability of the first event occurring in generation {and no mutation prior to then is the probability
of ¢t — 1 generations with no event and no mutation times the probability of an event in generation ¢ That is,

PE(1)&M<p =0) =a" ' X (1 —-)\)
and summation over all generations ¢ gives the probability of no mutation prior to the event,
P(E&M<y=0)=P(Mcp=0)=Y o' ' X(1-)\)
t
=(1-N)/(1—a)=[4Nc+1]/[4Nc+ 4Nu + 1],

where the first equality is because an event will inevitably occur if we look an infinite number of generations back in
time.
There are three conditions under which the probability of a mutation is required:

1. The locus is located on a chromosome segment of size ¢ morgans that is IBD.
In the notation of the main text, this is P(y, | @ = 1,). That is, the first event that occurs to this chromosome
segment in gametes ¢and jis a coalescence (E = C). Therefore the probability of no mutation conditional on the
chromosome segments coalescing is, in our notation,

P(Mep=0|E=C)=P(Mep =0&E = C)/P(E = C).
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P(Mep=0&E=C) = ZP 1) & M-y = 0)

= ZP 1) & M- = 0) X P(E(t) = C(1) | E(t))

ZP )& Mg = 0)

because P(E(f) = C(7) | E(?)) is independent of ¢ It follows that
P(M<p =0&E = C) = 1/(1 + 4Nc) X Zat X (1=\)
=1/(1 +4Nc) X (1 +4Nc)/(1 + 4Nu + 4Nc)
=1/(1 +4Nu+ 4Nc).
And since P(E=C) =1/(1 + 4Nc¢),
PM<p=0]E=C)=(1+4Nc)/(1+ 4Nu+ 4Nc).

The probability of non-alike-in-state markers on a segment that coalesces is

P(Mep=1|E=C)=1-P(Mcp=0|E = C)
= 4Nu/(1 + 4Nu + 4Nc) ~ 4Nu/(1 + 4Nc), (A1)

assuming 4Nu is small.
. The locus is located at the end of a chromosome segment of size ¢ morgans and there is a recombination in the
segment to the right (or left) of the locus.

In the notation of the main text, this is P(y, | @ = [0]). That is, the first event that occurs to this segment is a
recombination (E£= R). In the notation of the APPENDIX, the probability that there is no mutation conditional on a
recombination is

P(M=0|E=R)=P(M=0&E = R)/P(E =R).

But, in case the event is a recombination, we must consider that a mutation can occur either before or after the
event, i.e.,

P(M=0|E=R)=P(Mcy=0|E=R)XP(M=z =0|E=R)

P(M<p =0&E =R) = ZP R({) & M~y = 0)
—ZP 1) & M-y = 0) X P(E(t) = R({) | E(t))
= P(E = R|E) ZP 1) & M-y = 0)
because P(E(#) = R(¢) | E(?)) is independent of ¢ Also,
P(M—y =0&E = R) = 4Ne¢/(1 + 4Ne) X Zat X (1—=2)

=4Nc/(1 +4Nc) X (1 +4Nc)/(1 + 4Nu + 4Nc)
=4Nc/(1 + 4Nu + 4Nc).

So

P(

) = (4Nc/(1 + 4Nu + 4Nc) /(4Ne/(1 + 4Ne))
= (14 4Ne)/(1 + 4Nu + 4Ne).
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And, after a recombination, the coalescence of the two gametes is independent of what occurred beforehand, so
P(M-p;= 0| E= R) is simply the unconditional probability of no mutation; i.e.,

P(M=y =0

E=R)=1/(1+4Nu).

Therefore PIM =0 | E=R) = (1 + 4N¢)/ (1 + 4Nu + 4Nc) X 1/(1 + 4Nu).
And the probability of non-alike-in-state marker alleles given that the marker is on a segment that recombined is

P(M=1|E=R)=1—P(M=0|E=R) ~ 4Nu(4Nc + 2)/(4Nc + 1) (A2)

assuming 4Nu is small and as given in Table 1 for P(y, =1 | & = [0]).
3. Thelocusislocated between two chromosome segments of size cmorgans and there are recombinations in both the
segment to the right and the segment to the left of the locus.
In the notation of the main text thisis Py | 7 = [00]). That s, the first event (E;) occurs in arecombination in one
of the two segments and the second event (Fs) is a recombination in the other segment. So the probability of no
mutation conditional on these two events is

P(M=0|E, =R&Fy=R)=P(M<p, =0|E = R) X P(Mg.p, =0|E; = R&F; = R)
XP(M>E2 :0|E2 :R),
where My, ., = 0 denotes no mutation between events I and Es.

Now P(M<y, = 0| E; = R) is very similar to the probability derived in case 2 but now the recombination can
occur anywhere in a segment of size 2¢ M, so

1+ 8Nc

PM<r, =010 = R) = =0 8N

In the coalescence, probabilities are not affected by what has happened previously so

P(Mg.p, =0|Ey = R&Fy = R) = P(M<p =0|E = R)
 1+4Ne
"1+ 4Nu+4Ne

as in case 2 because now the second recombination must occur within a segment of size ¢ morgans.
And, after the second recombination, the probability of coalescence without a mutation is

P(M=p, = 0|E, = R) = 1/(1 + 4Nu),

as in case 2.
Therefore,

(1+8Ne) X (1+4Nc)
(1 +4Nu+ 8Nc) X (1 + 4Nu+ 4Nc) X (1 4+ 4Nu)’

P(M=0|E =R&Fy, = R) =

The probability of non-alike-in-state markers given that there was a recombination to the right and to the left is

P(MM=1|E =R&FE=R)=1-P(M=1|E =R&E;, =R)
_4Nu X (3 + 24Nc + 32N*¢*)
(1+4Nc) X (1+8Nc)

(A3)

for small 4Nu, as given in Table 1 for P(y, =0 | = = [0 0]).

The above assumed that the segments to the left and the right of khave the same size, ¢. If this is not the case ¢can be
set equal to the mean of the two recombination rates, which is a good approximation as long as the harmonic mean of
(1 + 4N¢;) approximates its usual arithmetic mean, i.e., as long as 4Nc; is small or the ¢;values are not very different. It
may be noted that each of the P(y, = 0 | ...) equations has a 4Nu term in the numerator, which means that these
probabilities are proportional to the mutation rate, u. In the case that the mutation rate is unknown, 4Nu may be
approximated by the marker heterozygosity.



