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Abstract

Coordinating cell growth with nutrient availability is critical for cell
survival. The evolutionarily conserved TOR (target of rapamycin)
controls cell growth in response to nutrients, in particular amino
acids. As a central controller of cell growth, mTOR (mammalian TOR)
is implicated in several disorders, including cancer, obesity, and
diabetes. Here, we review how nutrient availability is sensed and
transduced to TOR in budding yeast and mammals. A better under-
standing of how nutrient availability is transduced to TOR may allow
novel strategies in the treatment for mTOR-related diseases.
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Introduction

Nutrients provide energy and building blocks for organismal

growth. An effective response to changes in nutrient availability is

crucial for organismal viability. In response to nutrients, the target

of rapamycin (TOR) signaling pathway stimulates anabolic

processes such as protein, lipid, and nucleotide synthesis, and

represses catabolic processes such as autophagy, to ultimately

promote cell growth (for review, see Wullschleger et al, 2006;

Loewith & Hall, 2011; Howell et al, 2013; Laplante & Sabatini, 2013;

Shimobayashi & Hall, 2014). TOR was discovered in the budding

yeast Saccharomyces cerevisiae, by mutations that confer resistance

to the growth inhibitory effect of rapamycin (Heitman et al, 1991;

Kunz et al, 1993). Shortly thereafter, it was identified in mammalian

cells (Brown et al, 1994; Chiu et al, 1994; Sabatini et al, 1994;

Sabers et al, 1995). TOR forms two structurally and functionally dif-

ferent conserved complexes termed TOR complex 1 (TORC1) and

TORC2, of which only TORC1 is sensitive to rapamycin (Loewith

et al, 2002). The essential components of budding yeast TORC1 are

TOR1 or TOR2, Kog1, and Lst8; the mammalian orthologs are mTOR

(mammalian TOR), RAPTOR (regulatory-associated protein of

TOR), and mLST8 (mammalian lethal with SEC13 protein 8), respec-

tively (Hara et al, 2002; Kim et al, 2002; Loewith et al, 2002).

Nutrients, growth factors, and cellular energy regulate TORC1 activ-

ity. Nutrients are particularly important TORC1 activators as they

alone are sufficient to activate TORC1 in unicellular organisms.

Growth factor signaling evolved and was grafted onto the TORC1

signaling pathway in multicellular organisms. Here, we review

amino acid and glucose sensing mechanisms and how nutrient

availability is transduced to TORC1 in yeast and mammals.

RAG GTPases and their upstream regulators

Amino acid sufficiency regulates TORC1 via different mechanisms

that largely involve the conserved RAG family of small GTPases (for

review, see Jewell et al, 2013; Bar-Peled & Sabatini, 2014;

Shimobayashi & Hall, 2015; Hatakeyama & De Virgilio, 2016; Powis

& De Virgilio, 2016; Fig 1). There are four RAGs in mammals

(RAGA, RAGB, RAGC, and RAGD) and two in S. cerevisiae (Gtr1

and Gtr2) (Schürmann et al, 1995; Hirose et al, 1998; Sekiguchi

et al, 2001). Mammalian RAGs localize to the lysosome irrespective

of amino acid availability, by interacting with the lysosomal penta-

meric complex RAGULATOR (Sancak et al, 2010; Bar-Peled et al,

2012). In yeast, the EGO (Ego1–Ego2–Ego3) ternary complex, the

ortholog of RAGULATOR, tethers Gtr1/2 to the vacuole (the yeast

equivalent of the lysosome) (Kogan et al, 2010; Zhang et al, 2012;

Levine et al, 2013; Powis et al, 2015). RAGs function as heterodi-

mers in which RAGA or RAGB dimerizes with RAGC or RAGD, and

Gtr1 dimerizes with Gtr2 (Nakashima et al, 1999; Sekiguchi et al,

2001). Amino acid sufficiency promotes the active conformation of

the RAG heterodimer in which RAGA/B or Gtr1 is loaded with GTP,

and RAGC/D or Gtr2 is loaded with GDP (Kim et al, 2008; Sancak

et al, 2008; Binda et al, 2009; Fig 1). In mammals, the active RAG

heterodimer binds RAPTOR and thereby recruits mTORC1 to the

lysosome (Sancak et al, 2008). Once on the lysosome, the growth

factor-stimulated GTP-loaded form of the small GTPase RHEB (RAS

homolog enriched in brain) binds and activates mTORC1 (Long

et al, 2005). Growth factors stimulate lysosomal RHEB through the

PI3K-PDK1-AKT pathway (reviewed in Pearce et al, 2010; Dibble &

Cantley, 2015). AKT phosphorylates and inactivates TSC2 (tuberous

sclerosis complex 2) by inducing its release from the lysosome

(Inoki et al, 2002; Manning et al, 2002; Menon et al, 2014). TSC2

otherwise associates with TSC1 and TBC1D7 to form the TSC

complex that functions as GAP (GTPase-activating protein) toward
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lysosomal RHEB (Gao et al, 2002; Kenerson et al, 2002;

