
Clean Revised version TXT  

Submitted to Expert Opinion on Drug Metabolism & Toxicology 

 

Pharmacokinetic considerations for the treatment of diabetes in patients 

with chronic kidney disease 

André J. Scheen 
 

Division of Diabetes, Nutrition and Metabolic Disorders 
and Division of Clinical Pharmacology, 

Department of Medicine, CHU Sart Tilman, University of Liège, Liège, Belgium 
 
Running title :  Management of T2DM in patients with CKD 
 
Word count : 9981 
 
Address for correspondence :    Pr André J. SCHEEN 
      Department of Medicine 
      CHU Sart Tilman (B35) 
      B-4000 LIEGE 1 
      BELGIUM 
      Phone : 32-4-3667238 
      FAX   : 32-4-3667068 
      Email : andre.scheen @ chu.ulg.ac.be   
 

 
SUMMARY  

 Introduction : People with chronic kidney disease (CKD) of stages 3-5 (creatinine clearance 

< 60 ml/min) represent 25-30% of  patients with type 2 diabetes  (T2DM), but the problem is 

underrecognized or neglected in clinical practice. However, most oral antidiabetic agents have 

limitations in case of renal impairment, either because they require a dose adjustment or 

because they are contraindicated for safety reasons. 

Area covered: An extensive literature search was performed to analyze the influence of renal 

impairment on the pharmacokinetics (PK) of glucose-lowering agents and the potential 

consequences for clinical practice. The following pharmacological classes will be considered : 

biguanides (metformin), sulfonylureas, meglitinides (glinides), alpha-glucosidase inhibitors, 

thiazolidinediones (glitazones),  dipeptidyl peptidase-4 (DPP-4) inhibitors, sodium-glucose 



cotransporters 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, 

insulin and insulin analogues.  

Expert Opinion : Because of potential important PK interferences and for safety reasons, the 

pharmacological management of T2DM should be adjusted according to kidney function. In 

general, the daily dose should be reduced according to glomerular filtration rate (GFR) or 

even the drug is contraindicated in presence of more severe CKD. This is the case for 

metformin (risk of lactic acidosis) and for many sulfonylureas (risk of hypoglycemia). At 

present, however, the exact GFR cutoff for metformin use is controversial. New antidiabetic 

agents are better tolerated in case of CKD, although clinical experience remains quite limited 

for most of them. The dose of DPP-4 inhibitors should be reduced (except for linaglitpin) 

whereas both the efficacy and safety of SGLT2 inhibitors are questionable in presence of 

CKD.  
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1. Introduction 

The prevalence of type 2 diabetes mellitus (T2DM) is rapidly increasing worldwide. 

Numerous patients with T2DM have some degree of renal impairment (RI), which may be 

assessed by a reduction in glomerular filtration rate  (GFR) and classified in various stages 

according to severity (from stage 1 to stage 5)1, 2. The presence of RI may impact on the 

management of T2DM3, 4.  The prevalence of chronic kidney disease (CKD) associated with 

diabetes in the United States increased from 1988 to 2008 in proportion to the prevalence of 

diabetes and among persons with diabetes, the prevalence of CKD was stable despite the 

implementation of specific therapies5. The causes of CKD in T2DM patients are numerous, 

most generally combining the effects of diabetic nephropathy resulting from chronic 

hyperglycemia (which may remain unknown for a long time because of the lack of 

symptoms), nephroangiosclerosis secondary to arterial hypertension (a common comorbidity 

in patients with T2DM), urinary infections (generally asymptomatic), coadministered 

potentially nephrotoxic agents (among which widely used non steroidal antiinflammatory 

drugs) or simply advance in age3.    

In the US National Health and Nutrition Examination Survey (NHANES), 39.7 % of 

patients with T2DM had CKD of various degrees6.  The proportion of patients treated by at 

least one oral antidiabetic agent (OAD) significantly progresses from 36.3% in patients with 

stage 1 CKD to 62.9% in patients with stages 4-5 CKD. These observations support the 

availability of efficacious and safe glucose-lowering agents to be prescribed in T2DM patients 

with CKD. In the Kidney Early Evaluation Program (KEEP) involving 77,077 participants, 

26.2% had CKD and 29.9% had diabetes. Among those with both diabetes and CKD, only 

9.4% were aware of the existence of RI7. Interestingly, patients with a documented RI 

diagnosis have lower odds of progression to end-stage renal disease (ESRD). The presence of 

CKD may influence the adequate use of glucose-lowering agents in T2DM8-10. Not 

surprisingly, commonly prescribed OADs such as metformin and sitagliptin are frequently 

administered at inappropriate doses in patients with RI11. These observations reinforce the 

need for a better sensitization of both physicians and diabetic patients regarding the problem 

of CKD. The general objectives are that T2DM patients should be regularly checked as far as 

their renal function and that glucose-lowering agents are used in an efficacious and safe 

manner in presence of CKD12-14.   Finally, besides specific hyperglycemia management, other 



risk factors (hypertension, dyslipidemias, …) should also be treated in order to improve 

cardiovascular and renal outcomes2, 3, 12, 15. 

Evidence that intensive glucose-lowering treatment has an effect on loss of glomerular 

filtration rate (GFR) is sparse. The 2012 update of the KDOQI (Kidney Disease Outcomes 

Quality Initiative) clinical practice guidelines for diabetes and CKD recommends a target 

hemoglobin A1c (HbA1c) of  ≈ 7.0% to prevent or delay progression of the microvascular 

complications of diabetes, including CKD (level of evidence 1A);  recommends not treating to 

an HbA1c target of <7.0% in patients at risk of hypoglycemia (level of evidence 1B); and 

suggests that target HbA1c be extended above 7.0% in individuals with co-morbidities or 

limited life expectancy and risk of hypoglycemia (level of evidence 2C) 3. This patient-

centered approach is in agreement with the 2012 ADA (American Diabetes Association) – 

EASD (European Association for the Study of Diabetes) position statement16. 

 

Kidney plays a major role in the clearance of drugs, in general17, and of glucose-

lowering agents used for T2DM, in particular13. Therefore, the management of glycemia in 

patients with diabetes and CKD is quite challenging10 and the questions of which 

hypoglycemic agents to use in T2DM subjects with CKD and how to use them are of major 

practical importance18. Besides the mode of action of glucose-lowering agents19, renal 

function should also be taken into account by the physician. Indeed, the presence of RI may 

deeply impact the pharmacokinetics (PK) and thereby should influence choices, dosing, and 

monitoring of hypoglycemic agents according to the reduction of GFR9. The situation is even 

more complex in the frail elderly population, where RI and polymedication are very 

common20. 

The aim of this paper is to provide an updated analysis of the use of OADs and 

injectable agents in T2DM patients with CKD8-10. After a brief description of how to assess 

kidney function in patients with T2DM, we will describe the PK characteristics as well as the 

efficacy/safety profile of each glucose-lowering compound in patients with various degrees of 

RI (Table 1, Table 2).   

To identify relevant studies, an extensive literature search of MEDLINE was 

performed from 1970 to December 2012, with the names of the following pharmacological 

classes biguanides, sulfonylureas, meglitinides (glinides), alpha-glucosidase inhibitors, 

thiazolidinediones (TZDs), dipeptidyl peptidase-4 (DPP-4) inhibitors, sodium-glucose 

cotransporter-2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, 



human insulin or insulin analogs combined with any of the following terms : “chronic kidney 

disease”, “renal insufficiency”, “renal impairment” or “nephropathy”. Each generic name - 

“metformin”, glibenclamide (glyburide), glimepiride, glipizide, gliclazide, gliquidone, 

repaglinide, nateglinide, acarbose, miglitol, voglibose, pioglitazone, rosiglitazone, sitagliptin, 

vildagliptin, saxagliptin, linagliptin, alogliptin, dapagliflozin, canagliflozin, empagliflozin, 

exenatide, liraglutide, insulin, insulin lispro, insulin aspart, insulin glulisine, insulin glargine, 

insulin detemir  - was also combined with the various terms corresponding to CKD.  No 

language restrictions were imposed. Reference lists of original studies, narrative reviews and 

previous systematic reviews were also carefully examined. 

 

2. Assessment of kidney function and stratification of CKD in diabetes 

Renal function is classically assessed by the GFR, which can be estimated by the 

creatinine clearance (CLCR) using the Cockroft-Gault formula1. However, such formula may 

be biased by body weight as a confounding factor leading to overestimation of true GFR in 

overweight/obese individuals, a common situation in patients with T2DM. Currently, the 

MDRD (« Modification of Diet in Renal Disease « ) formula is preferred as the method of 

choice for estimating GFR (eGFR), although it underestimates GFR in patients with GFR > 

60 mL/min/1.73 m² body surface area and is not validated for all populations. The 

corresponding values to the various stages of RI are summarized in Table 3. More appropriate 

new formulae have been recently proposed by nephrologists, although they are not used yet in 

clinical practice by diabetologists21. However, the coexistence of two formulae, such as 

Cockroft-Gault and MDRD, may lead to some discrepancies in dosing adjustment as recently 

illustrated with the use of sitagliptin in clinical practice22.  

 

3. Biguanides (metformin) 

Among biguanide compounds, only metformin remains on the market. The two other 

agents, phenformin and buformin, were withdrawn because of a too high risk of lactic 

acidosis, especially when the compound accumulates in case of RI23. Although this 

complication may also occur with metformin, it is a rare event when the contraindications are 

respected but, interestingly enough, also in patients who may be considered at higher risk (see 

below)24.  Metformin is currently accepted as the first choice OAD in the management of 

T2DM16. Paradoxically, there are numerous contraindications to the use of metformin because 

of a theoretical risk of lactic acidosis24. However, such a risk has been probably overestimated 

in many circumstances. Therefore, contraindications to the use of metformin may deprive 



numerous T2DM patients from a drug that may provide more benefits than risks25, 26. This is 

especially the case of patients with mild to moderate CKD who deserve much attention 

because they represent an increasing proportion of the T2DM population, notably in the 

elderly20.   

PK characteristics of metformin are well known since a long time ago27, even if new 

interesting mechanistic data have been published more recently28. Metformin is absorbed 

predominately from the small intestine and is excreted unchanged in urine. The elimination 

half-life (t1/2) of metformin during multiple dosages in patients with good renal function is 

approximately 5 hours. The population mean renal clearance (CLR) and apparent total 

clearance after oral administration (CL/F) of metformin were estimated to be (mean±SD) 

510±130 mL/min and 1140±330 mL/min, respectively, in healthy subjects and diabetic 

patients with good renal function. Over a range of renal function, the population mean values 

of CLR and CL/F of metformin are 4.3±1.5 and 10.7±3.5 times as great, respectively, as the 

CLCR. As the CLR and CL/F decrease approximately in proportion to CLCR, the dosage of 

metformin should be reduced in patients with CKD in proportion to the reduced CLCR
28. 

