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1. Introduction

The problem of testing the hypothesis that F is a negative exponential distri-
bution with unknown scale parameter against the alternative that F has mono-
tone increasing nonconstant failure rate (F has Increasing Failure Rate, IFR)
has been studied by a number of authors, some of whom are Proschan and Pyke
[18], Nadler and Eilbott [17], Barlow [1], Bickel and Doksum [7], and Bickel
[6]. Bickel and Doksum show that the test proposed by Proschan and Pyke is
asymptotically inadmissible. They then take an essentially parametric approach
to the problem. In particular they obtain the studentized asymptotically most
powerful linear spacings tests for selected parametric families of distributions
which are IFR when the parameter 0 > 0 and exponential when 0 = 0. Bickel
[6] proves that these tests are actually asymptotically equivalent to the level x
tests which are most powerful among all tests which are similar and level x
(for the associated parametric problems).

Since the problem is essentially nonparametric, we take a nonparametric
approach similar to the one taken by Chapman [10] and Doksum [12] in study-
ing the problem of testing for goodness of fit to a specified distribution against
stochastically ordered alternatives. In addition, we consider a more general
class of problems which includes the problem of testing for monotone failure
rate. The setup is similar to that in Barlow and van Zwet [2].

Let Y be the class of absolutely continuous distribution functions F such that
F(0) = 0 with positive and right (or left) continuous density f on the interval
where 0 < F < 1. It follows that the inverse function F1 is uniquely defined
on (0, 1). We take F - 1 (1) to be equal to the right endpoint of the support of F
(possibly + oo) and define F- (0) = 0. For F, G e F we say that F is c-ordered
(convex ordered) with respect to G(F < G) if and only if G- 1F is convex on the
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interval where 0 < F < I (van Zwet [21]). Denoting the densities ofF and 6G
byf and g, we find that F < G implies that

(1.1) r<(x) = d G('F(x) = [GF(x)]

is nondecreasing in x on the interval where 0 < F < 1. The problem of esti-
mating r(x) when G is known was considered by Barlow and van Zwet [2]. [3].
When G(x) = 1 - exp {-x}. it is easy to verify that r(x) = f(x)/[1 - F(x)].
the failure rate function of F.
We assume G known. F < G and consider the problem of testing

C

(1.2) HO:F = G

(that is, G 1F is linear on the support of F) against the alternative

(1.3) H1:F< G and F G,
c~~~~~~~

given a random sample X = (X1, X2, X, ) fiom F.
We call (1.2) and (1.3) the problem of testing for c-equivalence versus

c-ordering. We study tests based on the "total time on test" statistics for this
problem (Section 3). In the cases when G is the uniform or exponential distri-
bution we show that the tests corresponding to the "cumulative total time on
test statistics" are asymptotically minimax over a class of alternatives based on
the Kolmogorov distance (Sections 6, 7. and 8) and in each of the classes of
statistics considered by Bickel and Doksum [7] (in the exponential case).

2. Preliminaries

We can simplify our problem by introducing the following transformation

(2.1) H '(t) =
F

g[G- F(u)] du. 0. t _ 1.

Recall that G is always fixed in this discussion. Note that H is a distribution
since H` (the inverse of H) is strictly increasing on [0. 1]. In particular.
HG- 1 (t) = t so that HG is the uniform distribution on [0. 1]. When it is clear from
the context which distribution we are transforming. we will simply write H`
for HF1.
By (1.1)F < G implies f(x)/g[G -'F(x)] is non(leereasing in x forO < F(x) < 1

org[G-'(t)]/f[F-1(t)] is nonincreasing in t. O < t . 1. Since

(2.2) dH` (t) = g[GE -' (t)]e

it follows that H 1 is concave on [0, 1] or H is convex on the interval where
0 < H < 1 if and only if F < G. Hence, using transformation (2.1) we can
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reduce our problem (1.2) and (1.3) to that of testing

(2.3) Ho: H(x) linear for 0 < H(x) < 1

versus

(2.4) H1: H(x) convex and not linear for 0 < H(x) < 1.

The following result from Barlow and van Zwet [2] will be needed.
LEMMA 2.1. If F, G E. if gG-' is uniformstly continuous on [O. 1). if

f' x dF(x) < oc, and if F-'(1) < c, or gG-1(y)/(l -y) is bounded on (0, 1),
orF< G,thenH-'(1) < oc.

If G(x) = 1 - exp {-x} for x > 0, then

(2.5) H-'(t) = F(t) [ - F(u)] du.fo

In this case H (1) = o x dF(x). IfF < G, then fot x dF(x) < oo is automatic-
ally satisfied.

In testing Ho: F = G versus H1: F G we will be interested in tests 0 that
e C

have isotonic power with respect to c-ordering: that is F1 < F2 implies #,f(F,)
_ /3o(F2) where fl,(F) is the power of the test 0 when F is the true distribution.
One advantage of the transformation HF 1 is that it transforms c-ordering into
stochastic ordering
THEOREM 2.1. If F1 < F2. F1. F2., G EYE and if Lemma 2.1 holds then

(2.6) H-l >- 20H-1 O < t . 1.

If, in addition F2 < G. then
C

(2 .7 ) F 2 _t> t. O _ t _ 1.

PROOF. Note that F1 < F2 implies

(2.8) f2[FI F1(x)] increasing in x.

or

(2.9) f2[FI'(u) increasing in u.
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Hence,

HF11(t) _ HF21(t) [ I g(>1(U) 1 gG'(u) 1
() HFI1(1) HF21 (1) J H-,'(1)f,[F1 1(u)] 11F::,(-1)f2[T2 1(u)]

[t r 1 f2F 1 (u) 1 gG-'(u)d
JO HF,(1F1 1(U)

(1 )]
f2F- 1(U)

defF gG- ' (u)
(Juo f2F l (u)du.

Since f' h(u) (gG '(u))/(f2F2 (u)) du = 0 and h(u) changes sign at most once
and from positive to negative values if at all. it follows that

(2.11) |h(u) gG (u) du > ().

The second inequality follows from

(2.12) HG1 (t) = 1.
Q.E.D.

Since G is assumed known we can estimate HF 1 by substituting the empirical
distribution Fn for F; that is,

(2.13) H-'(t) = HF1(t) d gG1FE(u)du

and

(2.14) H7'0- = 1 gG-'Fn(u) du = Y gG- 1 ) (Xj:n - Xj-i:n)

where Xi:n is the ith order statistic in a sample of size n from F and XO:n 0-.
If G(x) = 1 - exp {-x} for x _ 0, then

(2.15) H71 (-) = n1 Y (n -j + 1)(Xj:n - Xji:n)

that is. n- 1 times the "total time on test" until the ith ordered observation from
F.
The following result was proved in Barlow and van Zwet [2].
THEOREM 2.2. If F. G e ! and

(i) (0t x dF(x) < oc.
(ii) gG- 1 is uniformly continuous on [0. 1).
(iii) either F-1(1) < oc, gG (y)/(1 - y) is bounded on (0. 1). orF < G and

there exists r. 0 < i < 1. such that for ?I _ y < I. gG - l (y) is nonincreasing and
gG'- (y)/(l -y) is nondecreasing in y. then for n 1-
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(2.16) sup {j g[G 'Fn(u)] du - g[G- 'F(u)] du -- 0 almost surely.

