196

4

Special Issue

it 5/2013

Open Source-Entwicklungsprozesse

Open Source Engineering Processes

Wolfgang Mauerer*, Siemens AG, Corporate Technology, Erlangen,
Michael C. Jaeger, Siemens AG, Corporate Technology, Minchen

* Correspondence author: wolfgang.mauerer@siemens.com

Summary Software engineering in open source projects
faces similar challenges as in traditional software development
(coordination of and cooperation between contributors, change
and release management, quality assurance, ...), but often uses
different means of solving them. This leads to some salient
distinctions between both worlds, especially with respect to
communication and how technical issues are addressed. The
variations within open source software (OSS) communities are
considerable, and many different approaches are currently in
use, ranging from informal conventions to highly systematic,
formally specified and rigidly applied processes. We discuss
the archetypal best practises in the field, illustrate them by
presenting example projects, and provide a comparison to tradi-
tional approaches. »»» Zusammenfassung Software-
Engineering in Open Source-Projekten begegnet ahnlichen Her-

ausforderungen, die auch in der klassischen Softwareentwick-
lung auftreten — angefangen bei der Koordination beteiligter
Parteien Uber Veranderungs- und Versionierungsverwaltung
bis hin zur Qualitdtssicherung. Allerdings verwenden Open-
Source-Softwareprojekte haufig andere L6sungsmethoden. Da-
raus entstehen substantielle Unterschiede zwischen beiden
Welten, insbesondere beziiglich der Art und Weise, wie Kom-
munikationsfragen und technische Probleme gel6st werden.
Innerhalb der Open-Source-Welt variieren die Problemlésun-
gen von Projekt zu Projekt; es existieren viele unterschiedliche
Ansdtze, die den Bogen von informellen Konventionen hin zu
systematischen, formal-definierten und stringent angewende-
ten Prozessen spannen. Dieser Artikel beschreibt archetypische
Erfolgsmethoden, illustriert sie anhand von Beispielprojekten,
und vergleicht die Methoden mit traditionellen Ansatzen.

Keywords ACM CSS — Software and its engineering — Software creation and management — Collaboration in software
development — Open source model; open source software engineering; software engineering processes, software releases, Linux

»»» Schlagworter

1 Introduction
While the core ideas of open source software (OSS) have
been around for several decades (albeit under different
names), extended interest in the differences between OSS
engineering processes and traditional development tech-
niques has only been sparked a few years ago, when the
first projects that were developed in an open, collabora-
tive manner started to compete with traditional solutions,
match their capabilities, and finally even exceed their
market shares. Consequently, it is interesting to study
in which aspects OSS engineering differs from traditional
techniques.

There is no single OSS engineering process, and it is
obvious that there cannot be one. However, OSS projects
necessarily share the commonality that their source code

it — Information Technology 55 (2013) 5/ DOI 10.1515/itit.2013.1008

Open-Source-Softwaretechnik, Softwareentwicklungsprozesse, Softwarereleases, Linux

is available to the general public — although even the
terms under which the code may be modified and used
differ wildly. Every project follows its own set of rules
that may or may not overlap with the approaches of
other efforts. However, there is a distinct “flavour” at-
tached to OSS engineering that we will try to distil in this
paper: Partly based on existing literature, partly based on
our own experience. Specific example cases are used to
provide facts that underline or exemplify the statements.

Note upfront that the license of a project does not
provide any indication of what engineering processes are
used. Two factors guide the engineering process: On the
one hand, the contributors to a project; on the other
hand, the project’s development history and experiences.
Naturally, OSS projects have to face the same challenges

© Oldenbourg Wissenschaftsverlag

mailto:wolfgang.mauerer@siemens.com

that occur in general software development. We will par-
ticularly focus on collaboration (how developers exchange
information beyond code, how decisions are reached, and
how new developers are introduced to the mechanics and
styles of a project), technical aspects (how code is writ-
ten, what stylistic and technical requirements it has to
fulfil, and how new code is integrated and merged into
a project), documentation (how information for users,
but also for new developers is provided, and how code is
documented), festing and release management (how it is
ascertained if and when a piece of software is sufficiently
free of bugs to be released), and maintenance (how the
communities deal with the need to fix issues in already
released software, and how the longer-term availability of
code is secured).

After discussing generic possible approaches of the
OSS communities to these problems, some examples are
given for specific, well-known projects. Finally, we illus-
trate the differences between traditional and open source
engineering in more detail.

2 Best Practices

2.1 Collaboration Issues
Communication between stakeholders is known to be one
of the important building blocks of software engineering,
particularly when developers work in dispersed global
teams with intercultural issues. For many open source
projects, development is far from happening behind any
walls that could concentrate communication. Globality is
the rule, not the exception.