Kwiatkowski et al, 2002; Onda et al, 2002; Tee et al, 2002; Garami

et al, 2003; Inoki et al, 2003a; Dibble et al, 2012). Thus, full activa-

tion of mTORC1 requires input from amino acids and growth

factors. In budding yeast, the active Gtr1GTP–Gtr2GDP heterodimer

similarly binds Kog1 to stimulate TORC1, but via a mechanism that

possibly differs from that of mammals since (i) yeast TORC1 is

constitutively localized to the limiting membrane of the vacuole or

to discrete perivacuolar sites irrespective of the presence or absence

of leucine (Binda et al, 2009) or a nitrogen source (Kira et al, 2014,

2015; Hughes Hallett et al, 2015), and (ii) budding yeast does not

express TSC or RHEB orthologs. We note that yeast contains a

protein, termed Rhb1 (Urano et al, 2000), that resembles RHEB, but

is not a functional RHEB homolog.

mTORC1 inactivation is an active process that requires transloca-

tion of TSC2 to the lysosome to inhibit RHEB upon growth factor

deprivation (Menon et al, 2014; Fawal et al, 2015; Demetriades

et al, 2016), amino acid deprivation (Demetriades et al, 2014; Deng

et al, 2015), or other stress conditions (e.g., hypoxia or osmotic

stress) (Plescher et al, 2015; Demetriades et al, 2016). It has been

proposed that the “inactive” RAGA/BGDP–RAGC/DGTP heterodimer

recruits TSC2 to the lysosome in amino acid-starved cells

(Demetriades et al, 2014). However, two studies have concluded

that amino acids do not regulate lysosomal localization of TSC2

(Menon et al, 2014; Fawal et al, 2015). This discrepancy is likely

due to differences in cell types and experimental conditions

(Demetriades et al, 2016). The inactive GDP-loaded version of Gtr1

has been reported to inhibit TORC1 activity and growth via the non-

essential TORC1 component Tco89 (Binda et al, 2009).

The nucleotide binding status of the mammalian RAGs and yeast

Gtr1/2 is tightly regulated by conserved GAPs and GEFs (guanine

exchange factors) (for review, see Shimobayashi & Hall, 2015;

Powis & De Virgilio, 2016; Fig 1). RAGULATOR, besides serving as

a scaffold for the RAGs, has GEF activity toward RAGA/B (Bar-Peled

et al, 2012). In yeast, rather than the EGO complex, the vacuolar

protein Vam6 has been proposed to be the GEF for Gtr1 (Binda et al,

2009). The heterotrimeric protein complexes GATOR1 (GAP activity

toward RAGs 1) and SEACIT (Seh1-associated subcomplex inhibit-

ing TORC1) function as GAPs for RAGA/B and Gtr1, respectively.

GATOR1 is composed of DEPDC5 (DEP domain-containing protein

5), NPRL2 (nitrogen permease regulator 2-like protein), and NPRL3

where DEPDC5 is thought to possess the GAP activity toward

RAGA/B (Bar-Peled et al, 2013; Panchaud et al, 2013a). SEACIT is

composed of Npr2, Npr3, and the catalytic subunit Iml1 (Panchaud

et al, 2013a). The mammalian pentameric complex GATOR2,

consisting of SEC13 (protein SEC13 homolog), SEH1L (nucleoporin

SEH1), WDR24 (WD repeat-containing protein 24), WDR59, and

MIOS (WD repeat-containing protein MIO), and the yeast SEACAT

(Seh1-associated complex subcomplex activating TORC1), consist-

ing of Sec13, Seh1, Sea2, Sea3, and Sea4, bind and negatively
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Figure 1. Regulation of TORC1 by amino acids in yeast (Saccharomyces cerevisiae) and mammals.
Proteins shown in green promote TORC1 activation. Proteins in red inhibit TORC1. GAP and GEF between parentheses indicate that the proteins act as GTPase-activating
proteins or guanine exchange factors, respectively. Dashed lines indicate indirect interactions. There is no evidence that the yeast RHEB-related protein Rhb1 plays a role in
TORC1 regulation. See main text for details.
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regulate GATOR1 and SEACIT, respectively, via an undefined mech-