2.1. Order statistics from H. The "total time on test" statistics. H,7 '(1/n) _
f'(2/n) _ ... < H`1 ((n - 1)/n),"behave"asymptoticallylikeorderstatistics
from H. To see this let Uj:n be the ith order statistic from the uniform distribution
on [O. 1]. Then
(2.17) Zi: H- l(Ui:n f F Iu gGG- F(u) du gsnG- 1F( ) di

will be distributed as the ith order statistic in a random sample of size n from
the distribution H. Since we do not know F. Zi n. i = 1. 2. - - - . n. are unobserv-
able except in the case G(x) = x for 0 . x < 1. From Theorem 2.2 we see that

(2.18) H`' ( -)i-ni:n 0

almost surely and uniformly in i/n, 1 . i . n. This observation suggests various
tests for our transformed problem

(2.19) Ho H(x) linearfor 0 < H(x) < 1

versus

(2.20) H,: H(x) convex and not linear for 0 < H(x) < 1

based on the "total time on test statistics. Since our problem is clearly scale
invariant, we consider tests based on the studentized statistics

(2.21) WF( Wi:n H` (-I)/Hn(1).

Distributions which are c-ordered have studentized statistics which are sto-
chastically ordered. This result is the basis for the isotonicity of tests to be
considered in this paper.
THEOREM 2.3. If F, K, G E E and F < K < G, then

( 2 22) WF~~~n(-)t W n(n st n(n

u,here . denotes stochastic ordering and F,. Kn, Gn are empirical distributions
St

corresponding to independent random samples of size n from F. K. and G,
respectively.

PROOF. Let XI:n < X2:n < ... < Xn:n be an ordered sample from F. Let
J' fL = K- F(Xi:n) and note that

V,: -VV:
(2.23) X. - Xi 1:n

ii:nc Hi-l:n

is nondecreasing in i since K- 'F is convex. Hence,
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(2.24) go (_n) (Vi:n - Vi-ln)gG ( ) (Xi:,. - Xi- n)In n(i

is also nondecreasing in i, where

fi = gG ( n) (in- li- 1:n).
(2.25) S-1

.i = gG' ( ) (Xi:n - Xi-i:n).
n

Define O(0) = 0,(1±l**l * + c*i) f=, + + f3i. 1 . i . n. Define O(x)
elsewhere on [0, a1 + + ac] by linear interpolation between successive

points defined above. Note that

(2.26) =0'@ + + _t)- (0(1 + +
(a( + ±+ ai)- (a + -- + ai-I) (i

is increasing in i, so that / is a convex function on [0. x + * * + cij. Since
(0) = 0. i is also starshaped. that is f(x)/x is nondecreasing in x. Hence

V'[ZriL] yrZni
(2.27) ___=__
is nondecreasing in r.

Inequalities (2.22) follow by noting that

i i -~/ IN
(2.28) H gG ) (Xj - Xj1:n) = a

n j=1 n ~ ~ ~ j= 1

and

(2.29) n( gG ( n 1) n- Vji l n) = fljB
Hence,

(2.31) HF (1)n H- (1)

Stochastic ordering follows by noting that (KV.n, Vn:n) is stochastically equal
to an independent ordered sample from K. This establishes the first stochastic
inequality in (2.22). The second inequality follows similarly. Q.E.D.
The above proof is similar to that for Lemma 3.7 (i) Barlow and Proschan [5].
DEFINITION. A test ¢4 based on X 1. X2, . , X,n is monotonic if
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(2.32) 0(X,, X.) =
I if T(X,, X,) > C,
0 otherwise,

where T is nondecreasing coordinatewise.
DEFINITION. A test 4 is isotonic with respect to c-ordering if F, < F2 and

X = (X ... Xn)(Y = (Y, . YJ)) is a random sample from F, (F2) implies
+ (X) _ 0 (Y).

st

THEOREm 2.4. Monotonic tests based on 111:n 1"2:n- ---n-I al:ar isotollic
tests with respect to c-ordering. Isotonic tests of c-ordering have isotonicpower with
respect to c-ordering; that is, F, < F2 < G implies

(2.33) flo(F,) > flo(F2) _ :¢o(G),
where f3B,,(F) is the power of 4 when the true distribution is F.
PROOF. This is an immediate consequence of Theorem 2.3. Q.E.D.

3. Tests for convex orderings

Note that F E YF implies F- 1 (0) = 0 which in turn implies H - ' (0) = 0. Under
the conditions of Theorem 2.2. H (1) -* H' (1) almost surely as n -x x0. For
the purpose of asymptotic comparison of competing tests we may suppose that
H- 1 (]) = 1. This simplifies the discussion somewhat. The problem of testing
for c-ordering becomes

(3.1) Ho: H(t) = t on [0. 1]
versus

(3.2) H,: H convex on [0. 1].

We are in effect testing that H is the uniform distribution on [0. 1] versus the
alternative that H has an increasing density (when H -'(1) is known).

3.1. General scores statistics. If we consider the problem in which the alter-
native to the uniform distribution is specified, then one can maximize the power
by using the Neyman-Pearson lemma. Let h(t) = d H(t)/dt. If Zl:n < Z2:n <
* * * < Zn: nare the order statistics from H. then the Most Powerful (MP) level ca
test would reject when

n

(3.3) E log h(Zi:n) > kiX.

Since Wi n, I . i . n, "behave" asymptotically like order statistics from H we
are led to consider statistics of the form

n

(3.4) Tn(J) = n E J[Wi:nJ,
i= 1

where J is an increasing function on [0, 1]. (Note that since H is convex. h is
increasing and so is J(x) = log h(x).) The corresponding test would reject Ho
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for large values of the statistic. Tests based on such statistics are isotonic and
hence have isotonic power by Theorem 2.4.

DEFINITION. The test i corresponding to J(x) = x, for which~~~~~~n
(3 5) [W1 n e Wn n] = 4I if n1 E [IV:, > kn,,

( 0 otherwise.

is called the uniform scores test and n-l Y-i=, lf n (or n-l Y-N1 Wj':n since
IT'n: n 1) is called the cumulative total time on test statistic.
REMARK 3.1. Suppose G(x) = I - exp {-x} for x _ 0. Then

i

E (n - j + 1 ) (Xj: n - Xj 1:n)
(3.6) Wi:n = j=1

E (n -j + l) (Xj: n - Xj -I:n)
j= 1

and n- 1 WiV n is the cumulative total time on test statistic studied by Nadler
and Eilbott [17]. Bickel and Doksum [7] and Barlow and Proschan [4].