In stark contrast to classical software engineering, the
best amount of communication for OSS projects is done
in writing — dominantly via mailing lists, but also via
chats, message boards, and other forms of network-
based communication. The amount of traffic captured
on central archiving sites like http://gmane.org, together
with the geographically dispersed nature of open source
development, is a strong indicator for this behavioural
observation. Periodic status phone calls to bring spatially
distributed developers together are established for some
larger projects, but unlike, say, daily scrum meetings,
they are only an extension to textual communication,
not a crucial component of the development process.
This has two important implications:

e Discussions are intended to be as technically focused as
possible, but the arising sterile and especially imper-
sonal nature of communication (often, contributors
to a thread of discussion do only know the names
of the discussion partners, but need not have any
information about their personal habits, attitudes or
idiosyncrasies that are easier to obtain in other com-
munication scenarios — in fact, even the gender might
be unknown) lowers the barrier to drift into inap-
propriate, rough, sometimes even explicitly insulting
language in the sake of technical clarity and direct-
ness (missing non-verbal communication [6] may be

one explanation for the phenomenon). While most
projects deem such behaviour inappropriate and unde-
sired (some communities even formulate explicit rules
of communication to prevent such behaviour [13]), it
cannot be prohibited by any “official” authority, and
can increase the barrier towards new contributions by
project outsiders.

e Information and the content of discussions can be
distributed to a large number of developers without
involved technical measures — a simple, publicly acces-
sible archive is sufficient. However, mistakes that are
pointed out on a public mailing list remain public for-
ever, as do technically flawed or inaccurate statements.
Depending on the cultural background and personal
attitude of individual developers, this can easily act as
an inhibition for contribution.

To address the negative aspects of partly anonymous
communication, many projects do organise regular
meetings (conventions, hackfests, summits, ...) to bring
developers together face-to-face. Typical examples in-
clude ApacheCon, PyCon or LinuxCon. It is established
practise to organise development sprints as part of
larger conferences to work on currently open problems
in close spatial proximity. The KDE community, for
example, participates in 15-20 such sprints per year,
see http://community.kde.org/KDE_e.V./Sprints. Conse-
quently, active open source developers tend to invest
some time in travel.

Not only substance, but also the form of communi-
cation is a factor that receives consideration especially
in larger projects: When hundreds of messages are ex-
changed per day and need to be at least briefly glimpsed
over by many developers, it becomes increasingly import-
ant to employ common conventions on how to describe
problems or how to report bugs. Even the question where
an answer to a previous email is placed — on top of the old
message, or on bottom of it — can be deemed as a crucial
ingredient of efficient communication [7].

Open and public communication lowers the barrier
between developers and users: Non-programmers can not
only observe, but directly participate in discussions about
the project, and can gain immediate influence on the
future directions. This strengthens the bonds between
users and developers, and is rarely possible with closed
source software.

2.2 Technical Aspects
The core idea of OSS is that shared development on com-
mon code produces advantages that range from concerns
about freedom (as in speech [24]) to commercial ben-
efits. This implies global cooperation involving multiple
companies, and poses numerous technical problems. The
very technical aspects of producing common code form
therefore one of the distinguishing factors of open source
engineering.

Regardless of the specific cooperation and manage-
ment style of a project, there are three main contributor

197

http://gmane.org
http://community.kde.org/KDE_e.V./Sprints

198

y

Special Issue

roles: Developers who create code and submit it to

a project; maintainers who decide whether the code is

accepted, needs to be revised, or is rejected; and review-

ers, who evaluate the quality of new code (contributors
usually act in multiple roles). This structure poses several
challenges:

e Developers need to be able to work independently of
other developers, and the independence must particu-
larly be maintained in the presence of large numbers
of other contributors. With OSS development being
inherently less synchronised than traditional methods,
the ability to change overlapping portions of code
and re-integrate the changes into the main code ba-
sis requires more support on the technical level, in
particular efficient branching/merging capabilities, and
the possibility to re-base ongoing development work
onto the latest changes in the mainline distribution.

e Likewise, maintainers must be able to deal with sub-
missions that address overlapping portions of the code,
and need to be able to solve the arising conflicts effi-
ciently without time-consuming manual work.

e Reviewers must be able to evaluate contributions with
as little reference to external information sources (i. e.,
the patches are ideally self-contained), and review re-
sults need to be accessible to other reviewers and
developers for discussion. In the absence of design
documentation and upfront planning, code itself is
usually the basis for reviews, which happen on a pro-
ject’s main communication channels, typically mailing
lists.

While many older revision control systems claim to satisfy

these requirements, practical experience gathered in large

projects has falsified many of these claims, and led to the
creation of massively distributed VCSes like git, mercurial
or bazaar.