anism (Bar-Peled et al, 2013; Panchaud et al, 2013b; Dokudovskaya

& Rout, 2015). Mammalian FLCN (folliculin) and its binding part-

ners FNIP1 and 2 (folliculin-interacting proteins 1 and 2) as well as

their yeast orthologs Lst4 and Lst7 are the GAPs for RAGC/D (Petit

et al, 2013; Tsun et al, 2013) and Gtr2 (Péli-Gulli et al, 2015),

respectively. The identity of the GEF for RAGC/D and Gtr2 remains

unknown. Two independent studies recently demonstrated that

amino acids regulate RAGA activity via ubiquitination (Deng et al,

2015; Jin et al, 2015).

Amino acid sensing and signaling to TORC1

Amino acids modulate the guanine nucleotide binding status of

RAG/Gtr and eventually TORC1 activity. How amino acid suffi-

ciency is sensed and signaled to RAGs are long-standing questions.

Several mechanisms have been proposed, including amino acids

being sensed in the cytosol, lysosome, and mitochondria. How

many different amino acids are actually sensed remains unknown.

mTORC1 activity is particularly sensitive to leucine and arginine

levels (Hara et al, 1998), whereas yeast TORC1 responds best to the

amino acid and nitrogen source glutamine (Godard et al, 2007;

Stracka et al, 2014).

Leucine and glutamine sensing mechanisms

SESTRIN1 through 3 are stress-responsive proteins that mediate

metabolic homeostasis in metazoans (for a review, see Lee et al,

2013). SESTRINS have been proposed to repress mTORC1 through

at least three different mechanisms: (i) by activating AMPK (AMP-

activated protein kinase) and the TSC complex (Budanov & Karin,

2008), (ii) by acting as a GDI (guanosine dissociation inhibitor) to

prevent GDP dissociation from RAGA/B (Peng et al, 2014), and (iii)

by binding and inhibiting GATOR2 to prevent mTORC1 lysosomal

localization in response to amino acids (Chantranupong et al, 2014;

Parmigiani et al, 2014; Kim et al, 2015b). Recently, Wolfson et al

(2016) demonstrated that the cytoplasmic protein SESTRIN2 directly

binds leucine in vitro. Leucine fails to stimulate mTORC1 in cells

expressing a leucine binding-deficient mutant of SESTRIN2. Leucine

(also isoleucine, methionine, and less potently, valine) disrupts the

interaction between SESTRIN2 and GATOR2 in vitro and in cells. In

cells starved for leucine, SESTRIN2 binds and inhibits GATOR2.

Leucine deprivation fails to inhibit mTORC1 in SESTRIN-depleted

cells expressing a GATOR2 binding-deficient mutant of SESTRIN2,

indicating that SESTRIN2 controls mTORC1 via GATOR2. Upon

leucine binding, SESTRIN2 dissociates from GATOR2, which results

in mTORC1 translocation to the lysosome (Wolfson et al, 2016).

Thus, Wolfson et al proposed that SESTRIN2 is almost certainly a

cytosolic leucine sensor that acts upstream GATOR2 (Wolfson et al,

2016) (Fig 1). However, the role of SESTRINS as leucine sensors has

been questioned, as SESTRINS can inhibit mTORC1 in cells growing

in medium containing leucine (see Lee et al, 2016 and references

therein). Recently, Saxton et al (2016c) resolved the structure of

SESTRIN2 bound to leucine, and identified the leucine binding

pocket and the GATOR2 binding site. They suggest that leucine

promotes a conformational change in SESTRIN2 that alters the

GATOR2 binding site, thereby causing dissociation of SESTRIN2

from GATOR2 (Saxton et al, 2016c). Kim et al recently reported a

crystal structure of SESTRIN2 obtained without the addition of

exogenous leucine (Kim et al, 2015a). This structure is largely

identical to the one generated by Saxton et al in the presence of

leucine, suggesting that leucine binding does not induce a significant

conformational change in SESTRIN2 (Lee et al, 2016). However, the

apo-SESTRIN2 crystal structure presented by Kim et al possibly

contains leucine (Saxton et al, 2016b). Thus, more studies are

required to elucidate how leucine binding affects the conformation

of SESTRIN2 to induce its dissociation from GATOR2 and how the

SESTRIN2–GATOR2 interaction affects GATOR1 and RAGs. Further-

more, it remains unknown whether additional factors regulate the

dissociation of leucine from SESTRIN2 upon leucine starvation.