Other general scores tests are Fisher's test for the problem of combining tests
with

(3.7) J(x) = logx.
the Pearson or exponential scores test with

(3.8) J(x) = -log (1 -x),

and the normal scores test with

(3.9) J(x) =) -I (X)
where (D is the N(0. 1) distribution.
We will show that the uniform scores test (when G is uniform or exponential)

is asymptotically minimax over a certain natural class of alternatives determined
by the Kolmogorov distance and with respect to a class of tests including all of
the above examples.

Tests based on general scores statistics where J is increasing on [0, 1] are
clearly unbiased since they have isotonic power as noted previously.
CONDITION 3.1. The following regularity conditions are assumed to hold for J:

J has the continuous derivative J' on (0, 1) and fl J2(x) dx < xD.
To show that such tests are consistent we need the following result.

THEOREM 3.1. If F. GeE. if the conditions of Theorem 2.2 hold, if J is uni-
formly continuous on [0. 1]. and if I' J[(H-1(u))/[(H-'(1))] du < o. then

(3.10) n4-E J[W in]J J[I(;]du

almost surely as n x.



ISOTONIC TESTS 301

PROOF. Without loss of generality we may assume H- 1(1) = 1. Let Z1:n _
<_ Z__n be order statistics from H. By the strong law of large numbers,

(3.11) n-I E

J[Zijn] J du

almost surely as n -a oc. Since J is uniformly continuous and Win- Zi:n 0
uniformly in i/n and almost surely as n --* c. by Theorem 2.2 we have that

n

(3.12) n {J[Ti¾n] - J[Zi:n]} 0
i= 1

almost surely as n -ct. Q.E.D.
Consistency of general scores tests follows from Theorem 3.1 and the observa-

tion that F < G and F k G implies
C C

(3.13) L: tHl( du > i:J(u) du

by Theorem 2.1 (if J is strictly increasing).
Note that /1(H) = fl (H-1(u))I(H-'(1)) du = 1/2 when F = G.

3.2. The integral criterion. Another class of tests that are natural for our
problem are those based on one sided distance functions; that is, functions
which measure the "distance" between H7-1(x)/H, 1(1) and x. The integral
criterion is one such statistic: that is,

(3.14) [$ n -(M)_uM]dMn(U) de n [ Wi:nn

where L(u) _ 0. The corresponding test would reject Ho for large values of the
statistic. An equivalent statistic is

(3.15) n- LQ) Wi:n,

Such statistics are called systematic statistics. When L(i/n) 1_ we have the
cumulative total time on test statistic. Bickel and Doksum [7] studied selected
types of such statistics for G(x) = 1 - exp { -x} for x _ 0. In Section 7 we

prove the asymptotic equivalence of these statistics to certain general scores
statistics when G(x) = 1 - exp { -x}. It is clear that such statistics lead to

isotonic and hence unbiased tests.
If L satisfies Condition 3.1. H (1) = 1 and 50 xL[H(x)] dH(x) < oc. then

(3.16)f n-1 L ( Wi n~ xL[H(x)] dH(x)
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almost surely as n - oo. This can be proved using Theorem 2.2 and the method
of proof used by Moore [16] in proving his Theorem 1.1 (that is, Theorem 4.1
in this paper). Consistency follows from the observation that F < G and F + G

C C

implv

(3.17) f xL[H(x)] dH(x) > r xL(x) dx

by Theorem 2.1 since L(x) _ 0.
3.3. The Dn test. The one sided Kolmogorov statistic suggests the one sided

distance function

(3.18) D+= sup IWi. -n SUPL 'l_=iSn n

for use in the convex ordering problem. The corresponding test 0, would reject
Ho if Dn+ > Cn,a where Cnx is determined by Ho. By Theorem 2.3 this test will
have isotonic power, since F1 < F2 implies

(3.19) #,,(F1) = PFI[D+ > cn,j _ PF2[D+ > cn,] = #l,(F2)-
Intuitively, any test based on a one sided distance function will have isotonic
power by Theorem 2.3.
When G is the exponential distribution, the distribution of D" under Ho is the

same as that of the one sided Kolmogorov statistic since

(3.20) Whn s Uhn-i

where Ui n 1 is the ith order statistic in a sample of size n - 1 from a uniform
distribution on [0, 1]. Birnbaum and Tingey [9] computed the exact distri-
bution for D" under Ho. For large n we can use the well-known result

(3.21) lim PG {nj2 up Wi-n- <_ t} = 1 e-22

for t _ 0.
Seshadri, Cs6rg6, and Stephens [19] consider the D,t test among other

omnibus tests for exponentiality.

4. Asymptotic distribution of the cumulative total time on test statistic: general G

The cumulative total time on test statistic is

(4.1) n-i H /n def n- I

We.1) n Hnr t Wi:vnWe reject the null hypothesis (that is, F =G) for large values of the statistic.
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We seek the asymptotic distribution of

(4.2) T[ - f n1/2 n-I E Wi -/1(H)]

under the general alternative distribution F, where

Lef H l(u)d
(4.3) p(H) d f H (du

To obtain the asymptotic distribution of T, we use the following result (see
D. S. Moore [16]).

Let XI:n < X2n < * < X.:, be the order statistics from F and

(4.4) Sn = n-F E L () Xi:n,

(4.5) a2 = a2(F) = 2 Jfjf L[F(s)]L[F(t)]F(s) [1 -F(t)] dsdt.
's<t

THEOREM 4.1. (D. S. Moore [16]). If a2 < oo and

(i) EIXI = lo 1F-1(u)j du < oo,
(ii) L is continuous on [0, 1] except forjump discontinuities at a,, * * , am, and

L' is continuous and of bounded variation on [0, 1] - {al, -, am,
then

(4.6) e {nl/2 [Sn- xL[F(x)] dF(x)]} - N(O, a2).

Stigler [20], Corollary 4.1 gives weaker conditions for asymptotic normality
of sums of the form Sn = E'=I Ci, nXi: n-)
To use this result note that

(t ef Fn l(iln) li n

(4.7) H1' J gG-'Fn(u)du =J gG-'Fn(u) du

=j 1g ((n 1) (Xj:n -Xj-l:n),

where X0 0. Using (4.7) we see that

(4.8) nEI Hn1(-)

YEl g{ It n) (n i-l)[gG1() gG-(i 1)}Xi:n

+g01( n n
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Let
n-i1

(4.9) S,n = n1- H-1 ( - p(H)Hn
i=1 (A

Then. assuming gG -'(1) = 0 (so that gG- 1 ((n - 1)/n) O 0).
n -

(4.10) Sn = n { (gG)
j= ( I I

(1
n i + l_(H) [gG (n) gG Xin)]

Assuming that (u) = gG-1(u) has a continuous derivative on [0. 1]. we may
approximateSnbyn-1 1%, L(i/n)Xi:nwhereL(u) = f(u) - (1 -u -(H))'(u).
To apply Theorem 4.1 we wish to show that for this weight function

(4.11) Jo xL[F(x)] dF(x) = 0.