Instead of integrating large chunks of development
work at a time into the VCS, changes in OSS projects are
usually presented in the form of patch stacks: Collections
of modifications that address a single issue (implement
a new feature, fix a deficiency, etc.), but are structured
into separate steps that perform one small, self-contained
modification at a time. Each of these modifications is
ideally accompanied by a short explanation of what the
change is good for, why it is required, how it works, etc.
This structure simplifies not only patch review, but eases
the partial merging of features (pick useful components,
and omit undesirable contributions). It also implicitly
documents design decisions and modifications done on
the project. Depending on the rigour with which these
means are applied, it may also be required that the patches
in the stack are orthogonal: A software system that at least
builds properly must arise when only the first # patches
of the N patches of the series are applied in correct order.
This is similar to the product increments of scrum, but
is more fine-grained, and serves a wider purpose: When
a bug is known to be not present at revision rj, and
present at revision 7¢(j < k), it is possible to build all in-

termediate revisions of the software and determine which
change introduced the bug in an automated manner — see
Ref. [16].

A common requirement is that contributions and
patches adhere strictly to a given coding style, which
eases not only merging and discussing new contributions,
but also makes it easier to modify existing code. Many
projects include tools to determine if a given patch set
tulfils all required criteria.

2.3 Documentation

OSS projects typically don’t provide a comprehensive col-
lection of documents that describe all aspects of a project
from low-level details to high-level design documents, as
is traditionally suggested [8]. Design decisions and other
choices that shape a project are, however, implicitly doc-
umented on the mailing lists. Alternate design choices
that were rejected can be found there. This makes more
information available than when decisions are based upon
personal or group discussions that are rarely recorded in
their entirety. However, it is more difficult to find the
appropriate pieces of information from an unstructured
data source.!

A considerable amount of information is implicitly
contained in the revision control logs, which is a second
source for design rationales. Another popular method is
to employ integrated documentation tools like doxygen
to provide information at the API level; the raw material
is directly contained in the source code, and can be kept
up-to-date with comparatively little effort.

2.4 Release Management
Managing releases is a highly project-specific endeavour,
with approaches ranging from fixed, periodic release dates
to releasing code only when it seems finished to specific
deciders that may or may not follow formal criteria to
arrive at the conclusion. Many projects employ a multi-
stage strategy before releases are cut: After a merge- or
development period in which completely new code and
far-reaching changes to existing code can be added to
the source base, a testing phase (typically termed re-
lease candidate or, more like in traditional terminology,
beta phase) is started, and only error-correcting changes
and uncontroversial small, focused improvements may
be merged into the source base. After handling integra-
tion problems and settling a satisfactory fraction of open
issues, a release is cut.?

Operating system distributions tend to follow more
formalised release schedules: The Linux distribution

I Some developers have established the habit of providing a link to
mailing list discussions that took place during the development of
a feature in the commit logs, but this is by no means a universally
accepted practice.

2 Since most open source projects are not concerned about shipping
physical media or printing physical documentation, this usually means
nothing more than providing a tag in the revision control system, and
sending an announcement to the appropriate mailing lists.

Ubuntu provides two releases per year, one at the end
of October, another at the end of April. OpenBSD also
features two releases per year. Enterprise distributions
(for instance Red Hat Enterprise Linux) typically also
offer a post-release management that guarantees updates
and back-ports over an extended period of time, typically
spanning several years.

2.5 Testing

The reasons for testing in open source projects are
not much different than for testing in traditional soft-
ware engineering. Many of the widely-deployed unit test
frameworks are released under open licenses, and most
OSS projects include unit tests nowadays. There is, how-
ever, usually little system or integration testing on the
level of individual projects; distributions are the excep-
tion: Making sure that the components of a distribution
interact in the desired manner, and that changes in indi-
vidual components do not introduce faults at the system
level is an obvious desideratum for them.

This lack of comprehensive explicit testing is partially
compensated by implicit testing: Users and especially
developers can operate with arbitrary snapshots and in-
termediate versions of the software, which implicitly leads
to a continuous testing of the components in the indi-
vidual use-cases and scenarios the intermediate stages are
deployed in.

2.6 Maintenance and Stable Versions

Maintaining stable versions of software is required for
essentially two reasons: When the software is deployed
in scenarios with high stability requirements that can
only tolerate a small amount of changes (for instance,
when safety/security certifications are required, when sys-
tem robustness is more important than the benefits of
the latest features, or when interface stability is needed).
The first requirement is usually satisfied by maintenance
branches that, from a given revision onward, ports only
important bug fixes from the development branch into
the old tree, but omits new features. Maintaining such
branches is a time-consuming venture, and only larger
projects or projects with explicit commercial funding can
sustain such measures — smaller projects typically man-
date users to update to fresh releases when critical bugs
are fixed.