In budding yeast, leucine activates TORC1 via Gtr1 (Binda et al,

2009), although it is unknown whether leucine signals to Gtr1

through SEACAT. Yeast lacks SESTRIN orthologs, suggesting that

functional counterparts of SESTRINS exist or that yeast and

mammalian cells sense leucine differently. Two studies demon-

strated that yeast and mammalian leucyl-tRNA synthetases (LeuRS)

act as cytoplasmic leucine sensors to activate TORC1/mTORC1,

although via different mechanisms (Bonfils et al, 2012; Han et al,

2012; Fig 1). Bonfils et al demonstrated that yeast leucine-bound

LeuRS binds Gtr1, and suggested that this interaction is necessary

and sufficient to mediate leucine signaling to TORC1. Han et al

(2012) reported that mammalian LeuRS senses leucine to induce

lysosomal localization and activity of mTORC1. This study also

suggested that LeuRS has GAP activity toward RAGD. The role of

LeuRS as a GAP, however, has been questioned (Tsun et al, 2013).

Yoon et al (2016) recently showed that LeuRS is part of a RAG-

independent mechanism by which amino acid sufficiency activates

mTORC1. This mechanism involves the class III PI-3-kinase VPS34

and PLD1 (phospholipase D1; Yoon et al, 2011). Further studies are

required to reconcile the RAG-dependent and RAG-independent

roles of LeuRS as an mTORC1 regulator.

Consistent with leucine sensing regulating mTORC1 activity,

plasma membrane leucine (SLC7A5–SLC3A2) and glutamine

(SLC1A5) transporters affect mTORC1 signaling (reviewed in Taylor,

2014). Cytosolic glutamine is used as an anti-solute to import leucine

via the SLC7A5–SLC3A2 heterodimeric antiporter. Decreased leucine

import due to the loss of SLC1A5 or SLC7A5–SLC3A2 impairs

mTORC1 activity, indicating that glutamine acts upstream of leucine

as an efflux solute to increase cytosolic leucine levels and activate

mTORC1 (Nicklin et al, 2009). A recent study demonstrated that over-

expression of LAPTM4b (lysosomal protein transmembrane 4 beta)

recruits SLC7A5–SLC3A2 to the lysosome, thereby increasing leucine

accumulation in the lysosome. Knockdown of LAPTM4b reduces

mTORC1 activity in cells stimulated with leucine (Milkereit et al,

2015), indicating that leucine sensing occurs at lysosomes. Pharmaco-

logical inhibition of SLC1A5 also reduces mTORC1 activity in triple-

negative basal-like breast cancer cells (Van Geldermalsen et al, 2016).

Glutaminolysis, the double deamination of glutamine to produce

a-ketoglutarate, provides a mechanism for leucine and glutamine

sensing in mitochondria (Durán et al, 2012). GLS (glutaminase)

catalyzes the deamination of glutamine to yield glutamate. GDH

(glutamate dehydrogenase), which requires leucine as a cofactor, then

converts glutamate to a-ketoglutarate. a-Ketoglutarate activates

RAG-mTORC1 through PHD (prolyl hydroxylase) (Durán et al, 2012,

2013). Thus, in mammalian cells, leucine and glutamine activate

mTORC1 via glutaminolysis and a-ketoglutarate production upstream
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of RAG (Fig 1). PHDs are conserved from yeast to mammals. It would

be of interest to determine whether the budding yeast putative prolyl-

4-hydroxylase Tpa1 (Henri et al, 2010) regulates TORC1.

Glutamine activates TORC1 also independently of the RAGs/

Gtr1/2, in yeast and mammals. Stracka et al (2014) demonstrated

that glutamine activates TORC1 in yeast cells lacking Gtr1 or Vam6.