LEMMA 4.1. If F, G e , ifJ x dF(x) < oo. F < G. g(0) < cc and if/' is

continuous on (0, 1), then

(4.12) H '(1) = f-J xo'[F(x)] dF(x),

where 0(u) = gG-'(u).
PROOF. Recall that H-1(1) = fo gG-'F(u) du. Integrating the right expres-

sion by parts we find

(4.13) gG- 'F(x) dx = xgG-F(x) -| xo'[F(x)] dF(x).
'F(x) oF(x)0 Jo

Now

(4.14) lim xgG'-F(x) = lim x ) =,
x-oo x-.0 r(x)

since F < G implies r(x) = f(x)/gG - 'F(x) is nondecreasing and f- xf(x) dx < oo

by assumption. Q.E.D.
LEMMA 4.2. Under the conditions of Lemma 4.1, gG-1(1) < cc, and

F-1(0) = 0,

(4.15) 'o xL[F(x)] dF(x)

d f x{j[F(x)] - (1 - F(x) - h(H))0'[F(x)]} dF(x) = 0.

PROOF. By Lemma 4.1 and Equation (4.3) the definition of ji(H),
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(4.16) f° xL(x) dF(x)

= { x{l/f[F(x)]-[1-F(x)]/'[F(x)]} dF(x)-J H'-(u)du.
Integrating by parts, we find that

(4.17) f{ x[I - F(x)]iI'[F(x)] dF(x) = f F (u)[I -
u] '(u) du

= -fJ [I-F(x)]}[F(x)] dx

+ xsx/[F(x)] dF(x).

Hence,

(4.18) ,fxL[F(x)]dF(x) = f [1 - F(x)]gG-1F(x)dx - f H(u)du.

Now
('1 C~~Le[f (u)

(4.19) JH-1(u) dudf L gG- IF(s) ds] du

= J [1 F(x)]gG-'F(x)dx

by another integration by parts. It follows that

(4.20) fO xL[F(x)] dF(x) = 0

as claimed. Q.E.D.
It follows from Theorem 4.1 and Lemma 4.2 that

(4.21) -{n+I'S"}N(0, U2(F)),
where

(4.22) a2(F) = 2 fs [|' -(1 ds1(s) ds]

.[w/v(t) -(1 - t - kL(H)) '(t)] (1 -t) dt.
fF-1(t)

Since Tn = Sj/H,7 1(1), an application of Slutsky's theorem (Cramer [11]) gives
us the following result.
THEOREM 4.2. Assume the conditions of Theorem 2.2. In addition, assume

O(u) = gG -(u)hasacontinuousderivativeon [0, 1], q/(1) = 0,F-'(0) = 0,and
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s2(F) < x, then

(4.23) ° {nl12 [n- L(H)]} N (0 H2(1)]2)F

where p(H) = f1 H-(u) du/H-1(1) and a2(F) is given by (4.22).
EXAMPLE. Let G(x) = 1 - e-x for x _ 0. Then

(4.24) L(u) = 2(1 - u)-4, (u) = 1-,

(4.25) n E Wi:n -/U(H) = n1 2( iL)-

We reject the exponential null hypothesis for large values of the statistic. Under
the null hypothesis

n-i n-1

(4.26) E Wn Z- U

where Ui, i = 1, * * *, n - 1, are independent uniform random variables on
[0, 1]. It follows that

(4.27) Y [(12n)112 {n- 1 Wi:n - 1/2}1 N(O, 1)

under the null hypothesis.
In general, ifF < G and G(x) = 1 e-x for x > 0, then

C

(4.28) Y {n12 [n-1 Y Wi:n -PA(H)]} N(O, 2(F)),

where

(4.29) a2(F) = 2 { 2(1 - u)f (H)} u du]

[2(11-V) -l(H)] (I1v) dv.
fF '(v) VV

It can be verified that o72(G) = 1/12.
In the case G(x) = x for 0 . x < 1

(4.30) a2(F) = 2 J [J sdF (s)] (1 - t) dF (t)

and again 62(G) = 1/12.
In both cases n1 YU Wi.,, is asymptotically equivalent in distribution to
n-1 Ui when F c-G. This is not true for arbitrary G.
The result for the exponential case, (4.28), was first obtained by Nadler and

Eilbott [17] by a different and more tedious argument.
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5. Alternative classes of distributions based on the Kolmogorov distance
For this discussion we assume that H - 1 (1) = 1. Consider the problem

Ho: H(t) = t versus H1: H(t) convex for t E [0, 1]. (Note that H(t) _ t under
H1.) If C is a class of level a tests for this problem and Q is a class of alternatives
H with H convex, the i E C is said to be minimax over Q and C if and only if it
maximizes the minimum power, that is, if and only if

(5.1) inf &1(H) = sup [inf #l (H)].
Hc-0 OceC HeQn

It is clear that Q cannot be taken to be all H with H convex since for this class,
the infima in (5.1) would be oa and all tests in C would be minimax. Thus, the
alternatives in Q must be "separated." Birnbaum [8], Chapman [10]. Doksum
[12], and others have considered alternatives separated by the Kolmogorov
distance, that is, alternatives H, with H convex in this case, and sup,CjO i,
[t - H(t)] _ A. Here, Q(A) will denote the class of H with H convex and
suptE[O, I] [t - H(t)] _ A.

5.1. Extremal classes. The following distributions have Kolmogorov dist-
ance A (that is. suptEio, ] [t - H(t)] = A) and are convex on [0, 1] with
H-'(1)= 1:

(5.2) Hu,(t)={al~(t. 0.1.t u, A . u .1(5.2)Hu,<t1 Au.A
where a, (u -A)/u, a2 = I + A/(I - u). See Figure I1.

1 - a2(1 - t)

at

/1
0 U 1 t

FIGURE 1
Graph of HU, A
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We will also need to use

' {1 - ( -y)/a yy _ - A. A < u . 1

Let

(5.4) hu,A(t={a,, u..
( ) " a( ) {~~~~a2u < t _ 1

denote the density of Hu A(t). The distribution F(F < G) corresponding to Hu A
C

has the form

(5.5) G.,A5(X) = {G[alx0 + a2(x- x)] x0 _ x < 05
where xo = G -'(u - A)/a1. To verify this. compute

(y)

(5.6) Hj1(y) =gG-'Gu(x) dx

G-1(yG)G~()
=FGiA g(alx) dx u= A

=
O a, a,

for 0 _ y _ u - A. A similar calculation verifies the assertion for u - A _ y _ 1.
The following lemma is a consequence of the fact that

(5.7) inf H(t) = inf Hu,A(t).Hen(A) A.u.1

LEMMA 5.1. The distributions {HU,A}* 0 < A . u 1. are least favorable in
Q(A) for the class of monotone tests in the sense that if 4 is a monotone test and
IVi:n is replaced by Zi:n, then

(5.8) inff(A (H) = inf#J_(Hu A).
Hc-Q(A) A.u.1

PROOF. Suppose H E Q(A) and A = u - H(u). Then HU,A(x) > H(x) for
0 < x _ 1 which in turn implies ,3,(HUA,) < ,,,(H) if 4 is a monotone test.
Q.E.D.