API stability (which explicitly excludes ABI stability)
is less of an issue for OSS: Components that build on
top of an existing framework are required to be avail-
able in source form when the basis license is restrictive,
which enables communities to continuously update com-
ponents to new APIs, rendering stable interfaces mostly
pointless. For permissive licenses, one notable scenario is
when proprietary extensions or plugins are built on top
of an open framework (e. g., SugarCRM). Interface users
then need to take care of providing a stable API in the
base platform when they don’t intend to continuously

update their closed components, or ensure that binary-
only releases continue to work with new versions of the
base platform.

3 Project Examples

3.1 Linux Kernel
As the largest and most active open source projects by
the usual descriptive standards, the Linux kernel serves
as an engineering role model of high influence for many
other projects, especially in the low-level and middleware
regime. This makes it a particularly interesting target for
closer evaluation. During the last two decades, the project
underwent several considerable changes how the develop-
ment process was organised, usually caused by a growing
number of contributors that brought the previous process
to its scalability limits. While we won’t provide a detailed
historical record of the changes, it is worth noting that
the distributed revision control system git was specifically
invented to deal with these problems.

The current process is semi-formally documented (see
Ref. [2], and Ref. [7] for a more detailed description), and
comprises of the following stages to merge modifications
into the mainline kernel.?

e The initial requirement collection and design discus-
sions are performed on the main kernel mailing list
(LKML). However, it is also an established pattern that
these steps are done without community involvement,
driven by needs of a developer or vendor.

e The patch stack is posted to subsystem-specific mail-
ing lists for discussion, is reviewed, and iteratively
improved and re-posted. It is not unusual that five
or even more iterations are required until all review
comments have been addressed.

e The subsystem maintainer merges the patch into
a subsystem-specific tree, where it is subjected to re-
view from a wider range of stakeholders, for instance
maintainers of other subsystems. This may again raise
various issues that need to be addressed.

e Once all issues have been addressed, the subsystem
maintainer sends a pull request for the new features,
which are eventually merged into the vanilla tree, that
is, the tree tended by the Linux core maintainer. How-
ever, it can also be decided that the feature is rejected,
which requires a complete re-engineering or re-writing
of the approach.

Note that the project features a hierarchical maintainer

structure, and depending on the area of interest, patches

can flow through multiple maintainers, extending the
previously described process accordingly.

The Linux kernel employs a rigid release schedule: New
code is only integrated during a two-week merge window,
and the approximately six following weeks are used for
testing and debugging. Interim releases cut during this

3 We intentionally omit the staging mechanism that was established
to bring device drivers of sub-optimal quality into the main kernel
tree as early as possible.

199

200

y

Special Issue

phase are termed release candidates. The fixed release

schedule must not be confused with upfront planning:

The set of features integrated during one release cycle is

only determined by the state of the code during the merge

phase, and is not influenced by any (public) road-map.
Besides the vanilla tree, other important trees exist:

e The stable trees collect security- and otherwise criti-
cal fixes and apply them to a series of stable kernel
revisions. By means of special patch annotations, it is
possible to simplify the process of ensuring that the
change ends up correctly in all relevant trees.*

e The -next tree is an integration tree that collects (at
short intervals) all patch sets intended to be merged
during the next release cycle. The goal is not to pro-
duce a stable kernel, but to detect any interference
between otherwise unrelated upcoming patches early.

e Individual developers typically maintain a number of
topic trees dedicated to their particular interests. Once
a feature has reached a stable state, the changes are
submitted to the appropriate maintainer.

3.2 Android

The Android project serves in two roles: As a distribution
of various components that may be equipped with slight
modifications, and at the same time as a replacement for
classical embedded Linux distributions, accompanied by
considerable and far-reaching changes to the traditional
Posix programming model that require own develop-
ments all across the stack. Consequently, the project has
to cover two different engineering aspects: On the one
hand, base components are taken from the OSS ecosys-
tem and augmented with patches to fix critical issues
or provide desired enhancements, while avoiding to cre-
ate a privately maintained fork. For several large and
important external projects (the Linux kernel, OpenSSL,
WebKit, ...), the preferred policy is to fix issues upstream,
and benefit from the changes by updating the component
to a new release. On the other hand, the development of
custom, Android-specific components needs to be han-
dled.

The project code is distributed in a large number of git
repositories; a special-purpose tool (repo) was designed
to ease simultaneous updates of all components. The
structure keeps contributions from outside sufficiently
disentangled from the custom development, yet integrates
all components into a coherent whole.