Although the Gtr1-independent mechanism of TORC1 activation

remains elusive, genetic experiments suggest that it could involve

the vacuolar membrane-associated phosphatidylinositol 3-phos-

phate binding protein Pib2 (Kim & Cunningham, 2015). Consistent

with the observations reported in yeast, glutamine stimulates lyso-

somal translocation and activation of mTORC1 in a RAGA/B and

RAGULATOR-independent manner via the small GTPase ARF1

(ADP-ribosylation factor 1) and v-ATPase (vacuolar ATPase; Jewell

et al, 2015; Fig 1). How ARF1 senses glutamine and regulates

mTORC1 is unclear.

Arginine sensing mechanisms

The lysosomal amino acid transporter SLC38A9 has been proposed

as an arginine sensor upstream of mTORC1. SLC38A9 binds RAGU-

LATOR and RAGs, and knockdown of SLC38A9 impairs arginine-

induced activation of mTORC1 (Jung et al, 2015; Rebsamen et al,

2015; Wang et al, 2015; Fig 1). The yeast vacuolar amino acid trans-

porters Avt1-7 (Russnak et al, 2001) are the transporters most

closely related to SLC38A9. Whether Avt proteins regulate TORC1

activity requires further investigation.

Recently, Chantranupong et al (2016) identified the GATOR2-

interacting protein CASTOR1 (cellular arginine sensor for mTORC1)

as a cytoplasmic arginine sensor upstream of mTORC1. CASTOR1

forms homodimers or, with the highly related protein CASTOR2,

heterodimers. CASTOR1 homodimers or CASTOR1–CASTOR2

heterodimers directly bind arginine in vitro. Arginine binding

disrupts the interaction of CASTOR dimers with GATOR2, presum-

ably allowing free GATOR2 to inhibit GATOR1 and thereby activate

mTORC1. Arginine fails to stimulate mTORC1 activity in cells

expressing an arginine binding-deficient mutant of CASTOR1. Thus,

binding of arginine to CASTOR1 enables GATOR2 to enhance

mTORC1 activity (Fig 1). The crystal structure of CASTOR1 in

complex with arginine, reported by two independent groups, illus-

trates in detail the arginine binding pocket of CASTOR1 (Saxton

et al, 2016a; Xia et al, 2016). Furthermore, Saxton et al (2016a)

identified several residues in CASTOR1 required for interaction with

GATOR2, and speculated that arginine binding transmits an allos-

teric signal to trigger dissociation of CASTOR dimers from GATOR2.

The structure of apo-CASTOR1 or the CASTOR1–GATOR2 complex

would contribute to understanding this mechanism. In addition, it

would be of interest to investigate if and how CASTOR1 and

SESTRIN2 bind GATOR2 simultaneously in cells starved for arginine

and leucine. CASTOR homologs are present in vertebrates, but are

absent in worms, flies, and yeast. How arginine is sensed in non-

vertebrates remains to be clarified.

Based on genetic experiments, it has been suggested that

CASTOR1 and SLC38A9 regulate mTORC1 activation by arginine via

parallel mechanisms (Chantranupong et al, 2016). However, it

appears that CASTOR1 is the more important regulator of the two

since mTORC1 is essentially fully active in arginine-starved,

CASTOR1-knockout cells. Furthermore, additional regulators may

exist since arginine slightly activates mTORC1 in SLC38A9-knockout

CASTOR1-knockdown cells. Curiously, Carroll et al (2016) recently

reported that arginine cooperates with growth factors to prevent the

interaction between TSC2 and RHEB at the lysosome, and thereby

to activate mTORC1.

Methionine sensing mechanism

It has been proposed that in yeast cells utilizing lactate as carbon

source, methionine signals to Gtr1/2 through synthesis of the

methyl donor SAM (S-adenosylmethionine). SAM promotes Ppm1-

mediated methylation of the catalytic subunit of the type 2A protein

phosphatase (PP2A). Methylated PP2A dephosphorylates the

SEACIT complex component Npr2 to prevent assembly of the

complex and eventually to activate TORC1 (Sutter et al, 2013;

Fig 1).

Amino acid sensing in the lysosome

It has also been suggested that amino acid levels are sensed in the

lysosome. Zoncu et al (2011) proposed that mTORC1 senses amino

acids in the lumen of the lysosome through an “inside-out” mecha-

nism that requires the v-ATPase. According to this model, amino

acids in the lumen of the lysosome signal to the RAGs via v-ATPase

and RAGULATOR. Whether the yeast v-ATPase mediates amino acid

signaling toward Gtr1/2 is unknown (Fig 1).

SLC15A4 is a lysosomal proton-coupled histidine transporter,

which exports histidine from the lysosome to the cytoplasm.