Let r(x) = f(x)/gG- F(x) be the generalized failure rate function correspond-
ing to F. so that dH-1(t)/dt = 1/r[F-'(t)]. We claim that the Kolmogorov
distance applied to transforms of distributions provides a reasonable way of
separating distributions having different failure rate variation. Suppose that F
has transform HF E Q(A) and A = u - H(u). Then since H-'(t) is concave

(5.9) sup r[F-'(t)] - inf r[F-1(t)]
O<tr1 O<t.1

sup H(t) - inf H-(t)
o.rt1[dt O.t. [ t
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> [dt H'(t) i [d H'-(t)l
o< I tu,A() - 0 <t < 1 L u,uA

A .A
= a2 -a, = 2 4.

u(l - u) -

Hence, large values of A correspond to large failure rate variation.
5.2. Contiguity. The concept of contiguous alternatives plays a crucial role

in Sections 7 and 8. (See LeCam [14], Hijek [13].) Let {Hv, Kj}v _ 1 be a
sequence of similar testing problems. In this sequence the vth testing problem
concerns n, observations X1, ***, X"Vwith n,, - oo. In our setup H, depends on
v through n, only, whereas Kv depends on the parameters A,, in addition. Our
problem is to determine

(5.10) lim fl(x, Hv, Kv) = fl(a), 0 _ a 1,

where the sequence {A"} will be chosen so that a < fl(cx) < 1. The concept of
contiguous alternatives will be useful in computing (5.10) in Sections 7 and 8.

DEFINITION. A sequence {Ig an} is said to be contiguous to gu, 0 (in the sense
of LeCam-Hdjek) iffor any sequence of random variables Rn(X1, - - , Xn), Rn -+ 0
in Po probability implies Rn -- 0 in PA,probability where Po denotes the probability
distribution of X1, - * * , Xn if g.,O is true.
The following conditions implying contiguity for sequences when limn-"

n'I'An = c for some 0 _ c < oo can be found in Bickel and Doksum [7]:

(a) 8gu,A(x)/0A = 0 whenever g., (x) > 0,
(5.11)

(b) rO SUp {[Og"A(X)/A]2 [g.A(X)]- 0 . A . 6} dx < oo

for some a > 0.
It is easy to verify that (5.11) (b) holds for gu,(x) = 0GU0,(x)/1x (where Ou,A

is defined by (5.5) and G(x) = 1 - e-) for some6 > 0 such that 0 < <u < 1.
Hence, by condition (5.11) {gu,,An} are contiguous alternatives to gu, 0 ifO < u < 1.
This fact will be used in Sections 7 and 8.

6. Asymptotic minimax property of the cumulative total time on test statistic:
uniform case

In this section we assume that G(x) = x for 0 _ x _ 1 so that H-1(t) =
F-1(t). We also assume that H 1(1) = F-1(1) = 1. Our problem then is

(6.1) Ho: H(t) = t, t E [0, 1]

versus

(6.2) H1: H(t) convex, t e [0, 1].

Let Z1, Z2, * , Zn be independent observations from H. We study statistics of
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the form
n

(6.3) n EJ[Zi]1

We show that the test , corresponding to.J(x) = x is asymptotically minimax.
The function J(x) = x corresponds to the cumulative total time on test statistic.

6.1. Asymptotic properties of the cumulative total time on test statistic. Con-
sider the test

1 if (12n)1"2 [n-I E Zi - 1/21 > kn a
(6.4) /(z) =i

0 otherwise,

where kn a is defined by >(U)-P[IJ(z) > kna]= cX and U(t) = t, t e [0. 1].
Computing p = E(Z) under H. we find

(6.5) It = (A,u)=u x dx + L dx = 2

and a2 = a 2(A, u) = EZ2 _ y2or

1 A (2A - A2
(6.6) a2 =- +- (1 +u)- > 0.01

12 3 4

for 0 . A . 0.01.
In order to compute asymptotic quantities such as

(6.7) lim inf flv,(Hu,A)n-,~cJ A< u<I

the Berry-Esseen theorem (Loeve. p. 288) will be needed. D)oksum [12] made a
similar application to a related problem. Applied to the random variables
ZI, * * * Z, it states that if u = E(Zi), E(Zi - Ju)2 = a, ElZi u| = /, and
H* is the distribution of X'= 1 (Zi - ju)/n 12a. then there exists a constant K < x
such that for all x

(6.8) IH*(x) -<(x) . K/3
If H* is the distribution of Z% 1 (Zi - p)/n'12a under HU.,, then Zi- JL _ 1
implies

(6.9) ,BE|Zi-83_1
Then (6.6), (6.8) and (6.9) imply

(6.10) |H*(x) - 0(x)l_ noOK for all A E [0. 0.01].

for all u E [A, 1], and for all x, where 4' is the N(0, 1) distribution.
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For the alternatives H
,

and for the test corresponding to the statistic given
by (6.3) we have

(6.11) /,¾(JI,A) = P {(12n)1/2 [n- - 1/2] > kn, HUA}

(6.12) flq,(H.,,) = P{nl/2 n-1 >Z1 - _ k,2(3n12A Hu5A

This and (6.10) imply

(6.13) fl(H .,) - (Dkn ,+(3n)"2A) < 1000K

for all A e [0. 0.01] and u e [A. 1].
LEMMA 6.1. The cumulative total timie on te4st. i. satifies
(i) infH,n(A.) flq,(H) tends to a limtit between a and one as n -+ x if and only if

limn-_ 0 n 2An = c > 0-
(ii) For each sequence {An} such that limn-,e n1/2A, = c > 0 one has

(6.14) rni [ inf f3l,(H)] = %(D-k_ + c 31/2)n-cxo Hen(A~)

where kI, is defined by (D(k2,) = 1 -.
PROOF. By Lemma 4.1

(6.15) inf flq,(H) = inf I3o(H A).Hef2(A) A.u.1

Let uo = uo(A. n) be such that

(6.16) inf(HUOA) = infl/3k(Hu,A) . fl(A).

Now (6.13) implies that

(6.17) p (,) (tt,(kn,e + (3n) 1/2Aj IOOOK(6.17) f3q,(A) - (D 12/ (.u ) <
n

/2

where A e [0, 0.01]. From (6.6). one has that U2(A. uo) -+ 1/12 as A 0. More-
over. -kn,-+ -kI, with k1c satisfying D(-k2) = c. Thus, (6.17) implies that

f,,(A,) tends to a limit between x and one if and only if (3n)1/2AAn - c for some

c > 0. This implies (i). Furthermore, when n"/2An - c, then #,#(A,) -- 4)(-k1c
+ 3 112c) which is (ii). Q.E.D.