Submitting patches is done via a fully documented,
tool-based process (see Ref. [1]) that is roughly sum-
marised as follows:

e Patches are prepared in the author’s environment of
choice.
e A patch is submitted for review to the Gerrit system,

a web-based tool to handle the review process.

e Approvers are notified about the patch, and can pro-
vide “verified” (after ensuring that the code builds and

4 See www.kernel.org/doc/Documentation/stable_kernel_rules.txt for
the details.

functions properly) or “reviewed” (following a code
review) tags.

e If the patch is accepted, it is automatically merged into
the current state of the trees by gerrit. When the merge
fails, the code can be either fixed by the approver, or
be sent back to the author to adapt it to the current
state of the code.

The project does not formally distinguish between

Google-internal and external contributors, although most

development on the custom components is done inter-

nally form Google, which sees itself as responsible for
engineering, marketing, and core platform development.

In contrast to the Linux kernel, there are no explicit
stylistic requirements on a patch that are checked with
automated tools. However, review questions that have to
be addressed when patches are considered for integration
are formally documented [1] and range from potential
design flaws over good use of best practices to security or
instability risks.

3.3 Apache Software Foundation

The Apache Software Foundation is an organisation to
host and support various open source projects. Currently,
about 200 projects are hosted by the foundation, with the
most popular one being the Apache HTTP server. Apache
projects share commonalities not only for the open source
license, but also for the software development process that
has evolved over the years.

The foundation provides a description of the engineer-
ing process [9] that defines the basics of collaboration.
The project model does not define roles with assigned
responsibilities (e.g., architects, testers,...), but uses
a voting model to take decisions which are discussed
using the Apache hosting infrastructure (e.g., mailing
lists, issue trackers, project wikis, ...).

Voting represents an essential instrument for decision
making, and the following cases are distinguished: vot-
ing for procedural activities in a project, voting on code
modifications or voting for releasing a package [10]. This
requires different voting rights for individual contribu-
tors. The particular rules for voting can be defined by
each project. One important alternative to voting is the
concept of lazy consensus, which implies acceptance if in-
volved persons remain silent. Given that an OSS project
represents a distributed effort, the lazy consensus avoids
blocking situations when involved persons cannot con-
tribute to decisions in a timely manner.

Two general modes for source code votes are distin-
guished: In the lazy case, the contributor can commit
source code, which is reviewed only afterwards (commit-
then-review). This procedure appears more suitable for
starting projects. Alternatively, the contributed source
code is first reviewed, then a voting is carried out and
if a positive result is obtained, the source code is com-
mitted (review-then-commit).

For working on source code, the foundation provides
suggested work-flows. For example, it describes the re-

www.kernel.org/doc/Documentation/stable_kernel_rules.txt

lease management for incubator projects [11]. However,
individual projects can define their own release man-
agement or their own way of handling contributions.
Detailed characteristics about the applied processes are
provided by the individual projects.

4 0SS Engineering versus Traditional Processes
Software engineering processes are an old and well estab-
lished topic. While the waterfall model, one of the earliest
approaches in the field, tried to apply a classic engineering
approach to the construction of software, the deficiencies
of the approach became quickly apparent: The created
asset, software, can be modified, changed, and replaced
to a much greater extent than physical goods, which ren-
dered the process too inflexible. Adapted with iterations
and feedback loops in subsequent efforts, the waterfall
model still represents a classic idea of developing soft-
ware.

We consider two other examples of software engin-
eering approaches from the 90ies: The V-Model, which
is intended for general IT projects in the governmental
area including the engineering of software [14], and the
Rational Unified Process (RUP) [15], which was consid-
ered a trend due to the adoption of the Unified Modeling
Language (UML) on which the RUP built upon [17].

Both approaches differ from each other: The V-Model
separates engineering into two halves: the first half defines
requirements and specifications steps with increasing
level of detail and the second half describes the according
verification of these steps with decreasing level of detail.
Furthermore, the V-Model provides precisely expected
assets and responsibilities of the involved roles. With
checkpoints for comparing the outcome with previous
set definitions, the project cannot deviate easily from ini-
tial definitions.

The V-Model ensures a high degree of security when it
comes to delivering the originally intended assets. How-
ever, a project cannot be easily adapted in the presence of
problems, or when outside settings change. Unexpected
challenges are not optimally dealt with. The model fits
the administrative and economical interests of a project:
A customer (or funding party) is provided with a clear
view on what to expect as early as possible. When many
sub-contractors are involved, the unambiguous definition
of deliveries is an important asset.

The RUP, having evolved from the efforts of the
Unified Modeling Language (UML) approach, represents
a framework that can be tailored to create an individ-
ual process. The engineering process addresses iterative
and feedback-loop based software creation to improve
adaptability in case of unexpected challenges. Notably,
the approach demands high discipline to use models not
only for documentation or as a means of collaboration,
but also as the specification of a software system.