SLC15A4 is preferentially expressed in immune cells, including

dendritic and B cells. SLC15A4-depleted B cells accumulate histidine

in the lysosome and display increased lysosomal pH, impaired

v-ATPase function, and reduced mTORC1 activity (Kobayashi et al,

2014). SLC15A4 may affect mTORC1 activity through v-ATPase

although the mechanism remains elusive.

The proton and amino acid symporter PAT1/SLC36A1 is required

for mTORC1 activation by amino acids (Heublein et al, 2010).

PAT1/SLC36A1 is located mainly in endosomal compartments and

can potentially export amino acids to the cytoplasm. PAT1/SLC36A1

physically interacts with RAGC/D. Knockdown of PAT1 reduces the

amino acid-stimulated translocation of mTORC1 to the lysosome

(Ögmundsdóttir et al, 2012).

Amino acid sensing in the Golgi

Thomas et al (2014) reported that mTORC1 on the Golgi can be acti-

vated by amino acids in a RAG-independent manner. Mechanisti-

cally, amino acids promote GTP loading of the small GTPase RAB1A

(Ras-related protein RAB-1A) which in turn stimulates mTORC1

interaction with Golgi-resident RHEB (Thomas et al, 2014).

The proton and amino acid symporter PAT4/SLC36A4 is required

for mTORC1 activation by amino acids (Heublein et al, 2010).

PAT4/SLC36A4 is mainly localized to the Golgi where it physically

interacts with mTOR, RAPTOR, and RAB1A (Fan et al, 2016). Ypt7,

the yeast RAB1A ortholog, is also required for amino acids to

activate TORC1 (Thomas et al, 2014), indicating that amino acid

sensing could occur at the Golgi in both mammals and yeast.

Extracellular amino acid sensing

The G protein-coupled receptor T1R1/T1R3 is an amino acid recep-

tor originally discovered in gustatory neurons as a detector of the

umami (glutamate) flavor (Matsunami et al, 2000; Nelson et al,

2002). Knockdown of T1R1/T1R3 impairs amino acid-induced
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mTORC1 lysosomal translocation and activation without signifi-

cantly affecting intracellular amino acid levels (Wauson et al,

2012). This study suggests that extracellular amino acid availability

could be sufficient to modulate mTORC1 activity.

The GAAC signaling pathway

The conserved GAAC (general amino acid control) signaling path-

way coordinates amino acid availability with translation initiation

to allow cells to adapt to amino acid starvation (reviewed in Hinneb-

usch, 2005). The GAAC signaling pathway senses the absence of

amino acids via uncharged tRNAs that accumulate when free amino

acid levels are low. In amino acid-starved cells, uncharged tRNAs

bind and activate the protein kinase GCN2 (general control non-

derepressible 2; Wek et al, 1989, 1995; Diallinas & Thireos, 1994;

Dong et al, 2000; Narasimhan et al, 2004). Active GCN2 phosphory-

lates the alpha subunit of eIF2 (eukaryotic initiation factor 2a),
thereby inhibiting eIF2 and ultimately leading to a general repres-

sion of mRNA translation (Dever et al, 1992). Paradoxically, this

favors selective translation of mRNA with a unique 50UTR structure

containing short uORFs (upstream open reading frames). The uORF

containing mRNA encodes a basic leucine zipper transcription factor

termed ATF4 (activating transcription factor 4) in mammals

(Harding et al, 2000; Vattem & Wek, 2004) and Gcn4 in yeast

(Hinnebusch, 1984). ATF4/Gcn4 induces the expression of amino

acid transporters, enzymes involved in amino acid metabolism

(Hinnebusch & Natarajan, 2002; Siu et al, 2002; Averous et al,

2004; Hinnebusch, 2005; Kilberg et al, 2009; Staschke et al, 2010),

and factors involved in autophagy (B’chir et al, 2013; Fig 2),

thereby allowing adaptation to amino acid starvation.

The potential crosstalk between GAAC and mTORC1 has not been

studied in detail, although inhibition of hepatic mTORC1 in mice fed

a leucine-free diet or in cells starved for leucine requires GCN2

(Anthony et al, 2004; Xiao et al, 2011). Recently, two independent

studies confirmed that mTORC1 inhibition in response to amino acid

deprivation requires GCN2 (Ye et al, 2015; Averous et al, 2016).