6.2. Asymptotic properties of general scores statistics. The general scores
statistics look like

(6.18) T.(J) = n 1 J(Zi).
i= 1
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Consider the test

(6.19) + = {1 if n I2 [T.(J) - ju]laj > k.,a,(6.19) = {O otherwise,

where yj = Jo J(x) dx, a2 = Jo J2(x) dx - 2, and kn a is defined by 4,(U) = a
where U is the uniform distribution on [0, 1].
LEMMA 6.2. If {An} satisfies lim,,_.n0/2A, = c > 0, and J satisfies Condition

3.1, then

| c -| J(x) dx + J(x) dx]
(6.20) lim 1,,(Hu,Af) = D -ka + .

PROOF. Let Ej(A, u) and Vj(A, u) denote E[Tn(J) lHu, ] and Var [Tn(J)IHHU,A].
Then by definition

(6.21) Ej(A,u) = (u J(x)dx + (1 u + A) 1(x) dx

by (5.2) and

(6.22) Vj(A, u) = n-' {(u A) j 2(x) dx

+ ( 1 u+ A) j2(X) dx E(A U)}.

Since in Condition 3.1 we assumed Jo J2(x) dx < oo, we see that EJ(A, u) < oo
and VJ(A, u) < oo so long as 0 < u < 1. Note that Vj(A, u) -+ VJ(O, u) =
n- I a2 = n- 1 [J1 J2(x) dx - (J1 J(x) dx)2] as A -+ 0'. Thus, the central limit
theorem implies that for each sequence {A} with A. -+ 0 and 0 < u < 1,

(6.23) lim P [n1/2 (Tn(J) -EJ(A., u)<) t =D
n Lco / J

From (6.19) we have

(6.24) flo(HA,u) = P{-n'I2 [Tn(J) -Ej(A, u)]

n' /2}<.-k,. + [Ej(A, u) - jaj

Using the definition of u1J and Ej(A, u) we see that

(6.25) EJ(A, u)- J=j - J(x) dx + -J(x) dx.
U nI1- U ,
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Since lim n"I2An = c > 0 we see that
n1 oo

(6.26) lim n /2[Ej(A., u) - ,uj] = C J(x) dx + IJ(x) d

which completes the proof of (6.20). Q.E.D.
We would like to show that

is maximizJ(x) dx + 1 J1(x)dx1
(6.27) in j

I -u
o<U< 1 aJ

is maximized for J(x) = x since this would imply that the cumulative total time
on test statistic maximizes the minimum power. (Note that (6.27) is unchanged
if we replace J by aJ + b when a > 0.)
The following lemma was communicated to the authors by W. R. van Zwet.
LEMMA 6.3. (W. R. van Zwet)

u- 1 fu J(x) dx + (1 -u)V- 1{ J(x) dx
(6.28) AJ = inf(1 fU

O<u<1 Lj

is maximized among all square integrable J on (0, 1) by J(x) = x where

(6.29) a2 = J2(X) dx- J(x) dx]
PROOF. Since the value of AJ remains unchanged if J is replaced by aJ + b,

a > 0, we may assume

(6.30) f1(x) dx f{ x dx 1/2

and

(6.31) f (x) dx f{x dx 1/3.

Let J(x) = x + K(x). Then

(6.32) f{ K(x) dx = 0,

(6.33) f [K2(x) + 2xK(x)] dx = 0,

and
- 1u

u

K(x) dx + (1 - u)' K(x) dx
(6.34) AJ = A + inf (1/12)1/2

O<u< 1 (/2
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where I(x) = x and A, = 31/2 (for J = I the infimum is assumed at every u!).
Suppose the proposition were false, then we would have for some K satisfying
(6.32) and (6.33)

(6.35) inf u i K(x) dx + (1 - u)1 K(x) dx]

- nf K(x)dx > iF

and hence

(6.36) J'K(x) dx > 0 for all 0 < u < 1.

However,

(6.37) f xK(x) dx = f dx f K(y) dy

an(l hence (6.36) would imply that Jo xK(x) dx > 0 which contradicts (6.33).
Q E. D.

'e have proved a minimax result for testing that F is uniform versus F convex.
TrHEOREm 6.1. Let G(x) = x, 0 . x . 1. in the problem (1.2) and (1.3). If J

is square integrable. satisfies Condition 3.1 and 0 is the level a general scores test
a.ssociated with J. then

(6.38) lim [ inf flo(H)] _ [lim sup inf f¢(H)]:
n ot HcQ5n n o HcQ(A.)

that is. the level x cumulative total time on test statistic corresponding to J(x) = x
is minimiiax in the class of tests whose weight functions satisfy the conditions above.
Doksum [12] showed that J(x) = x provides a minimax test over the class of

those J satisfying Condition 3.1 and over the class of stochastically ordered
alternatives determined by the Kolomogorov distance.

It follows from Theorem 6.1 that, in the minimax sense. the uniform scores
test is better than tests based on Fisher's weights (J(x) = log x). better than the
Pearson or exponential scores test and better than the normal scores test.

7. Asymptotic normality and efficiency of statistics based on total time on test
statistics: exponential case

Bickel and Doksum [7] and Bickel [6] considered four classes of statistics for
testing Ho: F(x) = GA(x) = 1 - exp {-2x} against IFR alternatives. These
four types of statistics were shown to be asymptotically equivalent and it was
shown that each of the classes contains asymptotically most powerful statistics
for parametric alternatives. We now show that the statistics

n

(7.1) T.(J) = n ' J(Wi:n)
i= 1
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based on the total time on test statistics are asymptotically equivalent to the
four classes of statistics in [6] and [7]. Consequently, for a given parametric
f:amilv {FO} of IFR distributions. it is possible to find a J = JF4 such that the test
that rejects Ho for large values of Tn(J) is asymptotically most powerful.

Note that under Ho. Wl:n Wn- 1n are distributed as the order statistics
of a sample of size n - 1 from the uniform distribution on [0, 1]. Using well-
known results (for example. [16]) on linear combinations of order statistics in
reverse., we have that Tn(J) is asymptotically equivalent to

n '
(7.2) Sn (J) = n (JWw) nU
More precisely. if we dlefine i= ±

(7.3) ,J = f J(x) dx. and oJ =g J2(x) dx -J

then we have the following Lemma.
LEMMA 7.1. Suppose that 0 < U2 < X. and that J' satisfies condition (ii) of

Theorem 4.1, then

(7.4) nI/2{[Sn(J) - (J(1) - PJ)] - [T.(J) - PJ]}

converges to zero in probability under Ho.
Next note that since nX Wi:n = '= (n - j + I) (Xj:n - Xjl ) if w-e set

Dj = (n-j + 1)(Xj:n - Xjln) and

(7.5) V.(J) = -(nX) i,iJ(n Di+)D;
then

(7.6) nI2 [Sn(J) - [Vn(J) + J(1)]]

tends to zero in probability under Ho. For a given parametric family {PF} of
distributions, it is shown in [6] that there exists a function a(u) = aFr(u) (see
[6], Equation (2.9)) such that the test that rejects Ho for large values of Vn(a) is
asymptotically most powerful for {F6}. Using this, Lemma 7. 1, and the definition
of contiguity, we have
THEOREM 7.1. If J = a satisfies the conditions ofLemma 7.1 and {FO} satisfies

the conditions of Corollary 2.1 of Bickel [6]. then the test that rejects HO for large
values of Tn(a) is asymptotically nmost pouwerful among all similar tests.