Notwithstanding other efforts that are not discussed
here, the previous decade unearthed an apparent prob-
lem of the software industry: Surveys report a project

failure rate between 10-50%, depending on the definition
of project failure. While hard numbers are difficult to
determine [19], estimates exist that project failures cause
a waste of billions of dollars [3], which is a huge potential
for cost savings. Improper requirements engineering and
the lack of software engineering know-how training for
developers were among identified main causes.

More importantly, though, it was claimed that the tra-
ditional way of engineering software was apt for standard
projects that mostly consist of adapting existing pieces
for the needs of a particular customer. When it comes
to the development of new approaches, a more flexible
engineering process was supposed to be necessary.

One effort originating in the early 2000s is extreme
programming, notably the approach by Beck [18]. Sub-
sequently, the agile software development movement
evolved (see http://agilemanifesto.org/), which influenced
the recent years of software development. In a nut-
shell, agile software development places the development
of features in the centre of development planning and
the engineering process. The Scrum process frame-
work is among the most popular agile engineering
approaches [20].

It could be argued that “classic” software development
efforts traded the certainty of achieving exactly what was
demanded for efficiency. However, software projects de-
mand a high degree of liveness in terms of coping with
unexpected challenges, and the original problem was to
reduce the number of project failures. The term live-
ness roots from the research about reliable systems and
describes in general the ability of a system to result in
“something good” even if unforeseen events happen dur-
ing execution [21].

4.1 Differences
As we have outlined in the previous section, more re-
cent software engineering processes improve liveness of
a project by better adapting the engineering techniques
to a changing and dynamic environment or a shifting
project focus. OSS engineering processes need to cater
for the desires of a variety of projects and an even larger
variety of contributors. Since there is no coupling to de-
fault processes of organisations, a wide variety of diverse
processes resulted in consequence. These processes are
optimised for the immediate goals of a project.
However, among this diversity, a generic open source
engineering attitude exists, which is described by the
adage “release early, release often”; another adage says
“start fast, fail fast”. This means that starting software
engineering very quickly with less upfront planning will
lead to more transparent progress and therefore result
in a smaller extent of failure. In addition, the public
submission of defects or issues involves externals from
the project adding transparency to the software quality.
Of course, open source projects cannot provide a guar-
antee that all reported issues will be solved at a defined
time. But the unfortunate project case of a hidden serious

201

http://agilemanifesto.org/
http://agilemanifesto.org

202

Special Issue

y

“show stopper” revealed at late phases of the develop-
ment becomes less likely with that additional layer of
public quality feedback. If there are defined schedules for
releases of decisions to release only after a set of sig-
nificantly blocking issues are resolved, defined goals with
respect to software quality are implicitly set.

With a reduction of the rate of project failures as
most important goal of software engineering in mind,
this transparency represents a considerable asset. The
earlier a project failure is recognised, the less resources
are spent towards the wrong direction. This is one of
the goals of agile development, but also marks the main
strength of OSS development: efficiency. At every stage
of the project, the involved persons are as well-informed
as possible about technical risks and therefore about the
entire risk of failure.

However, there are also drawbacks of OSS engineer-
ing as compared to traditional approaches: There is no
guarantee what is going to be built before the actual
creation of the software. Open source projects can be
called incident driven instead of implementing upfront
requirements engineering, as in the traditional software
industry. Contractual safety about the outcome does not
exist.

Two major trade-off goals for projects need to be
considered when comparing OSS engineering to tradi-
tional methods: Firstly, safety, namely a guarantee that
software is exactly built as specified (using requirement
specifications or contracts). This covers functionality as
well as trade-offs to functionality, time and budget. Of
course, the more innovative a software project is, full
safety regarding functionality, budget and time can never
be achieved. Secondly, a degree of project liveness, which
refers to the the level of adaptability. When a project
is being worked on, it is desired that it can cope with
unplanned situations and adapt in a flexible manner to
unforeseen changes.

Different studies discuss the nature of the OSS engin-
eering process and their differences to other engineering
processes (see, for instance, Ref. [5]). For example, OSS
engineering involves public feedback, an element not
found in most engineering processes applied to propri-
etary software. Public issue trackers, open code, the use
of mailing lists, etc. are measures to ensure a high degree
of liveness. The safety of the process is rooted in track-
ing issues, instead of doing general planning upfront.
Therefore, OSS engineering implements less safety than
traditional efforts for proprietary software in our opinion.

5 Related Work

The project discussions of Sect. 3 gave examples of the
diversity faced among OSS projects, while previous sec-
tions have pointed out common characteristics. These
commonalities pose differences to software development
in proprietary environments. The overview provided by
Boehm has served as an orientation in the area of software
development in the proprietary world [17].