However, rather few PK data are available in T2DM patients with various degrees of RI. 

More recent data revealed that the renal excretion of metformin (as its oral absorption and 

hepatic uptake) is mediated largely by organic cation transporters (OCTs)28. CLR of 

metformin in healthy Caucasian men varied 3.8-fold and was significantly dependent not only 

on CLCR and age but also on OCT1 polymorphisms29. Finally, promoter variants of multidrug 

and toxin extrusion protein (MATE)1 and MATE2 were recently shown to be also important 

determinants of metformin disposition, by influencing its renal and secretory clearances, and 

glucose-lowering response in healthy volunteers and diabetic patients30. 

 

3.1 PK of metformin after single dose in patients with RI 

PK parameters of metformin were determined in volunteers with normal renal function 

and in patients with different degrees of RI. The t1/2 for the elimination of metformin from 

plasma after intravenous injection was much longer (4.94±1.11 h) in patients with RI than in 

normal subjects (1.52±0.3 h). A significant correlation was observed between t1/2 and CLCR. 

After oral administration of metformin tablets, drug recovery in urines was only 37.6%, 

possibly as a consequence of binding to the intestinal wall. Metformin is rapidly eliminated 

through active secretion by the kidney, with a mean CLR of 440 ml/min (almost 3-4 times the 

value of CLCR)31. Another study  in healthy subjects and T2DM patients with various degrees 

of RI gave information about metformin clearance over a range of CLCR from 47 to 179 



mL/min. Plasma CLR of metformin was found to be highly correlated with CLCR (r = 0.85, 

P<0.001). However, a weaker relationship between total oral clearance of the drug and CLCR 

suggested that the latter may not always be a reliable indicator of potential metformin 

accumulation. CLR values for metformin well in excess of CLCR confirmed tubular secretion 

of this highly ionized compound as a major mechanism of urinary excretion32. 

In a detailed study evaluating the effects of RI and age on the PK of metformin, 

healthy adults (young, middle-age, elderly) and  adults with various degrees of CKD (mild to 

severe) were given a single, 850 mg metformin HCl tablet33. In the control group (CLCR : 

112±8 mL/min), average metformin CLR was 636±84 mL/min, whereas in mild CKD (CLCR : 

61–90 mL/min) metformin CLR was reduced at 384±122 mL/min. The mean CLR of 

metformin was lower in subjects with moderate (CLCR : 31–60 mL/min) and severe (CLCR : 

10–30 mL/min) CKD, measuring 108±57 and 130±90 mL/min, respectively. Maximum 

concentration (Cmax) and the area under the concentration time curve (AUC) were increased in 

individuals with moderate to severe CKD compared with those with mild CKD or normal 

renal function. In the moderate and severe CKD groups, all clearance values were 74-78% 

lower than in the healthy young/middle-age group, and all other evaluable PK parameters 

(with the exception of tmax) differed significantly in this group. In the mild CKD group, 

however, clearance values of metformin, which were 23-33% lower than in the young/middle-

age group, were the only parameters that differed significantly. Based on a regression analysis 

of the combined data, both CLCR and age were predictors of metformin clearance33. 

In healthy elderly subjects (mean age : 71 years; range : 65-81 years), total plasma 

clearance of metformin was decreased, the half-life was prolonged, and Cmax was increased, 

compared to healthy young subjects. From these data, it appears that the change in metformin 

PK with aging is primarily accounted for by a change in renal function. Metformin CLR 

averaged 412±98 mL/min in elderly subjects compared to 522±139 mL/min in younger 

subject (reduction by 21%)33. 

3.2 PK of metformin after multiple doses and chronic administration 

T2DM patients aged between 70-88 years received metformin at a dosage of either 

850 mg or 1,700 mg/day dependent on CLCR values of 30-60 mL/min and greater than 60 

mL/min, respectively. After 2 months, metformin concentrations remained in the therapeutic 

range and lactate levels within the reference limits in all participants, with no statistically 

differences between those with and without RI34.  



Trough serum levels of metformin were measured in 137 T2DM patients with varying 

renal function and followed repeatedly during 2 months in 20 patients with eGFR <60 

mL/min/1.73 m². Patients with eGFR >60, 30-60, and <30 mL/min/1.73 m² had median 

trough metformin concentrations of 4.5, 7.71 and 8.88 µmol/L, respectively. Notably, there 

were wide variations in these levels within each group, with few patients having serum levels 

> 20 µmol/L (> ~2.6 µg/mL). The median intra-individual overall coefficient of variation was 

around 30%35. In patients with severe RI (CLCR 15-40 mL/min), who were prescribed a range 

of metformin doses (250-2000 mg daily), few had high lactate concentrations (>2.7 mmol/L) 

and few had high metformin concentrations (3-5 mg/L), without correlation 

between metformin and lactate concentrations36. Whether the measurement of metformin 

levels actually can aid in the prediction of lactic acidosis risk remains unclear and thereby is 

not recommended in clinical practice37. 

 

3.3 Metformin and hemodialysis 

Metformin is not bound to plasma proteins, and thus should be easily dialyzable27. A 

study determined the characteristics of metformin elimination by dialysis. Metformin may be 

removed even after reaching an equilibrium between blood and dialysate levels in a 

recirculating system, suggesting a storage of metformin in a deep compartment with a 

gradient of concentration between this compartment and the blood. Metformin is highly 

dialyzable with a clearance of up to 170 mL/min under good hemodynamic conditions. Thus, 

hemodialysis can efficiently remove metformin, especially from patients in whom overdose is 

suspected, and corrects metabolic acidosis in patients with metformin-induced lactic 

acidosis38. Accurate recognition of metformin-associated lactic acidosis and prompt initiation 

of hemodialysis are paramount steps towards rapid recovery39. 

3.4 Controversy about the risk of metformin in patients with CKD 

Classically, CKD (CLCR < 60 mL/min) represents a contraindication to the use of 

metformin in patients with T2DM40. In case of RI, metformin may, indeed, accumulate, block 

gluconeogenesis and cause lactic acidosis, a harmful complication that may be fatal41, 42. 

However, recent data suggested that metformin may be administered with caution in patients 

with CLCR 45-60 mL/min or even lower (30-45 mL/min), provided that the daily dose is 

reduced by half and kidney function is regularly monitored37. In patients without comorbid 

conditions that would predispose them to lactic acidosis, elevated serum creatinine levels (or 



reduced GFR) should be considered a risk factor for the development of lactic acidosis but not 

an absolute contraindication43. In daily clinical practice, development of contraindications, 

including RI, rarely results in discontinuation of metformin therapy; nevertheless, lactic 

acidosis remains a rare event44, 45. In some studies, the prevalence of T2DM receiving 

metformin despite having a contraindication (including a GFR < 60 mL/min) was over 80%. 

Nevertheless, metformin use in such conditions did not appear to increase the risks of lactic 

acidosis, hospitalization and death46. At least three scenarios can be proposed to explain the 

use of metformin in patients with RI: 1) creatinine levels are not appropriately or consistently 

assessed, 2) levels are normal at the time of the initial prescription of metformin and 

subsequent elevations go unrecognized, or 3) physicians judge that benefits of therapy 

outweigh potential risks47. In patients having T2DM with established atherothrombosis 

participating in the Reduction of Atherothrombosis for Continued Health (REACH) Registry, 

the 2-year mortality rate associated with metformin vs. other glucose-lowering agents was 

significantly lower in patients with an eGFR of 30 to 60 mL/min/1.73 m² (adjusted hazard 

ratio 0.64; 95% CI, 0.48-0.86; P=0.003)48. There are more and more data suggesting that 

meformin can be used in stable mild to moderate CKD and that not prescribing metformin in 

these patients may cause more harm compared to the benefits of avoiding potentially rare 

complications25, 49, 50.  These observations led to a recent position statement from the ADA-

EASD in which metformin may be used down to a GFR of 30 mL/min, with dose reduction 

advised at 45 mL/min (Table 4). This would lead to safely prescribing OADs in patients with 

an eGFR < 60 mL/min/1.73 m², and more importantly in medical practice, according to the 

law51. However, the risk of lactic acidosis should not be neglected 42, 50, 52 and the drug should 

be immediately stopped in presence of unstable RI, any acute event (high fever for instance), 

gastrointestinal disorders (diarrhea, vomiting), dehydration, ...42, 52. 

4. Sulfonylureas  

Sulfonylureas remain largely used in the management of T2DM and are positioned as 

second-line  treatment after failure of metformin monotherapy16. They are associated with a 

higher risk of severe hypoglycemia, compared with metformin and more recent glucose-

lowering therapies53, especially in the elderly population and in patients with CKD20, 54. In a 

German study investigating the incidence of severe hypoglycemia and clinical characteristics 

to demonstrate typical risk constellations, T2DM patients were characterized by old age, low 

CLCR (46±24 mL/min) with RI in 73% and extensive co-medication55. The excessive 



mortality associated with hypoglycemia makes this complication a significant threat to patient 

safety in CKD56.  

Surprisingly, a recent retrospective analysis of the national Veterans Administration 

database showed that, compared to patients using metformin, sulfonylurea users had an 

increased risk for renal outcomes (persistent decline in eGFR from baseline of 25% or more 

or diagnosis of ESRD and/or death), with an adjusted hazard ratio of 1.2057. The reasons for 

these intriguing observations, which should be confirmed in further analyses, remain 

unknown. 

Most sulfonylureas are excreted by the kidney, either the parent compound or 

metabolites (some of them being pharmacologically active)41, 58. Clinical PK of sulfonylureas 

has been extensively reviewed59. However, rather few PK studies have been performed with 

sulfonylureas in patients with RI and most of them are rather old and of poor quality in terms 

of number of subjects and PK parameters description (Table 1). Sulfonylureas of first 

generation, like tolbutamide60 or chlorpropamide61, were shown to be excreted by the kidney, 

leading to a higher risk of severe hypoglycemia in patients with CKD. Currently, they have 

been replaced by second-generation sulfonylureas. 

   

4.1 Glibenclamide (glyburide) 

Contrasted observations regarding glibenclamide (glyburide) have been reported with 

no increase in concentrations of the parent drug in patients with various degrees of CKD, but 

a higher incidence of severe hypoglycemia reported in T2DM patients with RI. This may be 

explained by the presence of two active metabolites (M1 and M2), which are also cleared by 

the kidneys62. 

