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The United States contains one of the most important
crop production areas in the world. According to the most

recent national agricultural census, 1.8 billion bushels of
wheat, 10.5 billion bushels of maize, and a wide range of
other crops were produced in 2006 from 126 million hectares
(315 million acres) in the conterminous United States (USDA
NASS 2007). However, owing to the concentrated nature of
the agricultural landscape and limited genetic diversity of
many crops (Parker 2002, Harrington 2003), crop production
is vulnerable to disease and damage by insect pests. Farm leg-
islation that provides subsidies to growers for only a small
number of crop species may inadvertently contribute to this
homogeneity (e.g., Biermacher et al. 2006). Meanwhile, an av-
erage of 10 new crop pests are estimated to enter the United
States accidentally each year, usually through shipments of
plant materials, produce, or packing materials from other con-
tinents through US ports (Work et al. 2005). The economic
damage caused by the spread of exotic crop pests is signifi-
cant. The US Department of Agriculture (USDA) and other
US government agencies spend more than $1 billion annu-

ally (Parker 2002) in research, risk assessment, and emergency
response to outbreaks, and in public education, outreach, and
extension. 

Government agencies in the United States have begun to
assess food security issues (Parker 2002), and organizations
concerned with agricultural emergency response, such as the
USDA Animal and Plant Health Inspection Service (APHIS),
have procedures in place that target prevention, response, and
recovery from a crop biosecurity breach (USDA and USDOI
2005). Geospatial analytical tools, such as the North Car-
olina State University/APHIS Plant Pest Forecasting System
(NAPPFAST; Magarey et al. 2007) and CLIMEX (Sutherst et
al. 1999), have been applied to forecast the risk that pathogens
and pests pose to agriculture as a result of climatic conditions.
Additional geospatial tools that incorporate models of
pathogen and pest dispersal are still needed, both to antici-
pate and react to new outbreaks and to evaluate risk and
form priorities for management of ongoing problems. How-
ever, tool and model development are hampered by the com-
plexity of interactions among host, pest or pathogen, and
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environment, as well as by the inaccessibility of field-level crop
data and a paucity of data describing disease and pest dam-
age and movement across broad scales. Even when informa-
tion is available for commonly studied pests and diseases, the
data and models developed for these species may not be rel-
e vant to a newly introduced or understudied pathogen or pest.

In lieu of data-intensive process-based models, an assess-
ment of the overall connectivity of the agricultural land-
scape provides a useful proxy for evaluating the risk of spread
of introduced crop diseases or insect pests. Landscape con-
nectivity refers to the functional linkage among habitat
patches (e.g., fields) through the dispersal capabilities of the
organism in question (e.g., pathogen or insect pest) (With et
al. 1997). Landscape connectivity is thus influenced both by
the abundance and configuration of habitat or land-use types
on the landscape (structural connectivity) and by the ability
of organisms to access them (functional connectivity). For ex-
ample, landscapes that are dominated by a single habitat or
crop type (monoculture) are obviously connected, but even
heterogeneous or seemingly fragmented landscapes can be
connected if a pathogen, vector, or pest has sufficient dispersal
capability to colonize otherwise isolated patches or fields.
Although agricultural landscapes often are considered well
connected, given that agricultural practices dominate land use
in many regions of the country, considerable heterogeneity
exists at scales of both the landscape (mix of crop types or
management practices) and the field (mix of cultivars that 
differ in susceptibility to disease or pests). Because the spread
of exotic pest or pathogen species may be facilitated in con-
nected landscapes (With 2002), an analysis of landscape 
connectivity and the spatial scale or scales at which it emerges
provides the first step in a risk assessment, and can assist with
disease or pest mitigation and containment by identifying and
targeting locations where landscape connectivity can be dis-
rupted to halt or slow the rate of spread (With 2004). Loca-
tions that are more strongly connected will also tend to be at
greater risk for recurrent problems with established pathogens
or pests, as new immigrants can more readily compensate for
any reductions in local pest or pathogen populations.