Averous et al (2016) proposed that, upon short-term (0.5 to 1 h)

deprivation of leucine or arginine, GCN2 inhibits mTORC1 via an

uncharacterized ATF4-independent mechanism (Fig 2). Short-term
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deprivation of leucine also requires phosphorylated eIF2a to inhibit

mTORC1. Ye et al reported that, upon long-term (24 h) deprivation

of leucine, arginine, or glutamine, GCN2 inhibits mTORC1 through

ATF4-mediated induction of SESTRIN2 expression. SESTRIN2 in turn

inhibits mTORC1 in a RAGA/B-dependent manner (Ye et al, 2015)

(Fig 2). The findings by Ye et al imply that SESTRIN2 inhibits

mTORC1 even in the presence of leucine. It would be of interest to

determine whether SESTRIN2-mediated inhibition of mTORC1

requires GATOR2 and whether leucine-binding ability of SESTRIN2

is required to inhibit mTORC1 under these conditions.

A link between TORC1 and GAAC has been demonstrated in

S. cerevisiae. TORC1 prevents dephosphorylation of Ser577 in Gcn2

by inhibiting one or more phosphatases. Phosphorylation of Gcn2 at

Ser577 inhibits Gcn2 by decreasing its uncharged tRNA binding abil-

ity (Cherkasova & Hinnebusch, 2003; Kubota et al, 2003). Thus, in

budding yeast, Gcn2 activation upon amino acid starvation is a

consequence of an increase in uncharged tRNAs and the release of

an inhibitory effect of TORC1 (Fig 2). Despite the conserved role of

Gcn2 in translation, it is unknown whether mTORC1 regulates

GCN2. Interestingly, a recent report showed that mTORC1 stimu-

lates purine synthesis through ATF4 activation independent of eIF2a
phosphorylation (Ben-Sahra et al, 2016). Further studies are

required to better understand how GAAC and TORC1 signaling path-

ways coordinate to allow cells to adapt to changes in nutrient avail-

ability.

The yeast SPS amino acid sensing pathway

The SPS pathway senses amino acid availability and regulates

amino acid uptake (reviewed in Ljungdahl, 2009; Ljungdahl &

Daignan-Fornier, 2012). The SPS pathway is present only in fungi

(Martı́nez & Ljungdahl, 2005). In contrast to the GAAC pathway, the

SPS pathway is activated by amino acids. The primary amino acid

sensor is a plasma membrane-localized complex composed of Ssy1,

Ptr3, and Ssy5 (named as SPS sensor) (Forsberg & Ljungdahl, 2001).

Ssy1 is a multi-spanning transmembrane sensor structurally related

to amino acid permeases but lacking transporting capacity (Didion

et al, 1998; Iraqui et al, 1999; Klasson et al, 1999). Ssy1 possesses

an exclusively cytoplasmic N-terminal domain, which binds the

scaffold protein Ptr3, and the endoprotease Ssy5. Ssy5 is expressed

as a zymogen composed of a catalytic domain attached to an inhibi-

tory domain (Abdel-Sater et al, 2004a; Andréasson et al, 2006;

Poulsen et al, 2006). Binding of extracellular amino acids to

exposed Ssy1 induces a conformational change that stimulates the

phosphorylation and ubiquitin-mediated degradation of the inhibi-

tory domain of Ssy5 (Pfirrmann et al, 2010; Omnus et al, 2011).

Active Ssy5 cleaves the N-terminal cytoplasmic retention motif of

the transcription factors Stp1 and 2 (Andréasson & Ljungdahl,

2002). Processed Stp1/2 translocates into the nucleus to induce the

expression of genes encoding amino acid permeases (Abdel-Sater

et al, 2004b; Boban & Ljungdahl, 2007). The SPS pathway and
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Figure 3. Crosstalk between TORC1 and AMPK signaling pathways in yeast and mammals.
Proteins shown in green promote TORC1 activation. Proteins in red inhibit TORC1. IRS1, insulin receptor substrate 1. See main text for details.
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TORC1 are interconnected. TORC1, via the PP2A-like phosphatase

Sit4, promotes the stability of nuclear Stp1 and thus amino acid

uptake (Shin et al, 2009).