 

4.1.1 Glibenclamide PK in patients with RI  

The PK of 14C-labeled glyburide was studied in men with varying degrees of RI, who  

received a single, 5 mg oral dose of glyburide as a solution (10 microCi/ml/mg) after a high-

carbohydrate breakfast. Patients with normal to moderate RI (CLCR of 29 to 131 ml/min/1.73 

m²) had glyburide plasma t1/2 values of 2.0 to 5.0 h, with no relationship between CLCR and 

glyburide clearance. One subject with severe RI (CLCR = 5 ml/min/1.73 m²) had decreased 

glyburide clearance that resulted in a t1/2 of 11 h. The elimination of metabolites was more 

dependent on renal status but, in this study, was only significantly affected in the patient with 

severe RI63. 



The PK of glibenclamide and its active metabolites, 4-trans-hydroxyglibenclamide 

(M1) and 3-cis-hydroxy-glibenclamide (M2) was compared after a single oral 7 mg dose in 

two groups of diabetic patients with RI (iohexol clearance range : 7-42 mL/min/1.73 m²) or 

normal renal function (iohexol clearance range : 75-140 mL/min/1.73 m²)64. Peak serum 

values of M1 (24-85 vs 16-57 ng/mL) and M2 (7-22 vs <5-18 ng/mL) were higher in the 

group with RI. AUC and Cmax of glibenclamide were lower and the clearance to 

bioavailability ratio (CL/F) was higher in the RI group. In contrast, AUC and Cmax of M1 

were higher and CL/F lower in the RI group. Much lower amounts of M1 and M2 were 

excreted in the urine in the RI group (7.2% vs. 26.4% in 24 h). The fraction of the 

glibenclamide dose excreted as metabolites correlated significantly with renal function 

measured by iohexol clearance. The differences in AUC, Cmax and CL/F of glibenclamide 

may be explained by a higher free fraction in the RI group which would increase 

glibenclamide metabolic clearance. The inverse findings regarding M1 may be explained by 

the fact that the metabolites are primarily eliminated by the kidneys. As only small amounts 

of M1 and M2 were excreted in the urine, this may indicate one or several complementary 

non-renal elimination routes64. 

Finally, PK of glyburide was compared in subjects with T2DM and ESRD requiring 

hemodialysis and in T2DM patients with normal renal function. The mean serum glyburide 

blood levels and PK parameters did not differ after initial or chronic glyburide (3 mg once 

daily) administration in patients with ESRD treated with hemodialysis compared with 

controls. Glyburide t1/2 averaged 3.3 h in control subjects and 5.0 h in hemodialysis subjects65. 

 

4.1.2 Hypoglycemia in glibenclamide-treated patients with 

RI  

 

In a cohort of 33,243 sulfonylurea users, the rate of diagnosis of hypoglycemia made 

by physicians was higher for glibenclamide than for other sulfonylureas (glipizide, gliclazide, 

tolbutamide). Furthermore, RI was shown to be associated with an increased risk of 

hypoglycemia (odds ratio, OR : 4.32 ; 95% CI 2.40-7.77)66. A Canadian case-control study 

described the potentially devastating effect of sulfonylurea-based (mostly 

glibenclamide/glyburide) oral hypoglycemic therapy in patients with ESRD with the 

occurrence of severe and prolonged hypoglycemia. Patients at greatest risk appear to be those 

with reduced intake, previous hypoglycemic episodes, and longer duration of diabetes so that 

alternative drugs should be considered in these patient groups67. However, opposite 



conclusion was reported in another nested case-control study using administrative records and 

laboratory data from Ontario, Canada, which included outpatients 66 years of age and older 

with T2DM. Compared to metformin, glyburide was associated with a greater risk of 

hypoglycemia in patients with both normal [adjusted odds ratio – OR - : 9.0; 95% CI 4.9-

16.4) and impaired renal function (OR:  6.0; 95% CI 3.8-9.5). The conclusion of this 

population-based study was that RI does not augment the risk of hypoglycemia associated 

with glyburide use in T2DM patients68. Nevertheless, a one-time intervention in a risk 

reduction project decreased glyburide use over a 3-month period in elderly outpatients with RI 

without compromising glucose control and with a trend for a reduction in the incidence of 

hypoglycemia69. 

   

4.2 Glimepiride 

The PK of glimepiride was investigated in a single (3 mg)- and a multiple-dose (1-8 

mg daily over 3 months) open study in patients with T2DM and RI70. Patients were divided 

into three groups with CLCR above 50 mL/min, 20-50 mL/min and 10-20 mL/min. Mean 

relative total clearance and mean volume of distribution of  single dose of glimepiride (41.6 

mL/min and 8.47 L, respectively, in patients with CLCR above 50 mL/min) increased in 

proportion to the degree of RI (up to 91.1 mL/min and 14.98 L, respectively, when CLCR was 

below 20 mL/min), whereas the terminal t1/2 and mean time remained unchanged.  Similar 

results were obtained after multiple doses of glimepiride. Lower relative total clearance and 

CLR of glimepiride metabolites correlated significantly with lower CLCR values. Glimepiride 

was well-tolerated without drug-related adverse events. The increased plasma elimination of 

glimepiride with decreasing kidney function can be explained on the basis of altered protein 

binding with an increase in unbound drug58, 70. 

Glimepiride was associated with fewer episodes of severe hypoglycemia than 

glibenclamide in routine clinical use53. However, severe hypoglycemia did occur with 

glimepiride, especially in elderly T2DM patients with RI71. Uncritical prescription of 

sulfonylureas (including a high proportion of glimepiride in a German study) neglecting 

crucial contraindications - particularly RI - contributed substantially to the risk of 

sulfonylurea-induced hypoglycemia in these mainly geriatric patients55. 

 

4.3 Glipizide 

In healthy volunteers, the t1/2 of glipizide elimination averaged 3.3 h both after 

intravenous and oral administration. The total plasma clearance of glipizide was 42.2±5.4 



mL/min. Glipizide CLR was dependent on urinary pH, but on the average it contributed to the 

total clearance of the parent drug only by 5%72. In subjects receiving 5 mg 14C-glipizide, 85% 

of the total radioactivity in plasma corresponded to unchanged glipizide. In urine, 98% of the 

radioactivity corresponded to more polar and more readily excreted metabolites. The 

administration of 14C-glipizide to patients with RI showed that the rate of disappearance of the 

unchanged glipizide was approximately the same as in normal subjects, but that apparent t1/2 

of the hydroxylated metabolites was increased to 20 h and more. Because these metabolites 

are metabolically inactive, such accumulation of metabolites could not lead to a higher risk of 

hypoglycemia in T2DM patients with RI73. 

Glipizide (2.5 mg once daily, adjusted based on glycemic control to a 10-mg twice a 

day maximum dose) was evaluated in patients with T2DM and moderate-to-severe CKD and 

inadequate glycemic control. A higher incidence of symptomatic hypoglycemic episodes was 

observed with glipizide versus sitagliptin (17.0% versus 6.2%, respectively; P=0.001), for a 

comparable glucose-lowering efficacy, an observation similar to that previously reported in 

patients without RI74. Similar results were obtained in a recent study that compared the 

efficacy and safety of sitagliptin and glipizide monotherapy in patients with T2DM and ESRD 

on dialysis therapy75. Thus, glipizide does not increase hypoglycemia in patients with CKD 

and its use appears more suitable than glibenclamide (glyburide) or even glimepiride in this 

population. 

 

4.4 Gliclazide 

Gliclazide is metabolized by the liver to inactive metabolites, which are eliminated 

mainly in the urine (80%). The PK of gliclazide was studied in 6 diabetic (mean CLCR=44 

mL/min) and 11 non-diabetic (mean CLCR=13 mL/min) patients with various degrees of RI, 

and compared to that of 9 healthy volunteers (mean CLCR=118 mL/min). Gliclazide was 

absorbed similarly in all three groups. Once maximum plasma levels of gliclazide had been 

reached, they tended to decline more slowly in the RI groups (mean elimination half-life in 

diabetic group: 14.8 hours and non-diabetic group: 22.4 hours) as compared to the healthy 

volunteer group (12.7 hours). However, the inter-subject variability was large and the 

differences were not statistically significant. There were no significant differences for the 

other parameters measured and no significant correlation was found between any of the 

measured PK parameters and CLCR (data only reported as abstract form)76. 

Although no extensive data are available in patients with severe RI, studies have 

shown neither PK modifications of the drug nor a higher risk of hypoglycemia in patients with 



a GFR > 40 ml/min41. In Switzerland, gliclazide is the only sulfonylurea that can be used in 

subjects with a GFR of 40-60 ml/min, but it has to be stopped once GFR falls below 40 

ml/min78. 

Since many years, gliclazide is available as a modified release formulation73. The 

long-term efficacy and safety of gliclazide modified release in T2DM patients with mild to 

moderate RI were confirmed by the results of phase III studies. Among the 507 patients who 

completed 2 study years, 20% of them had mild to moderate RI defined on CLCR between 20 

and 80 mL/min. In these patients, the mean change in HbA1c from baseline to 2 years was 

similar to that of the patients with normal renal function, with no excess of hypoglycemic 

episodes79. 

In the European GUIDE study, which randomized 845 T2DM patients (almost 42% 

with a CLCR < 80 mL/min) to either gliclazide modified release 30-120 mg daily or 

glimepiride 1-6 mg daily, gliclazide was as effective as glimepiride, but with a significantly 

lower risk of hypoglycemia80. One proposed explanation was that the two drugs show 

different PK profiles with the occurrence of an active metabolite eliminated by the kidney for 

glimepiride and no circulating active metabolite for gliclazide, consistent with the higher 

incidence of hypoglycemia in patients with RI80. 

In  the  large prospective ADVANCE (“Action in Diabetes and Vascular Disease: 

Preterax and Diamicron Modified Release Controlled Evaluation”) trial, a strategy of 

intensive glucose control, involving gliclazide (modified release) and other drugs as required, 

that lowered the glycated hemoglobin (HbA1c) value to 6.5% yielded  a 21% significant 

reduction in the incidence of nephropathy (4.1% vs. 5.2%; hazard ratio, 0.79; 95% CI 0.66-

0.93; P=0.006). The component of new or worsening nephropathy most clearly reduced 

through intensive glucose control was the development of macroalbuminuria, with only a 

trend toward a reduction in the need for renal-replacement therapy or death from renal causes 

but no effect on the doubling of serum creatinine level. In this population, which comprised a 

majority of patients with normal kidney function,  gliclazide was well tolerated, with 

uncommon hypoglycemia81. 