Graph-theoretic approaches have become an established
tool in the study of networks and landscape connectivity
(Calabrese and Fagan 2004, Urban 2005, May 2006, Jeger et
al. 2007, Minor and Urban 2007), especially where landscape
information is available only at a coarse resolution. Many bi-
ological systems can be modeled as networks, from gene flow
(McRae and Beier 2007) to plants linked by mycorrhizae
(Southworth et al. 2005). A common approach to identifying
connected regions within graph systems and the locations that
are key to maintaining connectivity is a “dropped-edge”
analysis, which is done by systematically removing edges on
the basis of relevant threshold values (e.g., Bunn et al. 2000,
Van Langevelde 2000, Lamour et al. 2007). A similar ap-
proach is adopted here to summarize and quantify the con-
nectivity of the US agricultural landscape for four major
crop species (maize, wheat, soybeans, and cotton) to help in-
form a national risk assessment of their pathogens and pests. 

Graph theory and representation 
of the agricultural landscape
In the context of graph theory, a graph includes “nodes” that
represent discrete areas or objects and “edges,” or lines, that
establish a relationship between or among the nodes in a
landscape matrix (Urban and Keitt 2001). Graphs may be used
to model relationships between mobile individuals or groups
of organisms, such as those involved in a human epidemic
(Keeling and Eames 2005), or movement among actual
ground features in geographic space. In ecological applications,
graph theory has been used to quantify connectivity of habi-
tat patches or populations within landscapes, where the ma-
trix is assumed to be of little use to the organism traversing
it (figure 1). However, the definition of a habitat patch node
and the landscape matrix may be adapted, depending on the
nature of the environment and the data available for de-
scribing the landscape. Such a modification is used here,
where we apply graph theory by placing a node inside 
each county administrative unit, as in Steinwendner’s (2002)
example of applying a graph to pixels in remotely sensed
imagery. Variables associated with the landscape matrix, 
such as its resistance to movement by organisms, can then be
assigned to edges. This “county-as-node” graph structure
can readily incorporate a landscape resistance variable for a
particular crop species, where lower crop production indicates
a higher resistance to movement for a pathogen or pest that
is dependent on that crop species.

Developing a geospatial graph in 
geographic information systems 
Commonly available geographic information system (GIS)
software products, such as ArcGIS 9.x (Environmental Sys-
tems Research Institute, Redlands, CA), offer the capability to
create, manage, analyze, and map geographic data in the
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Figure 1. An example of a graph representing patchy
habitat in a hypothetical landscape matrix. Centroid
nodes represent the patch, regardless of size, and edges
represent the connections among them.



form of a “network.” A network is a vector-based, topologi-
cally connected system of linear features with attributes that
describe the flow of objects or entities between connected
places. GIS networks use graph algorithm tools to model ac-
tual movement.

A common network application in GIS is the analysis of
movement within transportation systems, wherein nodes
represent intersections between streets, and streets (edges) are
assigned descriptive attributes that affect costs to movement,
such as length or maximum speed. For ecological applications,
the resistance of the intervening landscape to movement is of-
ten a weighted function of Euclidean distance (Chardon et al.
2003). In our analysis, we evaluate the movement or trans-
mission through the network as a function of the density of
the host crop species. Where the host species is more common,
the landscape resistance to transmission (LRT) is lower, re-
flecting the higher probability of successful reproduction,
dispersal, and establishment for pathogens or pests that rely
on that host species. Because different species of pathogens
and pests will be able to tolerate different levels of LRT, and
the degree of tolerance for any given species will depend on
how conducive weather conditions are to reproduction, dis-
persal, and establishment, we evaluate a range of different LRT
thresholds to represent the range of possibilities. 

To adapt a typical GIS network to a graph for the study of
connectivity, nodes that ordinarily represent street intersec-
tions in a transportation study were instead used to represent
habitat patches (counties), while street edges were used to rep-
resent connections between patches. Nodes were positioned
at the geographic centroid of each county in the conterminous
United States. These nodes, in turn, were linked by edges to
the centroid of each adjacent county (figure 2). To best rep-
resent pathogen or pest movement among counties, adjacency
was defined as counties sharing a common border or having

common corners. Given the irregular shapes of US counties,
the resulting network included some edges that crossed.
However, no additional nodes at these points of intersection
were included in the final network.