Glucose sensing and signaling to TORC1

AMPK is a conserved sensor of cellular energy status. It is acti-

vated by metabolic stress, such as glucose deprivation, that

increases cellular ADP/ATP and AMP/ATP ratios (reviewed in

Hardie, 2007; Hardie et al, 2012). AMPK promotes catabolic

processes such as autophagy and inhibits anabolic processes such

as protein synthesis, in part by negatively regulating TORC1 signal-

ing (for review, see Hardie, 2014; Hindupur et al, 2015). In

mammals, AMPK inhibits mTORC1 via at least two different mech-

anisms (Fig 3): (i) AMPK phosphorylates and activates TSC2,

thereby inactivating RHEB (Inoki et al, 2003b), and (ii) AMPK

phosphorylates RAPTOR on Ser722 and Ser792 to inhibit mTORC1

(Gwinn et al, 2008). Although budding yeast does not express

TSC2, the AMPK Snf1 is required for TORC1 inactivation in

glucose-starved cells (Hughes Hallett et al, 2014). Active Snf1

phosphorylates Kog1 at Ser491 and Ser494. Curiously, phosphory-

lated Kog1 dissociates from TORC1 and translocates to discrete

perivacuolar sites, leading to a reduction in TORC1 activity

(Hughes Hallett et al, 2015). The Snf1 phosphorylation sites in

Kog1 are located in a glutamine-rich, prion-like motif. This motif

and a similar motif, separated by 300 residues, are essential for

Kog1 translocation to perivacuolar sites upon glucose deprivation

(Fig 3). Interestingly, organisms that express Kog1/RAPTOR

proteins containing prion-like motifs (e.g., S. cerevisiae and

C. elegans) lack TSC orthologs, whereas species lacking such

motifs in Kog1/RAPTOR (e.g., fission yeast, flies, and mammals)

express TSC proteins. Thus, mechanisms by which AMPK inhibits

TORC1 may have diverged during evolution.

Glucose deprivation inhibits TORC1 in yeast cells expressing

constitutively active versions of Gtr1 and Gtr2 (Gtr1GTP–Gtr2GDP)

(Hughes Hallett et al, 2015), suggesting that TORC1 inhibition

upon glucose starvation does not require Gtr1/2. In contrast,

Efeyan et al (2014) reported that glucose deprivation fails to

inhibit mTORC1 in primary MEFs expressing a constitutively

active form of RAGA (RAGAGTP), indicating that RAGs may signal

glucose sufficiency to mTORC1. In this regard, Zhang et al

reported that AXIN (axis inhibition protein 1), originally discov-

ered as an inhibitor of WNT signaling (Zeng et al, 1997), is

required for AMPK activation by its upstream kinase LKB1 (liver

kinase B1) at the lysosomal surface (Zhang et al, 2013). A subse-

quent study demonstrated that, upon glucose starvation, AXIN/

LKB1 promotes AMPK phosphorylation and activation at the lyso-

somal surface via v-ATPase-RAGULATOR. Concurrently, AXIN

inhibits GEF activity of RAGULATOR toward RAGA/B, thereby

inactivating mTORC1 (Zhang et al, 2014) (Fig 3). These observa-

tions provide an explanation for how glucose availability is trans-

duced to RAGs and suggest that the lysosomal surface may

represent a key platform where nutrients are sensed in a recipro-

cal manner by mTORC1 and AMPK. A better understanding of

the interplay between TORC1 and AMPK in coordinating

nutrient-sensing pathways in yeast and mammals will provide

new insights into the regulation of cellular metabolism.

Concluding remarks and future directions

Although it has long been known that TORC1 promotes cell growth

in response to nutrients (Barbet et al, 1996) and that amino acids

activate mTORC1 (Hara et al, 1998), the identity of amino acid

sensors upstream of TORC1 has started to emerge only recently.

Amino acid sufficiency regulates TORC1 via different RAG/Gtr-

dependent and RAG/Gtr-independent mechanisms. The RAGs, as

well as their upstream regulators, are largely conserved from yeast

to mammals. Intriguingly, the recently identified mammalian

cytosolic leucine and arginine sensors seem to lack yeast counter-

parts although they impinge on GATOR2 that does have a counter-

part in yeast. The reason for this is unclear and follow-up studies

are required to elucidate if and how amino acids regulate the yeast

GATOR2 ortholog SEACAT.

Finally, mutations affecting mammalian amino acid sensing

components are linked to immunodeficiency, epilepsy, and cancer

(Shimobayashi & Hall, 2015), and mTOR is often deregulated in

metabolic disorders such as obesity, diabetes, and cancer (Efeyan

et al, 2012; Liko & Hall, 2015). A better understanding of how nutri-

ent availability is transduced to TOR may allow novel therapies

against mTOR-related diseases.
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