 

4.5 Gliquidone 

Gliquidone  is rapidly and almost completely absorbed after oral administration, and 

has a short elimination half-life (around 1.5 h). It is metabolized in the liver so that 

accumulation does not take place in patients with RI41, 82. However, there are no large scale 

studies published with this sulfonylurea, which is only commercialized in few countries.  



 

5. Meglitinides (glinides) 

Compared to sulfonylureas, glinides are characterized by shorter half-lifes as well as 

by the absence of significant renal excretion83, 84. Thus, in principle, they may be used in 

patients with CKD, without dose adjustment85. This conclusion may be drawn from PK 

studies in patients with RI, with repaglinide86 and nateglinide (although some caution is 

required for nateglinide because of the presence of an active metabolite that is cleared by the 

kidney).87 However, there are no large scale studies having assessed both the efficacy and the 

safety of glinides in T2DM patients with CKD83. Furthermore, these compounds are exposed, 

as sulfonylureas, to drug-drug interactions88. 

5.1 Repaglinide 

PK comparison with single and multiple doses of repaglinide (2 mg repaglinide for 7 

days) was performed in subjects with normal renal function and subjects with various degrees 

of RI (mild to moderate; severe; hemodialysis). PK parameters did not show significant 

changes after single or multiple doses of repaglinide, although the elimination rate constant in 

the group with severe RI decreased after 1 week of treatment. Subjects with severe RI had 

significantly higher exposure (AUC values) after single and multiple doses of repaglinide than 

subjects with normal renal function (Table 1). No significant differences in values for serum 

Cmax or Tmax were detected between subjects with RI and those with normal renal function. 

Hemodialysis did not significantly affect repaglinide clearance. Repaglinide was safe and well 

tolerated in subjects with varying degrees of RI. Although adjustment of starting doses of 

repaglinide is not necessary for RI or renal failure, severe impairment may require more care 

when upward adjustments of dosage are made89. 

In clinical trials of up to 52 weeks' duration and in the clinical practice setting, 

recommended dosages of repaglinide (0.5-4 mg three times daily) provided effective 

glycemic control and were generally well tolerated in patients with T2DM, including those 

with RI83. Thus, repaglinide is an appropriate treatment choice, even for individuals with 

more severe degrees of RI86. 

5.2. Nateglinide 

Diabetic patients with RI or ESRD undergoing hemodialysis received a single 120 mg 

dose of nateglinide immediately before breakfast. Plasma nateglinide concentrations increased 



rapidly and similarly in patients undergoing dialysis and matched healthy subjects and was 

comparable in patients with RI and controls. There were no statistically significant differences 

for Cmax or AUC between the groups (Table 1). Nateglinide was eliminated rapidly in all 

groups (t1/2 = 1.9-2.8 h). There was no correlation between the level of renal function and 

systemic exposure. There was a low extent of renal excretion of nateglinide in healthy 

subjects (11%) and diabetic patients with RI (3%). Nateglinide was well tolerated. These data 

suggested that nateglinide is suitable for use in diabetic patients with CKD or with ESRD 

undergoing dialysis. No dose adjustment appears necessary in renally impaired patients87. 

In another study, single 90 mg dose of nateglinide was safe and effective in patients 

with renal failure90. However, repeated administrations could cause prolonged hypoglycemia 

due to accumulation of M1, a metabolite that is known to have a modest hypoglycemic 

activity91. Hemodialysis may help to eliminate excessive accumulation of M190. 

5.3 Mitiglinide 

Although mitiglinide was effective as a treatment for diabetic patients on hemodialysis  

therapy, it should be initiated at a lower dose in this population, compared with the general 

population of diabetic patients, in order to avoid hypoglycemia92. 

 

6. Alpha-glucosidase inhibitors 

 Alpha-glucosidase inhibitors are not recommended as part of the management of 

T2DM in the recent ADA-EASD position statement16, most probably because of their lower 

glucose-lowering efficacy and of their rather poor gastrointestinal tolerance in Caucasian 

people. Nevertheless, they are a popular therapy in Asian countries. Various compounds 

belong to this pharmacological class, but the available data regarding their use in patients with 

CKD are rather scarce13. Because of their PK characteristics, no dose adjustment is required 

in case of RI, although their use in patients with moderate to severe CKD is not recommended 

in absence of  available data41.  

 

6.1  Acarbose 

Acarbose acts locally within the gastrointestinal tract and is characterized by a low 

systemic bioavailability93. Although <2% of an oral dose of acarbose was absorbed as active 

drug, patients with severe RI (CLCR <25 mL/min) attained increases about 5-fold higher for 

peak plasma concentration of acarbose and 6-fold higher for AUC values than subjects with 



normal renal function13. Because long-term clinical trials in diabetic patients with significant 

renal dysfunction have not been conducted, treatment of T2DM patients with acarbose is not 

recommended 2. 

 

6.2 Miglitol 

Miglitol is systemically absorbed but is not metabolized, and is rapidly eliminated by 

renal excretion as unchanged drug94. Patients with CLCR <25 mL/min taking miglitol 25 mg 3 

times daily exhibited a greater than 2-fold increase in miglitol plasma levels when compared 

to subjects with CLCR  >60 mL/min13. Dose adjustment to correct for the increased plasma 

concentrations is not feasible because miglitol acts locally in the gut. Treatment of patients 

with CLCR <25 mL/min with miglitol is not recommended because the safety of miglitol in 

these patients has not yet been elucidated13. 

 

6.3 Voglibose 

Voglibose is an alpha-glucosidase inhibitor only commercialized in Japan. It has no 

renal excretion13. Two studies showed that it can be safely used in diabetic patients on 

hemodialysis, in combination with pioglitazone or mitiglinide95, 96.  

 

 

7. Thiazolidinediones  

The experimental studies that evaluated the potential beneficial effects of peroxisome 

proliferator-activated receptor-gamma (PPARγ) agonists (TZDs : pioglitazone, rosiglitazone) 

on renal function have been reviewed. In that paper, the efficacy, tolerability and safety 

results of TZD use in patients with different degrees of RI, in dialysis patients, and in diabetic 

patients after kidney transplantation were revised97. Data from several animal and human 

studies support the notion that TZDs reduce urine albumin excretion and may prevent 

development of renal injury98.  From a PK point of view, TZDs are metabolized in the liver 

and not excreted by the kidney. Therefore, no dose adjustments are required in patients with 

CKD.  However, the safety of TZDs has been questioned and some safety concerns may be 

even more relevant in a diabetic population with CKD99. The risk of fluid retention and 

congestive heart failure, a well known adverse event associated with TZD therapy100, may be 

a concern, especially in the fragile population with CKD. Preclinical and pilot clinical data 

attest to the fact that at least part of the fluid retention derives from a direct effect of TZDs on 

sodium reabsorption via the renal medullary collecting duct. This mechanism is sensitive to 



diuretic agents that have this nephron segment as their site of action (spironolactone, 

amiloride and hydrochlorothiazide) but the efficacy of those diuretics is limited and/or their 

safety is questionable in patients with CKD100. Furthermore, TZDs may increase the incidence 

of bone fractures101, a complication already more frequently observed in patients with CKD 

independently of TZD therapy because of  insufficient vitamin D activation and renal 

osteodystrophy. Finally, cardiovascular safety of TZDs, especially rosiglitazone, has been 

questioned99 and it is well known that T2DM patients with CKD are at higher risk of 

cardiovascular complications. Contradictory results have been reported regarding the 

mortality in diabetic patients with ESRD treated by dialysis and receiving TZD therapy with 

either increased mortality102 or better survival103. Thus, despite favorable PK properties, TZDs 

do not appear as the drug of choice in T2DM patients with CKD. Nevertheless, a small study 

showed that TZD therapy was safe and effective for ambulatory patients receiving 

hemodialysis, even if some cases of heart failure have been reported104.  

 

7.1 Pioglitazone 

Because pioglitazone and its active metabolites are excreted mainly via the liver, these 

PK properties are ideally suited for patients with CKD105. Healthy subjects with normal renal 

function (CLCR > 80 mL/min), patients with moderate RI (CLCR 30-60 mL/min) and patients 

with severe RI (CLCR < 30 mL/min) received single and multiple oral doses of pioglitazone 

45 mg. The serum PK profiles of pioglitazone and its metabolites M-III and M-IV were 

assessed for the first and last dose administered (day 1 and day 12, respectively). PK data 

were similar in subjects with normal and with moderate RI and revealed no significant 

accumulation of pioglitazone or its metabolites in patients with RI. Mean AUC values were 

decreased (rather than increased) in patients with severe RI compared with healthy subjects 

with normal renal function for pioglitazone and its M-III and M-IV metabolites (Table 1) This 

may be explained by reduced protein binding, which is common in patients with RI, resulting 

in increased free pioglitazone concentrations and increased total clearance of the drug 

(assuming that the intrinsic capacity of the liver remains unchanged). In this study, 

pioglitazone was well tolerated in patients with varying degrees of RI so that adjustment of 

starting and maintenance doses in these patients is probably unwarranted106.  PK profile of 

pioglitazone was also shown to be similar in patients with ESRD undergoing hemodialysis 

and in patients with normal renal function107. In T2DM patients on hemodialysis, pioglitazone 

treatment resulted in better glycemic control, improved lipid levels, an increase in insulin 



sensitivity and adiponectin levels, a decrease in inflammatory markers and a reduction in 

erythropoietin dose, thus improving the risk factors of cardiovascular disease108. Interestingly, 

a post hoc analysis from PROactive (“PROspective pioglitAzone Clinical Trial In 

macroVascular Events”) investigated the effects of pioglitazone 45 mg treatment on recurrent 

CV disease in a population of patients with T2DM and documented macrovascular disease 

according to the level of GFR. Patients who had CKD (eGFR < 60 mL/min/1.73m²) and were 

treated with pioglitazone were less likely to reach a composite endpoint of all-cause death, 

myocardial infarction and stroke (HR=0.66, 95% CI 0.45-0.98), independent of the severity of 

RI 109, 110.  

7.2 Rosiglitazone 

Rosiglitazone is mainly metabolized by CYP2C8 into inactive metabolites, and < 1% 

of the parent drug appears in the urine in unchanged form111. To investigate the effect of 

varying degrees of  CKD on the PK  of rosiglitazone after a single dose of 8 mg, subjects 

were stratified by estimated CLCR : normal (> 80 mL/min), mild RI (60-80 mL/min), 

moderate RI (30-59 mL/min), and ESRD not requiring dialysis (< 30 mL/min)112. Slight 

increases (approximately 10%-20%) in mean unbound AUC∞ values were observed for each 

RI group compared to the normal group but were not considered to be clinically relevant. 