This article provides a qualitative analysis of these
characteristics as they are observed today, and brings
them into context with two examples of proprietary soft-
ware development. In addition, Sect. 3 provides examples
from three major forms of open source development pro-
cess implementations. It is important to note that we have
studied the current state of affairs; while similar analyses
have been published a decade ago (e.g., [26;30]), the
open source project landscape is dynamical and evolves
constantly as new ideas are brought forward by contribu-
tors, which makes it important to periodically re-consider
the state of the art.

A large number of publications cover the phe-
nomenon of open source projects as such: They discuss
the motivation for stakeholders to contribute to such
effort [25;27;29;31]. While common perception under-
stood contributions to open source projects as being
without monetary compensation, recent research indi-
cates that a relevant part of contributions appear to
be paid work by participating companies [28]. In both
cases, contributions by private persons and as part of
paid work, a self-organising nature of project governance
and inter-operation is required [28]. Understanding this
requirement as important influence represents a relevant
consideration for understanding the best practices as pre-
sented in Sect. 2.

One of the main characteristics of open source projects
is transparency on what and how things happen in
a project, and how decision are made. These aspects
influence the progress of a project, which can be quan-
titatively measured. Various researchers have performed
general analyses (e.g., [25]), or have examined specific
aspects of open source development in detail. For ex-
ample, Kuro and Tian provide an analysis based on how
many days it takes to open, cover and resolve (or deny)
reported issues, bugs or defects [22]. Another example is
Ref. [23], which examines the size distributions of com-
mitted source code [23]. Contrary to these approaches
this article does not focus on one specific aspect of an
open source project, but instead describes the more gen-
eral characteristics.

6 Conclusion

Open source engineering processes are similar to all tradi-
tional engineering processes in some aspects, but exhibit
crucial differences in other areas — in particular with re-
spect to communication, and even more so as to how
technical issues are handled and resolved. While a con-
siderable focus is placed on which and how technologies
are used, little emphasis is placed on legacy issues. Actu-
ally implementing code has a much higher priority than
discussing possible alternatives or planning ahead. We
have illustrated these differences to traditional software
engineering by discussing generic best practices of OSS
development, by means of several project example dis-
cussions, and by comparatively outlining the approaches
applied in traditional software engineering.

References

(1]

[7]

[8

[9

(11

[12]

[13

[14]

[15]
[16]

(17]

(18]
[19]

[20]

[21]
[22]

[23]

Google patch submission and review guidelines, http://source.
android.com/source/life-of-a-patch.html ~ and http://source.
android.com/source/submit-patches.html.

Linux Kernel Development process, http://www.kernel.org/doc/
Documentation/development-process.

R.N. Charette, Why Software Fails, IEEE Spektrum, September
2005.

K. Schwaber, J. Sutherland, The Scrum Guide, available at http://
www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_

Guide.pdf.

J. Robbins, Adopting Open Source Software Engineering (OSSE)
Practices by Adopting OSSE Tools in Making Sense of the Bazaar:
Perspectives on Open Source and Free Software, J. Feller, B.
Fitzgerald, S. Hissam and K. Lakham (Eds.) Sebastopol, CA:
O’Reilly & Associates. 2003.

F. Schulz von Thun, Miteinander reden: Storungen und Klirungen.
Psychologie der zwischenmenschlichen Kommunikation. Rowohlt,
Reinbek, 1981.

W. Mauerer, Professional Linux Kernel Architecture, Wiley & Sons,
2008.

P. Clements et al., Documenting Software Architectures, Addison-
Wesley Professional, 2010.

The Apache Software Foundation, How the ASF Works, available
at: http://www.apache.org/foundation/how-it-works.html.

The Apache Software Foundation, Apache Voting Process, available
at: http://www.apache.org/foundation/voting.html.

The Apache Software Foundation, A Guide To Release Management
During Incubation, available at: http://incubator.apache.org/guides/
releasemanagement.html.

The Apache Software Foundation, The HTTP Server Proejct,
available at: http://httpd.apache.org/dev/release.html.

Debian Code of Conduct, electronically available at: http://
www.debian.org/MailingLists/#codeofconduct.

iBAG, Industrieanlagen-Betriebsgesellschaft mbH (Hosting), De-
velopment Standard for IT Systems of the Federal Republic of Ger-
many (V-Model 97), available at: http://www.v-modell.iabg.de/,
June 1997.

L. Jacobson, G. Booch, and J. Rumbaugh, The unified software
development process. Addison-Wesley, Reading (MA), USA, 1999.

Ch. Couder, Fully automated bisecting with git bisect run, Linux
Weekly News, available at: http://lwn.net/Articles/317154/.