After edge development, an edge list database table (ELDT)
was created. The records in the ELDT store the unique iden-
tification number for each edge and the Federal Information
Processing Standards (FIPS) codes for the two counties it con-
nects. This table is similar to the connectivity table generated
by ArcGIS 9.x when a network is built, but the ArcGIS-
 generated table is held by the software in the background dur-
ing geospatial operations and is inaccessible to the GIS user.
In contrast, the ELDT is separate from geospatial operations
in the GIS and can be manipulated, allowing the user to
freely transfer attribute data from the nodes to the edges and
back through tabular joins and field calculations in the GIS.
County-level information assigned to nodes, such as agri-
cultural census data, can then be used in calculations related
to movement along the edges, such as the LRT discussed
above. Additional information entered in the ELDT for use
in calculating the LRT included attributes for the length of each
edge and the percentage of each edge contained in the two
counties traversed.

Assigning LRT estimates to edges 
on the basis of host availability 
We assume that the spread of pathogens or pests is facilitated
by greater host species density. Recent crop acreage data for
soybeans, maize, wheat, and cotton were acquired from the
US National Agricultural Statistics Service (USDA NASS
2006) and used to calculate the LRT between adjacent coun-
ties. Crop data were added to the ELDT through a tabular join,
using county FIPS codes as the key field. The LRT between
two counties connected by an edge was defined as:

where Lab = length of the edge connecting centroids of coun-
ties a and b, La = length of that edge within county a, Lb =
length of that edge within county b, Za = density (harvested
crop acres/total acres in county) of crop species in county a,
and Zb = density of crop species in county b. 

The weighted mean proportion of crop acreage along the
length of an edge provides a measure of host availability
across two counties. The inverse value provides a unitless
measure of the relative LRT between counties, which in-
creases as host availability decreases. For example, if two
neighboring counties each have 1%, 5%, or 20% of their
acreage in maize, the LRT would be 100, 20, or 5, respectively.
Calculated LRTs are lower (e.g., 5) between adjacent counties
in which host crops are relatively more abundant (e.g., 20%).
The LRT operationalizes the expectation that the spread of dis-
eases or pests should occur more readily between areas of
higher host densities. High LRTs imply a lower risk of spread
because the host species is not locally abundant (i.e., the
landscape is more heterogeneous), and a low host density may
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Figure 2. A graph adapted to a situation where the 
landscape matrix is divided by geopolitical boundaries
(e.g., counties).
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be insufficient to permit the movement of pathogens or pests
across the landscape. 

Analysis of connectivity, patch structure, 
and risk of spread
In many examples from landscape ecology (e.g., Bunn et al.
2000, Van Langevelde 2000), the connectivity of graphs has
been evaluated through dropped-edge analysis, in which
edges are removed from the graph if it is unlikely that an 
organism will traverse them because the landscape re sistance,
often a function of distance, is above a threshold tolerated 
by the organism (figure 3). In this study, connectivity was 
evaluated using a dropped-edge analysis in which a range of
representative LRT thresholds was evaluated. For each thresh-
old, those edges with LRTs exceeding the threshold were
“drop ped” from the graph, leaving disconnected subgraphs
(e.g., figure 4). The threshold value represents the highest 
LRT that can be successfully overcome by a particular hy-
pothetical combination of pathogen or pest species and
weather conditions. The dropped-edge analysis for a high
threshold value (e.g., LRT = 100) indicates which counties
are connected when disease or pest spread is likely even for
the higher resistance resulting from lower host crop densi-
ties, while the analysis for a low threshold value (e.g., LRT =
3) indicates which counties are connected when spread can
occur only for the lower resistance resulting from higher
crop densities. 

The appropriate threshold corresponding to any particu-
lar combination of host, pathogen, and environment would
not be known without study, but we can generalize about the
types of scenarios for which relatively higher or lower thresh-
olds are relevant. A higher threshold is relevant to scenarios
where path o gen or pest reproduction, dispersal, and estab-
lishment can occur across lower host densities. This might be
the case because some of these processes are relatively more
independent of the host for particular pests or patho gens, such
as wind-dispersed organisms. Higher thresholds might also
be relevant because weather conditions are highly conducive
to these processes. For example, leaf-surface wetness is well
known to favor infection by many patho gens (Huber and
Gillespie 1992), so even if few pathogen propagules success-
fully disperse to a new region, they may have a high proba-
bility of successful establishment if leaf-surface wetness is
available to support new infections and establishment. Con-
versely, if weather conditions are not conducive, even large
numbers of propagules may not result in establishment.
Lower thresholds are relevant to scenarios where a pathogen
or pest species requires high host abundance for reproduc-
tion, dispersal, and establishment, or where weather condi-
tions are not conducive, or both. 