Patients with severe RI exhibited a 38% increase in mean fraction unbound, leading to an 

increase in total clearance, which resulted in a 19% to 24% lower mean total AUC∞ and Cmax 

values relative to the normal group. The rates of adverse events were similar for all groups. 

As RI does not markedly alter the PK of total or unbound rosiglitazone following a single 

dose of rosiglitazone, the starting dose does not need to be adjusted in patients with CKD. 

Subsequent dose adjustments should be based on individual patient response112. 

The PK and tolerability of a single 8 mg oral dose of rosiglitazone were compared in 

ESRD patients undergoing hemodialysis and 10 healthy volunteers. Hemodialysis did not 

influence rosiglitazone PK, and dialytic clearance was low (0.10 L/h). Mean AUC∞, Cmax and 

t1/2 for rosiglitazone were similar in hemodialysis patients and healthy individuals. Thus, 

rosiglitazone dose adjustments are not warranted in patients with T2DM with ESRD on 

hemodialysis113. The PK of a single 8 mg oral dose of rosiglitazone was studied in patients 

with ESRD and requiring long-term chronic ambulatory peritoneal dialysis. Mean AUC∞ and 

Cmax of rosiglitazone in patients with peritoneal dialysis appear no different from those 

reported in healthy volunteers114. 



In a post-hoc analysis of data pooled from 3 randomized, double-blind, placebo-

controlled studies, the effects of rosiglitazone 4 mg when added to a sulfonylurea regimen 

were investigated in patients with T2DM and mild to moderate RI (baseline CLCR of 30 to 80 

mL/min). Rosiglitazone was effective and well tolerated in this population, with no obvious 

differences with results observed in patients with normal kidney function115. In two other 

studies, rosiglitazone was well tolerated and beneficial in patients with T2DM on peritoneal 

dialysis therapy116 or undergoing regular hemodialysis117. 

 

8. DPP-4  inhibitors  

DPP-4 inhibitors (gliptins) are a new class of OADs belonging to the incretin-based 

glucose-lowering agents. They improve glucose control without inducing hypoglycemia (in 

contrast to sulfonylureas) and are weight-neutral118. Several molecules are already available, 

which are characterized by different PK properties119, 120. DPP-4 inhibitors have been  

particularly well studied in patients with CKD121. Sitagliptin,122 vildagliptin123, 124, 

saxagliptin125 and alogliptin126 are largely excreted by the kidneys. Results from dedicated PK 

studies in subjects with various degrees of RI suggest that the daily doses of these four DPP-4 

inhibitors should be adjusted according to eGFR to reach almost similar plasma levels121. 

Several studies have demonstrated that the glucose-lowering efficacy is maintained while a 

good safety profile when reduced doses of these gliptins are used in patients with RI127-130. In 

contrast, linagliptin is mainly excreted by the biliary route rather than by the kidney (< 5 

%)131. Therefore, this DPP-4 inhibitor does not require any dose adjustment in case of RI and 

can be used in patients with various degrees of CKD (Table 5)132, 133. In all studies involving 

DPP-4 inhibitors, the following populations were tested : normal kidney function, CLCR > 80 

ml/min; mild RI, 50–80 mL/min; moderate RI, 30–50 mL/min; severe RI, <30 mL/min; 

ESRD, <30 mL/min undergoing hemodialysis. 

DPP-4 inhibitors are playing an increasing role in the management of T2DM, 

especially in combination with metformin. Several fixed-dose combinations (FDCs) are 

currently available or will be commercialized very soon118. Such FDCs may only be 

prescribed when both compounds are not contraindicated because of the presence of RI and 

appropriate adjustments of individual doses may be required134-136.       

 

8.1 Sitagliptin 



The PK of single doses of sitagliptin 50 mg was evaluated in patients with various 

degrees of RI : mild, moderate, severe, ESRD on hemodialysis, and normal  renal function122.  

Increases in sitagliptin AUC∞ were ∼1.6-fold, ∼2.3-fold, ∼3.8-fold, and ∼4.5-fold higher for 

patients with mild, moderate, severe RI and ESRD, respectively, as compared to levels 

obtained in subjects with normal renal function (Table 1). Based on these findings, sitagliptin 

dose adjustments are recommended for patients with moderate RI (50 mg daily) or severe RI 

or ESRD (25 mg daily) to provide plasma sitagliptin exposure comparable to patients with 

normal renal function (100 mg daily) (Table 5).  

Sitagliptin was generally well tolerated and provided effective glycemic control in 

patients with T2DM and moderate to severe RI, including patients with ESRD on dialysis128. 

In patients with T2DM and moderate to severe CKD, sitagliptin (50 to 25 mg/day 

respectively) and glipizide provided similar HbA1c-lowering efficacy. Sitagliptin was 

generally well-tolerated, with a lower risk of hypoglycemia and weight loss versus weight 

gain, relative to glipizide74. In patients with T2DM and ESRD on dialysis therapy, sitagliptin 

25 mg/day was almost as effective in reducing HbA1c as glipizide (non significant difference 

of 0.15% after 54 weeks), with a lower incidence of symptomatic hypoglycemia (6.3 % vs. 

10.8%) and severe (0% vs. 7.7%) hypoglycemia75. 

 

8.2 Vildagliptin 

Vildagliptin is primarily metabolized via hydrolysis and the metabolites are 

predominantly excreted by the kidneys. To a smaller extent, vildagliptin is also excreted by 

the kidneys as the unchanged drug (23% after an oral dose). Therefore, RI may have certain 

effects on the PK of vildagliptin123. The mean AUC values increased by 32–134% and the 

Cmax values increased by 8–66% in subjects with mild, moderate and severe RI, and ESRD on 

hemodialysis, compared with healthy subjects. CLR of vildagliptin in healthy volunteers 

averaged 12.4 L/h, and decreased in subjects with varying degrees of RI  with a significant 

correlation with the reduction in GFR (r²=0.75). However, the total exposure (AUC) to 

vildagliptin did not show a clear correlation with the severity of RI (assessed by GFR). 

Vildagliptin was removed by hemodialysis to a limited extent (3%).  Compared with values in 

healthy subjects, exposure (AUC) to the major and inactive hydrolysis metabolite (LAY151) 

in subjects with mild, moderate and severe RI, and in those with ESRD was increased by 1.6-, 

2.4-, 5.4- and 6.7-fold, respectively, with a good correlation between changes in exposure to 

LAY151 and GFR reduction124 (Table 1). The lack of a clear correlation between the 



increased exposure to vildagliptin and the severity of RI may indicate that the kidneys 

contribute not only to the excretion but also, and predominantly, to the hydrolysis metabolism 

of vildagliptin. From a PK perspective, the approximate 2-fold increase in exposure suggests 

that the dose of vildagliptin for patients with moderate and severe RI should be reduced to 

half of the daily dose for patients with normal renal function (50 mg once daily instead of 50 

mg twice daily) (Table 5)123. 

In a 24-week study of 515 patients with T2DM and moderate or severe RI, vildagliptin 

(50 mg once daily) added to ongoing antidiabetic therapy had a safety profile similar to 

placebo and elicited a statistically and clinically significant decrease in HbA1c
129. These 

results were confirmed after a 1-year observation130. In another study, the safety profile of 

vildagliptin 50 mg as an add-on to metformin was similar in patients with mild RI and normal 

renal function137. In a pooled analysis of 38 studies where vildagliptin was given for 12-104 

weeks in patients with T2DM, the presence of mild RI did not adversely affect the safety of 

vildagliptin relative to patients with normal renal function138. Finally, vildagliptin was also 

effective and safe as a treatment for diabetic patients undergoing hemodialysis139 or in 

patients with severe RI (eGFR < 30 mL/min/1.73 m² and longstanding T2DM not adequately 

controlled with insulin therapy140. 

 

8.3 Saxagliptin 

The PK of saxagliptin and its pharmacologically active metabolite, 5-hydroxy 

saxagliptin, in nondiabetic subjects with mild (CLCR 50–80 ml/min), moderate (30–50 

ml/min), severe RI (<30 ml/min), or ESRD were compared with saxagliptin and metabolite 

PK and tolerability in healthy adult subjects.125 All subjects received a single oral dose of 

saxagliptin 10 mg. Using a model-based approach and compared with healthy subjects, the 

geometric mean AUC∞ for saxagliptin was 16%, 41% and 108% higher in subjects with mild, 

moderate or severe RI, respectively. AUC∞ values for 5-hydroxy saxagliptin were 67%, 192% 

and 347% higher in subjects with mild, moderate or severe RI, respectively (Table 1). 

Elimination t1/2 of saxagliptin and 5-hydroxy saxagliptin progressively increased while 

corresponding CLR progressively decreased according to the reduction of CLCR. 

Consequently, one-half the usual dose of saxagliptin 5 mg (i.e. 2.5 mg orally once daily) is 

recommended for patients with moderate or severe RI or ESRD on hemodialysis, but no dose 

adjustment is recommended for those with mild RI. 

A 12-week study evaluated the efficacy and safety of saxagliptin 2.5 mg versus 

placebo in patients with T2DM and RI (CLCR < 50 mL/min)141. Oral antihyperglycemic drugs 



and insulin therapy present at enrolment were continued throughout the study. Adjusted mean 

HbA1c decreases from baseline to week 12 were numerically greater with saxagliptin than 

with placebo in the subgroups of patients with moderate (≥ 30 CLCR < 50 mL/min) and severe 

(CLCR < 30 mL/min) RI, but not in ESRD patients on hemodialysis. After an extended follow 

up of 52 weeks, adjusted mean decrease in HbA1c was greater with saxagliptin than placebo 

(difference, -0.73%, p<0.001). Reductions in HbA1c were numerically greater with saxagliptin 

2.5 mg than placebo in patients with RI rated as moderate or severe, but similar to placebo for 

those with ESRD on hemodialysis. Saxagliptin was generally well tolerated, with similar 

proportions of patients reporting hypoglycemic events as in the placebo group. Thus, 

saxagliptin 2.5 mg once daily offers sustained efficacy and good tolerability for patients with 

T2DM and moderate to severe RI, but should not be recommended in patients with ESRD 

(Table 5)127. 