Bickel and Doksum ([7], Section 7) show that n 1/2 X Vn(J) can be approximated
by a sum Sn 1 h(Xi), of independent, identically distributed random variables.
We now proceed to give a similar approximation using a different derivation.
Note that we can write

(7.7) - XV (J)

n- Y_ t( n J> 8 ( 8 + J( 8lXi: n
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It follows that if we define

(7.8) L(u) = LJ(u) = (1 - u)J'(u) - J(u)
and

(7.9) W,,(J) = n L( 2 )Xi:n,

then

(7.10) n1/2 (Wn(J) XVn(J))
and

(7.11) n1/2 (It(J) Vn(J))
tend to zero in probability under Ho.
We will need

(7.12) w= f xL[F(x)] dF(x)

and

(7.13) zr = 2 L[F(s)]L[F(t)]F(s) [1 - F(t)] ds dt.
JJO<<s<t< x

If we apply Moore's approximation [16] to W,(J) we get
LEMMA 7.2. If r2 < 00 if /F-I < oo, and if L satisfies condition (ii) of

Theorem 4.1. then n12I{[Wn(J) -Qw] - Qn(J)} tends to zero in probability? where
n

(7.14) Q.(J) = n8 E BF(Xi)
i= 1

and

(7.15) BF (X) = X F(t)L[F(t)] dt-I [1 - F(t)]L[F(t)] dt.

This result establishes the asymptotic equivalence under contiguous alter-
natives of all the statistics in this section with sums of independent, identically
distributed random variables. For the computations of asymptotic power we
need some lemmas.
LEMMA 7.3. If the conditions of Lemma 7.2 hold, then E[BF(X)IF] = 0.
PROOF. If we define Ix(t) = 1(0) ifx _ t(x > t). then

(7.16) BF(X) = J' [F(t) - Ix(t)]L[F(t)] dt.

The result follows since E[Ix(t)IF] = F(t). Q.E.D.
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LEMMA 7.4. If F(x) = 1 - exp {-x}, then

(7.17) BF(X) = J[F(x)] -fJ J[F(t)] dt.

PROOF. Note that d{[I - F(x)]J[F(x)}/dx = L[F(x)]f(x) and that f(x) =
1 - F(x). Thus integrating by parts

(7.18) J F(t)L[F(t)] dt

= fo F(t) [I - F(t)] -1 d [(l -F(t))J[F(t)]]

= F(x)J[F(x)] - [1 - F(t)]J[F(t)] d [F(t) [I -F(t)]

= F(x)J[F(x)] -fx J[F(t)] dt.

where the last equality follows from F(t) [1 - F(t)]-' = e' - 1.
Similarly,

(7.19) J [1 - F(t)]L[f(t)] dt

= { d [( - F(t)]J[F(t)]] = -(1 - F(x))J[F(x)].
Q.E.D.

x

LEMMA 7.5. (i) IfF(x) = G,(x) = 1 - exp {-2x). then BG,(X) =BGI(2X)/2.
(ii) If J(u) = u, then BG1(X) = 2G1 (x) -x.
PROOF. Part (i) follows by setting x = At in the definition of BG, (X). Part

(ii) is immediate. Q.E.D.
LEMMA 7.6. If t[I - F(t)]J[F(t)] - 0 as t 1-J, then
(i) Xw = -f- [1 - F(t)]J[F(t)] dt;
(ii) if F(x) = G 1 (x), then ,=
PROOF.

(7.20) fW= {- t[I - F(t)]J'[F(t)] dF(t) tJ[F(t)] dF(t).

But

(7.21) r t[I -F(t)]J'[Ft)] dF(t) = {I t[I - F(t)] dJ[F(t)]

= -T0 [1 - F(t)]J[F(t)] dt
+ yb tJ[F(t)] dF(t)

by integration by parts. Part (i) follows.
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To show (ii), note that if we set u = F(t) = G,(t), then

(7.22) d= exp {-t} = 1 -u;
dt

thus

(7.23) f [1 - F(t)]J[F(t)] dt = f J(u) du.

Q.E.D.
If we now put together the results of this seetion. we have that

(7.24) n1/2[T.(J) - ltj] - n-I2[(X) 1[Q"(j) 'J] + yJ]
converges to zero under G, and under contiguous alternatives, where

n

(7.25) Q.(J) = n ' BG1(Xi).
i= 1

Let

(7.26) y1(F. J) = lim {X '[Qn(J) -J] + P.}

= [p(F-')]' f J[G,(t)] dF(t)

- [1- F(t)]J[Gl(t)] dt - uJ + 1..

We have shown the following theorem.
THEOREM 7.2. If the conditions ofLemma 7.1 and 7.2 are satisfied, and if {F"} is

a sequence of alternative distributions contiguous to Gl, then

(7.27) n_ [Tn(J) - yj - p(Fn- J)]

converges in law to a standard normal variable.
REMARK 7.1. Theorem 7.2 can be used to obtain the results of Theorem 7.1.
Let

1 if - [Tn(J) - pj.] > k.,.,
(7.28) =

( 0 otherwise.
and

(n 1/2
(7.29) Bo,(Gu,) -PC A [Tn(J)-jJ- (Gu, ^. J)]

whek I t(Gu AI J)

where G.,, is defined by (5.5) and G(x) I - ex'. If IiMn,,~ n"2An = C>O,
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then using Theorem 7.2 it is easy to verify that

(7.30) lim flp(G., A.) = D {-ke +±-[-- J(X) dx + J(X) dx }n~oo ' aj u {(x -uJ}

8. Asymptotic minimax property of the cumulative total time on test statistic:
exponential case

In this section we again consider the null hypothesis Ho: F(x) = G(X) =
1 -exp {-ax}. Let

n-i

(8.1) Tn(J) = n E J(Wij:)
i= 1

where J is increasing, /Ju = fo J(x) dx< 00, U2 = fl J2(x) dx - 2 < oc, and

E (n -j + 1) (Xj:n - Xji -:n)
(8.2) Wi:n = i= ,

E (n -j + 1) (Xj: n - Xj l:n)

in this case. Consider the test

n 1/2
1 if [Tn(J) - J] > k.,,

(8.3) j[ -
0 otherwise,

where kn is defined by ,B(U) = a and U is the uniform distribution on [0, 1].
Let F have transform H (see (2.1)) and

(8.4) H11(t) =

Let fl1(A) be the class of distributions F E F for which

(8.5) sup [u - H1(u)] - A
A<u< 1

and H is convex on [0, 1]. Note that ifF E Q1 (A) there does not necessarily exist
u c [A. 1] such that F < GUA. If we restrict ourselves to totally ordered classes
of distributions in Q1(A) containing some GU A, then we have that Fe Q1(A)
implies F < Gu, A The union of these classes is the class F(A) ofF in Q1(A) for
which there exists as u E [A, 1] such that F < GU, A. Suppose that F E F(A). Since
4 is an isotonic test we have by Theorem 2.4, that

(8.6) A+(F) = P[C [Tn(J) - ,uJ] > kn,,|IF]

>a.[TP(J) -j] > kn,IGu,Al = flo(GU,A)
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for some u E [A, 1]. Hence,

(8.7) inf [134,(F): F E F(A)] = inf [t3(GU,, ): u E [A. 1]].