The result of the dropped-edge analysis is presented as
one map for each combination of host crop species and par-
ticular LRT threshold values. This identifies landscape regions
that are internally well connected and where spread is possi-
ble, given the assumed constraints to movement caused by host
density for each threshold. The same result, visualized as a 

series of maps for a specific host crop (figure 4 and supple-
mental figures at http://hdl.handle.net/2097/1049), and con-
structed across the range of LRT thresholds, is effectively an
assay of the functional connectivity of the landscape for 
any combination of pathogen or pest type (defined by the 
degree of ability to reproduce, disperse, and establish at lower
crop densities) and conduciveness of weather (conduciveness
for reproduction, dispersal, and establishment). Three sepa-
rate landscape metrics were also used to assess the patch
structure and overall connectivity of the US agricultural
landscape for each LRT threshold evaluated. 

First, the connectivity of the graph configuration at each
threshold level was quantified using the gamma (γ) index 
(Forman and Godron 1986, Turner et al. 2001):

where L = number of edges in network and V = number of
nodes in network.

Possible values for γ range from a low of 0 to a high of 1,
with low values indicating lower connectivity and high 
values, higher connectivity. 

Second, the proportional abundance of a crop species 
was measured using the percentage of landscape (PLAND)
(McGarigal et al. 2002):

where aij = area of counties containing crop species i in patch
j, for patches included in the graph for a given LRT thresh-
old value (square meters [m2]), and A = total landscape area
(m2).

For this study, A was the total geographic area of the lower
48 conterminous United States. Values for PLAND have a max-
imum of 100 (where the entire landscape consists of one
crop patch) and approach a low of 0 (the presence of a given
crop patch becomes more uncommon). 
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Figure 3. Example of dropped-edge analysis in a patch
habitat graph. Edges that are too long for an organism to
use as a dispersal route are removed, creating discon-
nected groups of subgraphs.
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Third, the magnitude of the patch fragmentation, or the de-
gree to which one or more large patches breaks down into sev-
eral smaller patches as LRT thresholds decrease, was measured
with the landscape subdivision (DIVISION) (McGarigal et al.
2002):

where aij = area of counties containing crop species i in patch
j, for patches included in the graph for a given LRT thresh-
old value (m2), and A = total landscape area (m2).

DIVISION is interpreted as the probability that two loca-
tions within the study area, chosen at random, will not be con-
tained within the same patch. Possible values range between
0 and less than 1. As with PLAND, the total landscape area used
was that of the lower 48 conterminous United States. 

Soybean network
Although soybeans are commonly grown across the country,
the majority of the US soybean harvest occurs in the Corn Belt
states of Illinois, Iowa, and Nebraska, and in southern Min-
nesota (USDA NASS 2006). Fields of soybeans are also com-
mon landscape features along rivers from eastern North
Dakota south to Louisiana, and along the eastern seaboard.
At the continental scale, landscape connectivity was high for
cases where low host availability could be tolerated (LRT
thresholds ≥ 6; figure 5). For lower thresholds, however, the
landscape appears more fragmented, corresponding to 
several key soybean production regions. 

Graphs for soybeans had the
second highest mean gamma in-
dex among the four crop species,
only slightly less than that for
maize graphs, and the highest
maximum gamma index (for LRT
= 50) (table 1, figures 4, 5, 6). The
percentage of the landscape made
up by connected soybean counties
was also comparable to the per-
centage for maize for the range of
threshold values from 3 to 15.
However, the rate of increase in
the percentage of the landscape
for soybean from LRT = 25 to
LRT = 100 was minimal. Soybean
graphs had the second highest av-
erage percentage (18.3%), slightly
more than wheat counties (18.2%),
though with a higher minimum
and lower maximum value. Soy-
bean graphs were similar to those
for maize in minimum percentage
(4.7%), representing disconnected
subgraphs for those crops present
at the lowest LRT threshold (LRT
= 3). Soybeans graphs also had

consistently high landscape subdivision values, second only 
to cotton. 

Soybean production can be characterized in the context of
pathogen and pest dispersal as a large, interconnected core of
counties that expands with increasing LRT thresholds, and in
the process incorporates neighboring patches. However, given
the consistent number of soybean patches that form across the
range of threshold values examined, for each formerly distant
patch that becomes integrated into the growing core, a com-
parable number of spatially distinct replacement patches
form.