 

8.4 Alogliptin 

The results of a single-dose (50 mg) PK study in patients with RI showed an increase 

in alogliptin exposure compared with healthy volunteers: approximately 1.7-, 2.1-, 3.2-, and 

3.8-fold increase in patients with mild, moderate, and severe RI, and in patients with ESRD, 

respectively (Table 1)126. Based on these findings, to achieve plasma alogliptin concentrations 

comparable to those in patients with normal renal function, alogliptin dose adjustments are 

recommended for patients with T2DM and moderate to severe RI, including those with ESRD 

requiring dialysis (Table 5). 

 

8.5 Linagliptin 

The influence of various degrees of RI on the exposure of linagliptin was assessed in 

subjects with and without T2DM142.  Linagliptin PK (5 mg once daily) was studied under 

single-dose and steady-state conditions (administration for 7-10 days) in subjects with mild, 

moderate, and severe CKD and ESRD on hemodialysis, and compared with the PK in subjects 

with normal renal function. Renal excretion of unchanged linagliptin was <7% in all groups. 

Although there was a tendency towards slightly higher (20-60%) exposure in subjects with 

CKD compared with subjects with normal renal function, the steady-state AUC and Cmax 

values showed a large overlap and were not affected by the degree of RI (Table 1). Thus, 

CKD has a minor effect on linagliptin PK, a finding that has been confirmed in post-hoc 

analyses of the trough plasma levels of linagliptin in the global Phase III program 



investigating linagliptin 5 mg once daily for 24-52 weeks in patients with T2DM and various 

degrees of RI143.  

A pooled analysis of 3 clinical trials evaluated the effect of renal function on the 

efficacy and safety of linagliptin. Data were available for 2,141 patients with T2DM who 

were grouped by renal function as normal (n=1684), mild CKD (n=418), or moderate CKD 

(n=39). Linagliptin showed consistent placebo-corrected adjusted mean HbA1c changes after 

24 weeks across all 3 groups: normal renal function (-0.63%), mild CKD (-0.69%), and 

moderate CKD (-0.69%), with no significant inter-group difference. Linagliptin was generally 

well tolerated, with an incidence rate of adverse events with linagliptin similar to placebo.132 

Finally, a recent phase 3 trial evaluated the efficacy and safety of linagliptin in patients 

with T2DM and severe CKD (GFR <30 mL/min/1.73 m2).133  Patients were treated with either 

linagliptin 5 mg once daily or placebo. Linagliptin induced significantly greater HbA1c 

reductions at week 12 compared to baseline in the full analysis set (-0.8% versus -0.2% with 

placebo) and in the subgroup of poorly controlled patients (baseline HbA1c ≥9%) (-1.5% vs. -

0.3%). Hypoglycemia occurred more frequently in linagliptin-treated patients than in placebo-

treated patients, an observation that may be explained by unchanged doses of insulin and/or 

sulfonylurea background therapy. Other adverse event rates were similar for linagliptin and 

placebo.  

 

9. SGLT2 inhibitors 

The kidney plays a major role in glucose homeostasis because of its role in 

gluconeogenesis and the glomerular filtration and reabsorption of glucose in the proximal 

convoluted tubules. The transport of glucose from the tubule into the tubular epithelial cells is 

accomplished by sodium-glucose co-transporters (SGLTs), especially SGLT2, a high-

capacity, low-affinity transporter expressed chiefly in the kidney. SGLT2 accounts for 

approximately 90% of glucose reabsorption. SGLT2 inhibitors are new glucose-lowering 

agents, which specifically target the kidney by blocking the reabsorption of filtered glucose, 

thus leading to glucosuria. This mechanism of action holds potential promise for patients with 

T2DM not only in terms of improvements in glycemic control, but also potential benefits on 

weight loss and arterial blood pressure reduction144. Dapagliflozin is the SGLT2 inhibitor with 

the most clinical data available to date145. Other SGLT2 inhibitors (canagliflozin, 

empagliflozin) are currently in late phase of development, but no specific PK studies in 

patients with RI have been published so far with these last two compounds144. In a study 

investigating potential drug-drug interactions between empagliflozin and metformin in 



healthy men, the renal clearance of empagliflozin and metformin were unaffected by co-

administration146. 

A study assessed the effect of differences in renal function on the PK/PD of 

dapagliflozin. A single 50 mg dose of dapagliflozin was administered in five groups of 

individuals: healthy nondiabetic subjects; patients with T2DM and normal kidney function; 

and patients with T2DM and mild, moderate or severe RI based on eGFR. Subsequently, 

multiple doses (20 mg once daily) were evaluated in the patients with T2DM. Plasma 

concentrations of dapagliflozin and D3OG, an inactive metabolite, were incrementally 

increased with declining kidney function. Steady-state Cmax for dapagliflozin were 4%, 6% 

and 9% higher and for D3OG were 20%, 37% and 52% higher in patients with mild, 

moderate, and severe RI, respectively, compared to normal function. AUC0-tau was likewise 

higher (Table 1). Compared to patients with normal renal function, glucose-lowering effects 

were attenuated with RI. Steady-state renal glucose clearance was reduced by 42%, 83%, and 

84% in patients with mild, moderate, or severe RI, respectively. These results indicate that the 

kidney, besides the liver, significantly contributes to dapagliflozin metabolism, resulting in 

higher systemic exposure with declining kidney function. Dapagliflozin reduced 

pharmacodynamics in diabetic subjects with moderate to severe RI are consistent with the 

observation of reduced efficacy in terms of HbA1c diminution in this patient population147.  

 

10. GLP-1 receptor agonists 

When oral therapy is not sufficient to control blood glucose, injectable agents may be 

used. Besides insulin therapy, GLP-1 receptor agonists (exenatide and liraglutide, soon 

lixisenatide) offer new opportunities for the management of T2DM16. However, because of 

PK properties of these compounds, some limitations have been pointed out in presence of RI 

(Table 5). 

Published case reports have documented the relationship between exenatide148, 149 or 

liraglutide150 use and acute kidney injury in patients with T2DM. The proposed explanation 

was the occurrence of gastrointestinal side effects with recurrent vomiting leading to 

dehydration and secondary acute RI. Physicians should be aware of this adverse event and 

patients should also be educated about the need to report unusual or prolonged gastrointestinal 

symptoms. However, a retrospective cohort study of a large medical and pharmacy claims 

database revealed an increased incidence of acute renal failure in diabetic versus non-diabetic 

patients but no association between use of exenatide and acute renal failure151. 

 



10.1 Exenatide 

PK, safety and tolerability of a single exenatide dose were evaluated in patients with 

RI. Exenatide (5 or 10 µg) was injected subcutaneously in 31 subjects (only one with T2DM) 

stratified by renal function : normal (CLCR >80 mL/min, mild RI (51-80 mL/min), moderate 

RI (31-50 mL/min) or end-stage renal disease (ESRD) requiring hemodialysis152. PK data 

were combined with four previous single-dose studies in patients with T2DM to explore the 

relationship of exenatide clearance (CL/F) and CLCR. Mean t1/2 for healthy, mild RI, moderate 

RI and ESRD groups were 1.5, 2.1, 3.2 and 6.0 h, respectively. After combining data from 

multiple studies, least squares geometric means for CL/F in subjects with normal renal 

function, mild RI, moderate RI and ESRD were 8.14, 5.19, 7.11 and 1.3 L/h, respectively. 

Thereby, exposure (AUC) to exenatide was markedly increased in patients with ESRD (Table 

1). Exenatide was generally well tolerated in the mild and moderate RI groups, but not in 

subjects with ESRD due to nausea and vomiting. Since tolerability and PK changes were 

considered clinically acceptable in patients with mild to moderate RI, it would be appropriate 

to administer exenatide to these patients without dosage adjustment. However, poor 

tolerability and significant changes in PK make the currently available therapeutic doses (5 

and 10 µg) unsuitable in severe RI or ESRD152. 

 

10.2 Liraglutide 

To investigate whether dose adjustment of the once-daily human GLP-1 analogue 

liraglutide is required in patients with varying stages of RI, 30 subjects were given a single 

dose of liraglutide, 0.75 mg subcutaneously. No clear trend for change in PK was evident 

across groups with increasing renal dysfunction. The regression analysis of log(AUC) for 

subjects with normal renal function and mild-to-severe RI showed no significant effect of 

decreasing CLCR on the PK of liraglutide. Degree of RI did not appear to be associated with 

an increased risk of adverse events. Because renal dysfunction was not found to increase 

exposure of liraglutide, T2DM patients with RI should use standard treatment regimens of 

liraglutide. There is, however, currently limited experience with liraglutide in patients beyond 

mild-stage CKD153.  

To determine the effect of mild RI on the efficacy and safety of liraglutide in patients 

with T2DM, the six LEAD (“Liraglutide Effect and Action in Diabetes”) clinical trials were 

examined in a meta-analysis focusing on data from patients with normal renal function 

(CLCR > 89 mL/min), mild RI (60-89 mL/min), and moderate or severe RI (< 60 mL/min). 

The population contained patients administered once-daily liraglutide (1.2 or 1.8 mg) or 



placebo as either monotherapy or in combination with oral antidiabetes drugs for 26 weeks. 

Mild RI did not affect the estimated treatment differences in HbA1c, body weight and systolic 

blood pressure. Liraglutide treatment was safe and well tolerated in patients with mild RI, as 

there were no significant differences in changes in rates of renal injury, minor hypoglycemia, 

or nausea vs. placebo. Nevertheless, a trend towards increased nausea was observed in 

patients with moderate or severe RI receiving liraglutide although the number of patients in 

this treatment group was too low to determine statistical significance. The conclusion was that 

mild RI had no effect on the efficacy and safety of liraglutide154. 

 

11. Insulin and insulin analogs 

11.1 Human Insulin 

The kidney plays a pivotal role in the clearance and degradation of circulating 

insulin155. Almost 50% of circulating insulin (a higher proportion for exogenous than 

endogenous insulin) is cleared by the kidneys via two distinct routes : 1) glomerular filtration 

and subsequent luminal reabsorption of insulin by proximal tubular cells by means of 

endocytosis; and 2) diffusion of insulin from peritubular capillaries and subsequent binding of 

insulin to the contraluminal membranes of tubular cells. As renal failure progresses, 

peritubular insulin uptake increases, compensating for the decline in degradation of filtered 

insulin until the GFR decreases to less than approximately 20 mL/ min. With lower levels of 

GFR insulin clearance decreases further and overall requirements for exogenous insulin often 

decline. If this is not anticipated, the risk of symptomatic hypoglycemia can increase. 