B. Boehm, A view of 20th and 21st century software engineering,
In Proceedings of the 28th international conference on Software
engineering. ACM, 2006.

K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change, Boston, MA: Addison-Wesley, 2005.

R.L. Glass. The Standish report: does it really describe a software
crisis? Communications of the ACM 49, Issue 8, August 2006.

K. Schwaber and J. Sutherland, The Definitive Guide to Scrum: The
Rules of the Game, Scrum.org, available at: http://www.scrum.org/
Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf.

B. Alpern and F. B. Schneider, Defining Liveness, Information Pro-
cessing Letters, Vol. 21, Issue 4, October 1985, Elsevier.

A.G. Koru and J. Tian, Defect handling in medium and large open
source projects, Software, IEEE Software 21.4 (2004): 54-61.

O. Arafat and D. Riehle, The comment density of open source soft-
ware code, 31st International Conference on Software Engineering
— Companion Volume, 2009. ICSE-Companion 2009, May 2009.

[26

[27]

[28]

[29]

[30]

[31]

The Free Software Manifesto, electronically available at: http://
www.gnu.org/philosophy/free-sw.html.

S. Krishnamurthy, Cave or community?: An empirical examination
of 100 mature open source projects, First Monday, 2002, available
at: http://ifipwg213.org/system/files/krishnamurthy.pdf.
G.v.Krogh, S. Spaeth, and K. R. Lakhani, Community, joining, and
specialization in open source software innovation: a case study,
Research Policy, Volume 32, Issue 7, July 2003.

D. Riehle, The Economic Motivation of Open Source Software:
Stakeholder Perspectives, IEEE Computer, vol. 40, no. 4, April 2007.
D. Riehle, Best of (Our) Empirical Open Source Research,
invited talk at the 39th International Conference on Cur-
rent Trends in Theory and Practice of Computer Science
(SOFSEM 2013), available at: http://www.sofsem.cz/sofsem13/
files/presentations/Invited/Riehle.pdf, January 2013.

S. Shah, Motivation, Governance, and the Viability of Hybrid Forms
in Open Source Software Development, Managemenet Science 52,
7, 1000-1014, July 2006.

A. Mockus, R. T. Fielding, and J. D. Herbsleb, Two case studies of
open source software development: Apache and Mozilla. ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 11.3
(2002): 309-346.

K.R. Lakhan and R.G. Wolf, Why Hackers Do What They Do:
Understanding Motivation and Effort in Free/Open Source Software
Projects MIT Sloan Working Paper, September 2003.

Received: March 9, 2013

Dr. Wolfgang Mauerer is a software architect for
Siemens Corporate Technology, where he works
on topics including low-level system architecture,
real-time and virtualisation with a focus on open
source technologies, and also manages internal
research efforts on software development plat-
forms. He holds a PhD in theoretical physics from
the Max Planck Institute for the science of light.

Address: Siemens AG, Corporate Technology,
Wiladimirstrafle 3, 91058 Erlangen, Germany
Tel.: +49-9131-721815,

e-mail: wolfgang.mauerer@siemens.com

Dr. Michael C. Jaeger, at Siemens CT, Michael
works in different roles as project manager, soft-
ware architect, trainer and consultant for dis-
tributed systems, server applications and their
development with an emphasis on open source
software. He has more than 10 years of experience
in professional software development. Michael
received a diploma degree in computer engin-
eering and a Dr.-Ing. degree in informatics, both
from TU Berlin.

Address: Siemens AG, Corporate Technology,
Otto-Hahn-Ring 6, 80200 Miinchen, Germany
Tel.: +49-89-636-48362,

e-mail: michael.c.jaeger@siemens.com

203

http://source.android.com/source/life-of-a-patch.html
http://source.android.com/source/life-of-a-patch.html
http://source.android.com/source/submit-patches.html
http://source.android.com/source/submit-patches.html
http://www.kernel.org/doc/Documentation/development-process
http://www.kernel.org/doc/Documentation/development-process
http://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf
http://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf
http://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/voting.html
http://incubator.apache.org/guides/releasemanagement.html
http://incubator.apache.org/guides/releasemanagement.html
http://httpd.apache.org/dev/release.html
http://www.debian.org/MailingLists/#codeofconduct
http://www.debian.org/MailingLists/#codeofconduct
http://www.v-modell.iabg.de/
http://lwn.net/Articles/317154/
http://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf
http://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf
http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html
http://ifipwg213.org/system/files/krishnamurthy.pdf
http://www.sofsem.cz/sofsem13/files/presentations/Invited/Riehle.pdf
http://www.sofsem.cz/sofsem13/files/presentations/Invited/Riehle.pdf
mailto:wolfgang.mauerer@siemens.com
mailto:michael.c.jaeger@siemens.com