For example, the midcontinental landscape consists of a
very large complex in the Upper Midwest and two regional
disconnected subgraphs (e.g., Mississippi Valley and coastal
North Carolina) at LRT ≤ 4. For 6 ≤ LRT ≤ 15, the Upper
Midwest and Mississippi Valley complexes consolidate,
while distant disconnected subgraphs begin forming along
the eastern seaboard. For 15 ≤ LRT ≤ 100, these two distinct
regions continue a gradual peripheral expansion, but remain
distinct because of a topographic barrier in the form of the
Appalachian range. Given the low threshold value at which
the Upper Midwest and Mississippi Valley regions merge
into one (LRT ≥ 6), those regions are especially susceptible
to extensive and rapid pest or disease outbreaks. However,
regional connectivity along the eastern seaboard remains low
even at intermediate threshold values (e.g., LRT ≤ 10), re-
quiring pests or pathogens to overcome nonoptimal con-
ditions in order to spread throughout the eastern portion
of the country. 
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Figure 4. Dropped-edge analysis of the soybean network. A threshold indicates the highest
landscape resistance to transmission (LRT; defined in terms of host availability) that still
allows dispersal by a particular pest or pathogen. Green edges between counties meet the
threshold criterion and yellow edges between counties have been dropped because the LRT
is above the threshold being evaluated.
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Maize network
The US maize crop is similar to soybean in terms of its na-
tional distribution, although the National Agricultural Sta-
tistics Service provides data for more maize counties than it
does for soybean counties. Gamma indexes for maize were
among the highest of all crop species, indicating a consistently
high degree of connectivity across LRT thresholds (table 1, 
figures 5, 6, and supplemental figure at http://hdl.handle.

net/2097/1049). Only at the lowest LRT threshold (LRT = 3)
did the gamma index differ substantially from the mean of
0.793. Connected maize counties also had the highest mini-
mum, maximum, and mean percentage of the landscape
compared with other crop species across the range of thresh-
old values examined. Conversely, landscape subdivision for
maize was the lowest of the four crop species studied. The
number of disconnected maize subgraphs that formed at

each LRT threshold increased from 2 to 25
patches until LRT = 25, at which point the
number dropped sharply to 7 and then to 6 at
LRT = 50 and LRT = 100, respectively.

These numbers are indicative of the spatial
dominance of maize production in the United
States, which consists of a large and highly con-
nected core area of counties that expands slowly
as higher LRT thresholds are considered. At the
same time, significant numbers of new and dis-
tant disconnected subgraphs form until the
highest LRTs (LRT ≥ 50) are reached and patch
consolidation begins. As with soybeans, the
large, well-connected maize landscape in the
Midwest persists across a wide range of LRT
thresholds, meaning that the potential for pest
outbreaks or disease spread is enhanced for
species that can tolerate or overcome even mod-
est LRTs. As before, there is a spatially distinct
eastern seaboard region that initially appears at
LRT = 6, but does not consolidate to form a sin-
gle region until LRT ≥ 25, reflecting lower con-
nectivity for maize compared with connectivity
in the Midwest. 

Wheat network
Unlike soybean and maize, wheat produc-
tion is concentrated within three distinct ge-
o graphic regions: the central Great Plains,
the northern Great Plains, and the Co-
lumbia Plateau region of Washington, Ore-
gon, and Idaho. Wheat graphs had the
second lowest gamma index, but the high-
est standard deviation (table 1, figures 5, 
6, and supplemental figure at http://hdl. 
handle.net/2097/1049). The percentage of
the landscape made up of wheat counties
was low—second lowest to cotton—across
a wide range of LRT thresholds. However,
for LRT ≥ 15, the percentage of the United
States with connected wheat production
increased dramatically. Landscape sub -
division for wheat was very similar to that
of maize across all LRT values, reflecting the
relatively large number of disconnected
subgraphs formed by each of these crops at
LRT ≤ 25. Wheat also had the highest num-
ber of disconnected subgraphs (minimum,
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Table 1. Summary statistics for the gamma index, percentage of landscape
covered by each crop, landscape subdivision, and the number of patches or
disconnected subgraphs for four crop species.