The effect of diabetic nephropathy (Kimmelstiel-Wilson syndrome) on insulin 

requirements is known for a long time156. Impairment of the CLR of insulin prolongs the t1/2 of 

circulating insulin and often results in a decrease in the insulin requirement of diabetic 

patients157.  It is generally recommended that when the GFR decreases to between 10 and 50 

mL⁄ min, the insulin dosage should be reduced by 25%, and when the GFR decreases to <10 

mL⁄min, the insulin dosage should be reduced by 50% from previous amounts8, 9. The 

reduction in insulin requirement in RI is similar in type 1 and insulin-treated T2DM patients. 

In subjects with T2DM, the residual insulin secretion has no impact on the reduction in 

insulin requirement dependent on the GFR. As an example, the insulin dose required by 

T2DM patients was reduced by 51% in patients with a CLCR of 10 mL/min compared to 

patients with a CLCR of 80 mL/min158. 



11.2. Insulin analogs 

Modifications of the insulin molecule have resulted in two long-acting insulin analogs 

(glargine and detemir) and three rapid-acting insulins (aspart, lispro, and glulisine) with 

improved PK/PD profiles. As for human insulin, the PK/PD profiles for insulin analogs may 

be influenced by many variables including renal function, although the available data are 

rather scarce159. Insulin lispro maintains its characteristic PK/PD properties in patients with 

overt diabetic nephropathy160. In hemodialysis patients with diabetes, lispro insulin is 

absorbed faster than regular insulin, as it is in individuals with normal kidney function161. 

Similarly, RI does not affect the PK of insulin aspart in a clinically significant manner162. To 

our knowledge, there are no published studies that have specifically tested the PK of the two 

long-acting insulin analogs, glargine or detemir, in patients with CKD159. Reduction of initial 

glargine/glulisine insulin weight-based dosing in hospitalized patients with T2DM and RI 

reduced the frequency of hypoglycemia by 50% without compromising the control of 

hyperglycemia163. Short-acting insulin analog can also be used in hemodialysis patients with 

T2DM164. 

12. Conclusion 

  A quite large and increasing proportion (currently around 20-25%) of T2DM patients 

have moderate to severe CKD (stages 3-5), especially in the elderly population, which 

requires the adaptation of the glucose-lowering therapy. Indeed, RI exerts a major influence 

on PK of most oral and injectable antidiabetic agents. Therefore, the daily dosage should be 

reduced in most instances or, if CKD is severe enough, the medication should not be initiated 

or be stopped for safety reasons (Figure 1). Clinical experience in various countries, however, 

demonstrates that numerous T2DM patients are not appropriately treated, as they are 

receiving too high dosages of the medications according to the reduced renal function or even 

they are treated by drugs that are contraindicated considering the severity of CKD. Despite 

these inappropriate prescriptions, the incidence of severe adverse events is rather low, even if 

it may be somewhat underestimated in clinical practice. The most well recognized side effects 

when glucose-lowering drugs are prescribed in T2DM patients with RI are lactic acidosis with 

metformin, hypoglycemia with sulfonylureas (more rarely with glinides) but also with insulin 

(or insulin analogs), and fluid retention with a higher risk of congestive heart failure with 

TZDs. The PK of DPP-4 inhibitors (except linagliptin) and GLP-1 receptor agonists is also 

modified by RI, which may require appropriate dose reductions. However, the potential risk 



associated with these compounds, even if used in patients with CKD, is less well established. 

Whatsoever, the risk of hypoglycemia that may be dangerous, and even fatal, with 

sulfonylureas in patients with CKD could be markedly reduced by using DPP-4 inhibitors 

instead of sulfonylureas in this population. The case of metformin deserves more attention. 

Indeed, metformin is the first-line OAD in all guidelines for the management of T2DM, but it 

is also officially contraindicated in patients with GFR below 60 mL/min. If this rule is strictly 

respected (which is frequently not the case in real life !), this will deprive numerous patients 

of the best glucose-lowering agent. This situation should lead to an amendment of the rules of 

prescription of metformin in patients with mild to moderate RI. Finally, the experience with 

SGLT2 inhibitors, the only glucose-lowering drugs that specifically target the kidney, is still 

limited, although this new pharmacological class has already shown a reduced 

pharmacodynamic activity in patients with CKD and thereby is not best suited for this 

population.  

The increasing prevalence of patients with T2DM and CKD, especially among elderly 

people, requires regular monitoring of renal function and appropriate selection and dosing of 

glucose-lowering agents according to GFR. A careful benefit/risk balance assessment should 

be performed in these more fragile diabetic patients. It would be of clinical interest in the 

future to develop new antidiabetic agents that may be used efficaciously and safely in the 

large population with T2DM and CKD.  

 

EXPERT OPINION SECTION 

According to the recent ADA-EASD position statement, the management of 

hyperglycemia of T2DM should be patient-centered. Generally speaking, the objectives and 

the modalities of therapy should be adapted to the characteristics of the T2DM patient. CKD 

is a common complication of T2DM, especially in the elderly population whose proportion is 

rapidly increasing, notably because of a better cardiovascular protection of patients with 

T2DM. The first step is to use appropriate methods to quantitatively assess and follow renal 

function. Current non-uniform use of different equations leads to more confusion rather than 

help with renal dosing and there is need for greater standardization of eGFR estimations. 

Secondly, in a patient-centered approach, the presence of CKD is obviously an important 

condition to be taken into account, more specifically in the selection, dosing and supervision 



of pharmacological therapies.  In T2DM patients with CKD, the treatment algorithm that may 

be proposed is the following one, although there are no official guidelines in this specific 

population.   

- The first choice drug may remain metformin provided that RI is stable, the CLCR is 

above 30 ml/min and the renal function can be regularly monitored. When CLCR is 

below 45 ml/min, the daily dose of metformin should be reduced by half and the 

medication should be stopped when CLCR falls below 30 ml/min. Noteworthy, the 

patient and his/her family should be duly informed that metformin must be stopped in 

any acute condition, especially any situation that may lead to dehydration (diarrhea, 

vomiting, …) to reduce the risk of lactic acidosis (a rare but possibly fatal 

complication). 

- In case of contraindication to metformin (CLCR between 30-45 ml/min but at risk of 

destabilisation or CLCR < 30 ml/min), the physician may chose a DPP-4 inhibitor 

rather than a sulfonylurea in order to reduce the incidence of sulfonylurea-associated 

hypoglycemia in patients known to be exposed to this severe complication. 

Linagliptin, which is not excreted by the kidneys, may be administered at the usual 

dose whereas the daily dose of other DPP-4 inhibitors should be reduced (generally by 

half) to reach comparable plasma levels. Thereby, a similar glucose-lowering activity 

can be achieved, with a good safety profile, in T2DM patients with moderate to severe 

CKD as compared to patients with normal kidney function. Alternatively, to reduce 

the cost, a glinide or a sulfonylurea with low renal excretion (and without active 

metabolite) may also be considered. A thiazolidinedione (currently pioglitazone only, 

as rosiglitazone is now withdrawn in most countries because of cardiovascular safety) 

may also be used without dosage adjustment, although the risk of fluid retention and 

congestive heart failure may be increased in more fragile patients with CKD.  In the 

Asian population, alpha-glucosidase inhibitors might also be a valuable option, 

although almost no data are available in CKD patients with this pharmacological class 

that deserves further specific studies in this population.    

- When individually-targeted glucose control cannot be achieved or maintained with 

metformin monotherapy, the addition of a DPP-4 inhibitor appears to offer some 

advantages compared to sulfonylureas (again, less hypoglycemia, no weight gain, no 

need of titration). Several gliptin plus metformin FDCs are currently available to 



facilitate the use of such combination and improve adherence to therapy. The above-

mentioned pharmacological alternatives (repaglinide, pioglitazone, acarbose) may also 

be considered, although few controlled clinical trials are available in this population 

with CKD and thus the clinical evidence is rather scarce.  

- When the gliptin-metformin combination fails, the shift to insulin therapy is probably 

the best option, owing to the current limited experience with triple oral therapies or 

injectable GLP-1 receptor agonists in patients with CKD. It is worth noting that 

insulin daily doses are generally lower in patients with CKD than in patients without 

CKD, because the kidneys clear about 50% of circulating insulin and diabetic patients 

with RI are more exposed to hypoglycemia. The PK of various insulin preparations 

(including insulin analogs) has not been well studied in patients with varying degrees 

of RI, and there are no absolute guidelines defining appropriate dosing adjustments of 

insulin that should be made based on the level of GFR. 

- Finally, SGLT2 inhibitors are the only antidiabetic agents that specifically target the 

kidney to improve glucose control. However, their clinical efficacy vanishes as renal 

function diminishes so that these novel glucose-lowering medications should not be 

used in patients with CKD. Their safety profile is also poorly known in this 

population.  

Because of the increasing prevalence of CKD (especially mild to moderate stages) in 

patients with T2DM, there is an urgent need for a clarification of the use of glucose-lowering 

agents in this population and for the development of new agents that are efficacious and safe 

to control hyperglycemia despite impaired renal function. 
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Article highlights 



 The reduction in kidney function is a common observation in patients with type 2 

diabetes, especially over 65 years, although this problem is frequently overlooked by the 

physician and unknown by the patient.   

 Renal function should be measured in all diabetic patients before prescribing any 

glucose-lowering agent and regularly monitored to detect worsening, especially when 

events that may potentially deteriorate renal function occur. 

 The pharmacokinetics of almost all glucose-lowering agents may be altered by renal 

impairment, thus requiring appropriate dosage adjustments according to the reduction in 

glomerular filtration rate (creatinine clearance). 

 Metformin, the first choice oral antidiabetic agent, is officially contraindicated when 

creatinine clearance is  < 60 ml/min/1,73 m², although real life data show that this drug is 

largely prescribed in patients with lower creatinine clearance without any problem and 

with potential benefits. In more recent guidelines, a dose reduction is proposed below < 

45-60 ml/min/1,73 m², and the drug must be stopped at 30 ml/min/1,73 m². 

 Most sulfonylureas are excreted by the kidneys (either parent drug or active metabolites), 

explaining why these drugs expose to a higher risk of (severe) hypoglycemia in diabetic 

patients with chronic kidney disease. DPP-4 inhibitors, whose dosage should also be 

reduced in presence of renal impairment (except linagliptin), offer clear advantages in 

this regard. 

 The efficacy and safety of GLP-1 receptor agonists and new SGLT2 inhibitors remain 

largely unknown in patients with CKD and warrant further studies before using such 

agents in this population. 

 

Figure 1 : Use of glucose-lowering medications according to the degree of renal impairment 

assessed by the glomerular filtration rate (eGFR). (*) The level of GFR may depend on the 

type of sulfonylurea (see text). 