Let n') = nf - Wi:n and

(8.8) { if (12n)112[Tn1) - 1/2] > kn,,
O otherwise,

that is, the test based on the cumulative total time on test statistic. Let 1i(Hj) =
[H- '(1)]'-1 f H- l(u) du and U2 (H) = C2 (F) [H 1(l)]-2 where C2(F) is given
by (4.29).
LEMMA 8.1. If lim n n =2A=c, then

(8.9) lim [inff3,(F): F F(An)] = D (-kI + 3 c).
n-.o

PROOF. Assume H-'(L) = 1. By definition

(8.10) fo,(GUCA) = PU,[(12n)112(Tnll - 1/2) _ kn 7]
= Pu,(12n)12[(Tnl)- 1/2) - (y(H.,) - 1/2)]
> kn - (12n)"/2[u(HU,A) - 1/2]].

For the distribution GU.An. An = c/nl12. and the statistic

(8.11) Sn n-J J(n) Xi:n. Jo(t) = 2(1 - t)

we find that the error term I2n of Moore [16] is zero, while the second one, 3
tends to zero in probability uniformly in u E [An, 1]. that is,

(8.12) sup P.,n(I'3nI > c) ° 0 as n x o

for each e > 0. Thus, n- 1 [S(1) - y(Hu,)] can be expressed as a sum of inde-
pendent, identically distributed random variables with third moments plus a
term that tends to zero uniformly in u. Using the representation

1/21) ~~~n'/(8.13) n 2[T.(0 - ji(Hu,a)] = n [S"') - Xp(Hu,A)].

we find that the same thing is true for

(8.14) n1/2 [T.(') - y(Hu,A)].
If we now apply a uniform version of Slutsky's theorem and the Berry-Esseen
theorem, we have that

(8.15) Sup l ,(GuAn)- {1 - (D[kn, - (12n)1/2(I (HU,) - 1/2)]}| 0
uefA_~1]

as n oo.

The result now follows by the computations leading to Lemma 6.1. Q.E.D.
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From Lemma 8.1, Equation (7.29), and Lemma 6.3, we obtain:
THEOREM 8.1. If J and the conditions of Lemmas 7.1 and 7.2 are satisfied, then

(8.16) lim [inf /,,(F): F E F(An)] > lim sup [inf /3,(F): F E F(An)]
n-cfj nl-xc

for each sequence {lA} satisfying limn_-. n"2An = c, for some c E [0. ox).
Thus, we have shown that the cumulative total time on test statistic is

asymptotically minimax over F(A) in each of the classes of statistics of Section 7.
REMARK 8.1. Bickel and Doksum [7] considered the problem of Section 7.

exponentiality against four totally ordered families of distributions. They deter-
mined the studentized asymptotically most powerful linear spacings test for
each family. The cumulative total time on test statistic is the asymptotically most
powerful linear spacings test for the family of densities

(8.17) fo(x) = [1 + 0(1 - e-X)] exp {-[x + O(x + e-x - 1)]}

where fo(x) = e-x and fo(x) has increasing failure rate for 0 > 0. Bickel [6]
showed that this test is in fact asymptotically equivalent to the level x test which
is most powerful against the family {fe(x)} among all tests which are similar and
level cx.

Bickel and Doksum [7] computed the asymptotic efficiency of each linear
spacings test considered relative to each family of distributions for comparison
purposes ([7], Table 6.1). Let e(Wi, j) denote the asymptotic efficiency of Bickel
and Doksum's test Wi relative to the jth family. j = 1. 4. of distributions
(W1 corresponds to the cumulative total time on test statistic). It is easy to verify
from ([7], Table 6.1) that

(8.18) min e(W1, j) = max min e(1T j):
J J

that is, the cumulative total time on test statistic maximizes the minimum
asymptotic efficiency. This observation suggested the minimax property proved
in Theorem 8.1.
REMARK 8.2. It is possible to prove a minimax result for the cumulative total

time on test statistic and the class of alternatives QI (A) rather than F(A) if we
worked with infF limn-,0 f3lo(F) rather than limn infF fl,,(F). This is clear since
the asymptotic power of

n-1

(8.19) T.") = 1 Z W:
i= 1

depends only on p(H1) and

(8.20) inf jt(H1) = inf jt(H ,A).FeQf(A) ue[A, 11

However, we would then have to assume that the distributions F in Q(A) satis-
fied conditions such that Tn1) is asymptotically normal. Such conditions are
given in [6] and [7] for parametric families of distributions.
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9. Asymptotic minimax property of the cumulative total time on test statistic:
general G

If we consider the problem of testing that F = G where G is completely speci-
fied then a natural class of statistics are those of the form

1i/2 n
if

n
1n' Z J[G(X1)] - yj> kn2.(

(9.1) ijL i=1

O otherwise.

For J(x) = x, = 0* is the uniform scores test.
Suppose G-'(1) = F- 1 (1) = I and F < G. Then F(x) . G(x) forO . x . 1

and if J is increasing. 4* will provide an isotonic test for our problem.
If we confine attention to the extremal class of alternative distributions defined

in (5.5) then we can prove the following asymptotic minimax theorem.
THEOREM 9.1. If J is square integrable and

(9.2) gG1(y)[(l-u ) G (y)] l

uniformly in y E [0. 1] as A -+ 0. then

(9.3) lim [ inf f,..*(G.,A )] _ lim sup [ inf #,*(GU.A,)],nl-c1 O<u< n-xo O<u<1

wihere limn- n' 2An = c > 0.
The proof is similar to that of Theorem 6.1. In this case, Ej(A, U) =

EGUA [J[G(X)]] becomes

(9.4) Ej(A. U) = (u A) J(Y) {u Gg[(u )G1(y)]} dy

+ [I + 1 ] J(Y){ Gg1(y)g[alxo + a2(G 1(y) _- dy

where a, = (u - A)/u, a2 = 1 + A/(1 - u) and xo = G '(u -A)/a1. As before

(9.5) lim n' 2 [E,(An, U) - PA1] = CL--J J(y) dy + 1 u J(y) dyl

o~ ~~ o 1- Jo j

We would like to acknowledge the help of W. R. van Zwet who found a general
proof of Lemma 6.3 which replaced many tedious arguments involving special
cases.
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