Statistic Maize Wheat Soy Cotton

Gamma index Min 0.737 0.385 0.586 0.417
Max 0.813 0.718 0.836 0.665
Mean 0.793 0.595 0.790 0.551
SD 0.027 0.109 0.081 0.081

Percentage of landscape Min 4.8 1.3 4.70 0.8
Max 45.7 44.6 33.6 17.7
Mean 20.7 18.2 18.3 6.7
SD 14.7 15.8 9.9 6.3

Landscape subdivision
Min 0.791 0.801 0.887 0.969
Max 0.998 1.00 0.998 1.00
Mean 0.940 0.947 0.959 0.992
SD 0.077 0.076 0.039 0.012

Number of patches Min 2 5 3 4
Max 15 17 7 10
Mean 8 11 5 7
SD 4.702 3.640 1.269 2.279

Patch size Min 37.6 10.0 36.3 6.2
(millions of hectares) Max 356.1 347.7 261.4 137.5

Mean 161.2 141.9 142.4 52.2
SD 107.3 115.8 70.8 46.0

Max, maximum; min, minimum; SD, standard deviation.
Note: The gamma index is a measure of connectivity; the landscape subdivision is a 

measure of fragmentation. Bold font indicates the highest value among the four crops 
for the minimum, maximum, mean, and standard deviation.

Figure 5. Connectivity of four US crop species measured by the landscape
resistance to transmission, across a range of thresholds for host availability
requirements by a pathogen or pest.
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Figure 6. Graphs for each crop studied, with summary statistics for the gamma index (a measure of connectivity), percentage
of landscape covered by each crop, landscape subdivision (a measure of fragmentation), and number of patches.



maximum, and mean) of the four crops described here. The
number of disconnected subgraphs increased substantially at
LRT = 4 and again at LRT = 25, after which subgraph con-
solidation began.

The three core wheat production regions form at low LRT
thresholds (LRT ≤ 4) and continue expanding as higher
thresholds are assessed. Smaller and more-isolated dis -
connected subgraphs first begin to appear in northeastern
Ohio and southeastern Missouri (LRT = 6), Maryland and
Delaware (LRT = 8), Michigan (LRT = 10), the Carolinas (LRT
= 15), and California (LRT = 25). However, it is only for
LRT ≥ 25 that these isolated areas begin to merge into larger
connected units. Because of the persistence of this regional-
ized production pattern, many pathogenic or pest species
introduced into one such patch would most likely be contained
within that region for at least some period of time, and un-
able to overcome significantly higher LRTs to successfully
spread between regions.

Cotton network
Despite recent increases in planted acreage, cotton remains a
specialized regional crop, with centers of production in the
southeastern United States, lower Mississippi River Valley,
Texas high plains and Gulf Coast, south central Arizona, and
the Central Valley of California. Gamma indexes indicated that
cotton graphs were the least connected (table 1, figures 5, 6,
and supplemental figure at http://hdl.handle.net/2097/1049).
Though the minimum gamma index for cotton was larger
than that for wheat, cotton had the lowest mean and lowest
maximum value. Cotton connectivity began to drop sub-
stantially at LRT = 8. The percentage of landscape in cotton
counties was the lowest of the four crops studied. In addition,
cotton landscape subdivision was the highest and least vari-
able across all LRT thresholds, indicating the isolated nature
of cotton production within a few spatially distinct US sub -
regions (figure 5). The area initially occupied by four very 
small centers of production increased gradually as higher
threshold values were evaluated until LRT = 8, when the 
total number of disconnected subgraphs doubled (4 to 8), with
most new disconnected subgraphs forming in the southern
and southeastern United States. Beginning at LRT ≥ 25, these
remote disconnected subgraphs were consolidated into 
approximately seven subgraphs.

Putting analyses of connectivity in context
Although much of the United States is devoted to the agri-
cultural production of just a few economically important
crops (especially in the midwestern United States), our analy-
sis has demonstrated the scales across which connectivity is
maintained, and most importantly, where regional connec-
tivity becomes disrupted. The rapid spread of a plant pathogen
or crop pest through such a highly connected landscape
could be economically devastating, especially given the dif-
ficulty inherent in mounting a rapid response and attempt-
ing to manage or quarantine outbreaks at broad regional or
national scales. For widespread crop species such as maize and

soybean, the agricultural landscape is expected to maintain
high connectivity across much of the United States for all but
the pathogens or pests that are most host-dependent or for
the least conducive weather conditions. In contrast, the 
overall landscape connectivity for wheat and cotton, as assayed
by the gamma index, was 11% to 21% and 18% to 34%, 
respectively, less than that for maize. Production of both of
these species was in discrete regions, as illustrated in the
threshold analysis. Selecting areas for quarantine and dis-
ease management would be more easily accomplished for
wheat and cotton than for maize or soybeans because of
these spatial patterns. 