  



Table 1 : Drug exposure (AUC) in subjects with various degrees of renal impairment (RI ; 

according to the level of creatinine clearance) compared with subjects with normal renal 

function. Results are expressed as % changes versus subjects with normal renal function or as 

geometric mean ratio (GMR) RI/normal renal function (90% confidence intervals). NA : data 

not available. 

 

 Reference Mild RI Moderate RI  Severe RI Hemodialysis

Metformin Sambol et al 
199533 

NA NA NA NA 

Glibenclamide 

M1 + M2 
(active 
metabolites)  

Jonsson et al 
199864 

NA 

NA 

NA 

NA 

- 45% 

+ 98% 

NA 

NA 

Glimepiride 

M2 (active 
metabolite) 

Rosenkranz et 
al 199870 

NA - 55% 

+ ≈100% 

- 55% 

+ ≈400% 

NA 

NA 

Glipizide Balant et al 
197373 

NA NA NA NA 

Gliclazide McGavin et al 
200277 

NA NA NA NA 

Repaglinide Marbury et al 
200089 

NA + 19% +32% +32% 

Nateglinide Deviveni et al 
200387 

NA + 5% -15% 

Pioglitazone 

MIII 

MIV 

Budde et al 
2003106 

NA -17% 

-43% 

-21% 

-23% 

-11% 

-44% 

NA 

Rosiglitazone Chapelsky et 
al 2003112 

1.08 (+8%) 

(0.85-1.37) 

1.14 (+14%) 

(0.91-1.43) 

0.81 (-19%) 

(0.64-1.04) 
NA 

Sitagliptin 
Bergman et al 

2007122 

1.61 
(+61%) 

(1.43-1.81) 

2.26  
(+126%) 

(2.02-2.53) 

3.77 
(+277%) 

(3.37-4.22) 

4.50 
(+350%) 

(4.03-5.03) 



Vildagliptin 

 

 

LAY151 
(inactive 
metabolite) 

He et al 
2012123, 124 

1.40 
(+40%) 

(1.24-1.57) 

1.66 
(+66%) 

(1.35-2.04) 

 

1.71    
(+71%) 

(1.52-1.93) 

3.20   
(+220%) 

(2.60-3.95) 

2.00 
(+100%)  

(1.77-2.26)  

7.30 
(+630%) 

(5.90-9.04 

 

NA 

 

NA 
 

 

 

Saxagliptin  

 

Active 
metabolite 

Boulton et al 
2011125 (*) 

1.16 
(+16%) 

1.67 
(+67%) 

 

1.41    
(+41%) 

2.92          
(+ 192%) 

 

2.08 
(+108%) 

4.47          
(+ 347%) 

 

NA (**) 

NA (**) 

Alogliptin Karim et al 
2008126 

1.7 (+70%) 

(NA) 

2.1 (+110%) 

(NA 

3.2 (+220%) 

(NA) 

3.8 (+280%) 

(NA) 

Linagliptin 
Graefe-Mody 
et al 2011142 

1.29 
(+29%) 

(1.01-1.66) 

1.56    
(+56%) 

(1.06-2.32) 

1.41   
(+41%) 

(1.04-1.91) 

1.54   
(+54%) 

(1.18-2.00) 

Dapagliflozin 

 

Metabolite 
D3OG 

Kasichayanula 
et al 2012147 

 

1.28 
(+28%) 

(1.19-1.37) 

1.50 
(+50%) 

(1.37-1.65) 

1.52    
(+52%) 

(1.35-1.72) 

2.01  
(+101%) 

(1.71-2.37) 

1.75   
(+75%) 

(1.49-2.07) 

2.54 
(+154%) 

(2.04-3.16) 

NA 

 

NA 

Exenatide 
Linnebjerg et 

al 2007152 

0.81 (-19%) 

(0.66-0.98) 

0.97 (-3%) 

(0.77-1.21) 

NA 

(NA) 

3.37 
(+227%) 

(2.80-4.06) 

Liraglutide Jacobsen et al 
2009153 

0.67 (-33%) 

(0.54-0.85) 

0.86 (-14%) 

(0.70-1.07) 

0.73 (-27%) 

(0.57-0.94) 

0.74 (-26%) 

(0.56-0.97) 

(*) Model-derived point estimates for the mid-point of each renal impairment category 
(**) NA – not available without post-dose hemodialysis 



Table 2 : Clinical practice recommendations regarding the use of glucose-lowering agents in 

T2DM patients with various degrees of RI according to the level of glomerular filtration rate 

(GFR). ESRD : End-stage renal disease. 

 Exposure 
(AUC) in 
patients 
with RI 

Risk of side 
effects in 

patients with 
RI 

Use according to 
GFR (ml/min) 

Use in 
patients 

with ESRD 
and dialysis

Biguanides 

- Metformin Increased Lactic acidosis 

≥ 60 : yes 

30-45 : caution 
(half dose) 

< 30 : stop 

No (dialysis 
in case of 

intoxication)

Sulfonylureas  

- Gilbenclamide 
Increased 

(active 
metabolite) 

Hypoglycemia 
(variable risk 
according to 
the molecule) 

≥ 60 : yes 

< 60 : no 
No 

- Glimepiride 
Increased 

(active 
metabolite) 

≥ 60 : yes 

< 60 : caution 
No 

- Glipizide 
No change 
(no active 

metabolite) 
Yes Yes 

- Gliclazide 
No change 
(no active 

metabolite) 
Yes (caution) No data 

- Gliquidone 
No change 
(no renal 
excretion) 

Yes ( few data) No data 

Glinides 

- Repaglinide No change Hypoglycemia 
(less than with 
sulfonylureas) 

Yes Yes 

- Nateglinide Modest 
change 

<60 : caution No 

Alpha-glucosidase inhibitors 

- Acarbose/Miglitol 
Increased 

(metabolite)
Unknown 

< 60 : caution 

≥ 60 : yes 
No 



< 60 : caution 

Thiazolidinediones 

- Pioglitazone/ 
Rosiglitazone 

No change 

Fluid retention 

Congestive 
Heart failure 

≥ 60 : yes 

< 60 : caution 

Limited 
experience 

Great 
caution 

DPP-4 inhibitors     

- Sitagliptin Increased 

Unknown 

≥ 50 : yes 

30-50 : half dose 

< 30 : quarter dose 

Caution 

- Vildagliptin Increased 

≥ 50 : yes 

< 50 : half dose 

 

Caution 

- Saxagliptin 
Increased 
(+ active 

metabolite) 

≥ 50 : yes 

< 50 : half dose 

< 30 : caution 

No 

- Alogliptin Increased 

≥ 50 : yes 

< 50 : reduced 
dose 

Caution 

- Linagliptin No change 
Yes (without dose 

adjustment) 
Possibly yes 

(no data) 

SGLT2 inhibitors 

- Dapagliflozin Increased Unknown 
≥ 60 : yes 

< 60 : no 
No 

GLP-1 receptor agonists 

- Exenatide No change 
 

Unknown 

≥ 60 : yes 

30-60 : caution 

< 30 : no 

No 

- Liraglutide No change 
≥ 50 : yes 

< 50 : no 
No 



Insulin 

Insulin & insulin analogs Increased Hypoglycemia 
Yes (reduced daily 

dose) 
Yes 

 



Table 3 : Various stages of chronic kidney disease (CKD) according to the glomerular 

filtration rate estimated by the MDRD formula (eGFR) or the creatinine clearance (CLCR) 

calculated by the Cockroft-Gault formula. 

Stage Description 

eGFR  

derived from MDRD 

formula 

CLCR derived from 

Cockroft-Gault 

formula 

Formula  

GFR (ml/min/1.73 m2)  

= 

186.3 x (plasma 

creatinine 

[µmol/L]/88.4)-1.154 x 

age-0.203 

GFR (ml/min) = 

(140-age) x weight 

(kg)/ plasma 

creatinine [µmol/L] 

Correction factor  

Woman : x 0.742 

Afro-American : x 

1.21 

Woman : x 1.03 

Man : x 1.23 

1 
Normal renal 

function 
≥90 >80 

2 Mild CKD 60-89 50-80 

3 (*) Moderate CKD 30-59 30-50 

4 Severe CKD 15-29 <30 

5 
End-stage renal 

disease (ESRD) 
< 15 ( or dialysis) Dialysis 

 

* Stage 3 may be divided in two categories : 3a between 45 et 59 ml/min/1.73 m² and 3b 

between 30 and 44 ml/min/1.73 m².



  

Table 4 : Proposed recommendations for use of metformin based on eGFR (adapted from 

reference Lipska et al)37.  

 

eGFR 

ml/min/1,73 m² 

Actions 

≥ 60 
No renal contraindication to metformin 

Monitor renal function annually 

< 60 à ≥ 45 

Continue metformin use if well tolerated 

Increase monitoring of renal function (every 3-6 months) 

Avoid any nephrotoxic drugs 

Stop metformin in case of serious acute event and dehydration 

< 45 à ≥ 30 

Prescribe metformin with caution 

Use lower dose (e.g., 50%, or half-maximal dose) 

Closely monitor renal function (every 3 months) 
Avoid any nephrotoxic drugs 

Stop metformin in case of serious acute event and dehydration 
Do not start new patients on metformin 

< 30 

Stop metformin 

Adjust antidiabetic therapy is necessary 

Closely monitor renal function (every 6 weeks) 

 
Additional caution is required in patients at risk for acute kidney injury or with anticipated 
significant fluctuations in renal status, based on previous history, other comorbidities, or 
potentially interacting medications. 
  



Table 5 : Dose adjustments recommended when using incretin-based therapies in patients 

with various stages of renal impairment (RI) based on previous pharmacokinetics studies. 

CLCR : creatinine clearance.NR : not recommended 

 
 

RI Mild Moderate Severe ESRD 
STAGE 1-2 3 4 5 

CLCR 
ml/min 

≥ 50 ≥30 -<50 <30 Dialysis 

     
Sitagliptin 100 

mg/day 
50 

mg/day 
25 

mg/day 
25  

mg/day 
Vildagliptin 2 x 50 

mg/day 
1 x 50 
mg/day 

1 x 50 
mg/day 

1 x 50 
mg/day 

Saxagliptin 5 
mg/day 

2,5 
mg/day 

2,5 
mg/day 

NR 
 

Alogliptin 25 
mg/day 

12.5 
mg/day 

6.25 
mg/day 

6.25 
mg/day 

Linagliptin 5 
mg/day 

5  
mg/day 

5 
mg/day 

5  
mg/day 

Exenatide 2 x 10 
µg/day 

2 x 10 
µg/day 

NR NR 

Liraglutide 1.2-1.8 
mg/day 

NR NR NR 
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