The graph-theoretic approach developed here can be used
to characterize areas of the country that form discrete regions,
even for those crops in which connectivity is widespread.
With and Crist (1995) demonstrated how a critical level of
connectivity influences the dispersal of a species; if that crit-
ical threshold can be determined from farm field-scale stud-
ies, it can be applied using this connectivity method to seek
out the discrete regions into which the agricultural land-
scape resolves. To accomplish this, new modeling theory and
methodologies are needed to translate the farm field-scale
transmission estimates into a critical threshold for larger-
scale processes and to appropriately modify the form of the
LRT in equation 1 to fit particular systems (Urban 2005,
May 2006, Jeger et al. 2007, Plantegenest et al. 2007). Once
identified, natural breaking points for dispersal among host
populations can be monitored and potentially taken advan-
tage of to disrupt connectivity before or during an outbreak,
as with the efforts being made to isolate North American ash
species infested with emerald ash borer (BenDor et al. 2006).
These discrete areas may also serve as useful management units
for disease quarantine, in which many of the finer-scale
strategies discussed below may be employed. 

When applying the connectivity analysis to a particular pest
or pathogen species, it is necessary to consider the full range
of factors that influence successful reproduction, dispersal, and
establishment, as well as how these will determine what LRT
threshold is most relevant. In plant disease epidemiology,
the “disease triangle” is often used to indicate that disease can
occur when a susceptible host, conducive environment, and
competent pathogen (and vector, as needed) are all present
(Agrios 2004). These same three factors are important for the
successful spread of pathogens or pests. Our analysis of con-
nectivity has emphasized host availability, treating the host
species as homogeneous. In fact, crop species planted in the
United States often have little intraspecific variation, which
has resulted in problems such as the epidemics of southern
corn leaf blight that were particularly widespread because the
same form of male sterility was common throughout the
US maize plantings (Ullstrup 1972). The environment is not
likely to be equally conducive across all relevant spatial and
temporal scales, however, so specific connectivity analyses will
benefit from adjustment for weather variation (Truscott and
Gilligan 2003), as well as for changes in climate that may
shift both functional and structural connectivity in the future
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(Garrett et al. 2006). The life-history characteristics of
pathogens and pests will also determine how rapidly they may
spread; the long-term connectivity for a slow-dispersing
pathogen may be comparable to the short-term connectivity
for a fast-dispersing pathogen. For our connectivity analysis,
one of the most important characteristics is the relative abil-
ity of a pest or pathogen to reproduce, disperse, and establish
under conditions of lower host availability, helping to deter-
mine what LRT threshold is relevant. As an extreme example
of the ability to disperse across areas of low host availability,
pathogens or pests capable of long-distance aerial dispersal
may move across even those counties devoid of hosts (Brown
and Hovmøller 2002, Aylor 2003, Shaw et al. 2006), though
host availability along the route of movement will still tend
to increase the probability of successful stages of reproduc-
tion, dispersal, and establishment. Human transportation
networks also may inadvertently move pathogens or pests
through regions without hosts. Analyses of connectivity can
be adapted to incorporate the potential for long-distance
aerial dispersal and for human transportation. Reproduc-
tion and establishment at low crop host densities may also oc-
cur because a pest or pathogen can use other plant species in
addition to the crop species evaluated here. For example,
other legume species such as kudzu (Pueraria lobata) have the
potential to play important roles in soybean rust epidemics
(Bonde et al. 2008). In such cases, connectivity analyses can
be improved by including the mapped density of the other host
species.

Disruption of connectivity within subgraph areas can be
achieved through various measures, and that strategy is already
in use in many cropping systems at a finer spatial scale (Skelsey
et al. 2005). Mixing susceptible and resistant crop genotypes
within a field is a fairly common disease management tool in-
ternationally (Garrett and Mundt 1999, Mundt 2002) that has
proven extremely successful in some cases (Zhu et al. 2000).
Higher plant diversity also tends to reduce insect herbivory
(Andow 1991). Over fine spatial scales, such as within ex-
perimental plots or within fields, mechanisms for reduced dis-
ease in plant mixtures include dilution of inoculum, barriers
to dispersal provided by nonhosts, changes in microclimate,
and the potential for disease resistance induced by exposure
to microbes associated with other plant types (Mundt 2002,
Cowger et al. 2005). The importance of these mechanisms and
the magnitude of their effects can vary as a function of the life-
history characteristics of particular host-pathogen systems
(Garrett and Mundt 1999). Over broader spatial scales, the rel-
ative importance of these and other potential mechanisms is
not well understood, though broader-scale ecosystem services
for disease and pest regulation (Cheatham et al. forthcoming)
are probably being provided by whatever degree of plant di-
versity is present. If pathogen or pest populations are subject
to an Allee effect, or lower per-capita reproductive success in
small populations, the effects of reduced host availability
may be even greater than would otherwise be predicted, as for
Karnal bunt of wheat and gypsy moths (Garrett and Bowden
2002, Liebhold and Bascompte 2003). Greater crop hetero-

geneity may also have benefits beyond lower immediate losses
to disease, such as a lowered risk of the breakdown of disease
resistance (Mundt et al. 2002). The potential effects of a pro-
posed cultivar mixture can be evaluated before implementa-
tion through the use of graphs like those used in this study
and other connectivity analyses (Skelsey et al. 2005).

By characterizing the scales at which regional connectiv-
ity becomes disrupted, our analysis may serve in the formu-
lation of better strategies for dealing with invasive pathogens
and pests, and potentially for developing strategies for chang-
ing cropping patterns. Although policies to direct which crop
species are to be grown in particular areas are likely to be highly
controversial, at the least, policies that promote greater crop
homogeneity should be avoided. One strategy to better pro-
tect the national production of maize, soybean, and other
widely planted crop species from pathogens and pests would
be to encourage planting patterns that disrupt connectivity
at critical spatial scales, as suggested by the regional produc-
tion areas of wheat and cotton crops. When farm policies that
change crop diversity are evaluated, their effects on host den-
sities and the resulting connectivity of crop species should be
taken into account. Policies that encourage widespread mono-
cultures, such as subsidy programs for a small number of crops
(e.g., Biermacher et al. 2006), may result in higher connectivity
and therefore greater risk to the security of the overall crop.
At whichever scale action is ultimately taken, measures to re-
duce connectivity in at-risk crops should be in place before
pests or pathogens arrive on the landscape, which will reduce
the severity of an incident and the cost of the response. Since
the critical scale of connectivity for future invasive pest or
pathogen species is not known, evaluations might focus on
regions where disconnections can be produced across a wide
range of LRT thresholds

When a new pest or pathogen species is introduced, con-
nectivity analysis can contribute a unique perspective for de-
cisionmaking, such as the decision tree we provide here
(figure 7). Many of the first stages of risk assessment may be
based on characteristics of the abiotic environment, pathogen
or pest environmental requirements, and “age” of the intro-
duction. After these risk components are evaluated using
programs such as NAPPFAST (Magarey et al. 2007) or
CLIMEX (Sutherst et al. 1999), connectivity analysis can
contribute additional information about adjacent suscepti-
ble areas and the extent to which the national crop might be
threatened. Such decision trees are generalizations that exclude
details useful for the evaluation of a specific pathogen or
pest, such as the potential use of multiple host species by the
introduced pest or pathogen and the availability of crop
species at different times of the year. However, the general con-
cepts can be applied in most introduction scenarios, with ad-
ditional information included as available for specific cases. 

This analysis of the connectivity of the American agricul-
tural landscape represents a broadscale assessment of the
potential for pest or disease spread, as a first step in a national
risk assessment and rapid response framework that incor-
porates crop plant connectivity. Information about connec-
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tivity is also important input for
evaluations of pest or disease risk at
any given location, since more
highly connected locations will tend
to experience higher risk. Changes
in agricultural connectivity over
time in response to economic shifts,
changes in farm policy, and climate
change will need to be monitored to
evaluate new risks. Agricultural
connectivity analysis provides im-
portant input for the initial devel-
opment and implementation of
policies related to the management
of pests and diseases of these four
economically important crops, and
the approach can readily be ex-
tended to other crop species or wild
plant species for which maps of
abundance are available (Holden-
rieder et al. 2004). The develop-
ment of risk assessments that
integrate host, pathogen, and envi-
ronmental factors at national scales
is a grand challenge for the future.
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