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Importance of the field: Tumor targeting with peptides is based on the 
discovery that receptors for many regulatory peptides are overexpressed in 
tumor cells, compared with their expression in normal tissues. Consequently, 
these peptides and their analogues can be used as carriers/targeting moieties 
for the preparation of diagnostic and therapeutic agents that have increased 
selectivity and decreased peripheral toxicity. 
Areas covered in this review: Here an overview is given of the most relevant 
gonadotropin-releasing hormone (GnRH) and somatostatin derivatives, as 
well as of their applications in cancer diagnosis and therapy. For this purpose, 
recently published data in these areas (mostly articles published from 2000 to 
2009) were reviewed. 
What the reader will gain: In contrast to other regulatory peptides that 
stimulate the tumor growth, GnRH and somatostatin derivatives have inhib­
itory effect; therefore, they were used primarily for the preparation of various 
conjugates to be used in targeted chemotherapy, targeted radiotherapy, 
photodynamic therapy, boron neutron capture therapy and cancer diagnosis. 
Some of these conjugates have already found clinical applications, whereas 
others are now in preclinical and clinical trials. 
Take home message: Tumor targeting with hormone peptides provides a 
basis for the development of new diagnostic and therapeutic approaches 
for cancer. 
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1. Introduction 

Cancer is a leading cause of death and a major public health problem worldwide. 
According to the statistics of the World Health Organization, in 2007 cancer 
accounted for 7.9 million deaths (- 13% of all deaths) all over the world. Deaths 
from cancer worldwide are projected to continue rising, with an estimated 12 million 
deaths in 2030 [IJ if no breakthrough in the therapeutic approaches occurs. 

Since the middle of the last century, chemotherapy has been the main procedure 
for the treatment of advanced or metastatic cancer [2J. However, the application of 
free anticancer drugs has several drawbacks, such as the lack of selectivity, toxicity to 
normal cells, fast elimination from the blood circulation, and the acquired or 
intrinsic multi-drug resistance of cancer cells [3J. In the last two decades, cancer 
research has turned to a more selective, targeted approach, focused on the devel­
opment of anticancer therapies with improved efficacy and reduced peripheral 
toxicity [4J. One of the most promising therapeutic strategies is based on the 
peptide receptors that are overexpressed in tumor cells, in comparision with their 
expression in normal tissues [3.5J. Many regulatory pep tides (e.g., somatostatin, 
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Receptor-mediated tumor targeting based on peptide hormones 

Article highlights. 

• Specific tumor targeting with peptides is based on the 
discovery that receptors for many regulatory peptides are 
overexpressed in tumor cells. compared with their 
expression in normal tissues. 

• Gonadotropin-releasing hormone (GnRH) receptors are 
important molecular targets for cancer diagnosis and 
therapy. 

• Cytotoxic GnRH derivatives are developed as drug delivery 
systems for targeted cancer chemotherapy. 

• The application of radiolabeled GnRH derivatives is 
limited. 

• High-affinity somatostatin receptors are expressed on the 
plasma membrane of tumor cells. 

• Cytotoxic somatostatin derivatives are available for 
targeted cancer chemotherapy. 

• Somatostatin-based boron neutron capture therapy is still 
in the in vitro testing phase. 

• Radiolabeled somatostatin derivatives are used in targeted 
radiotherapy and tumor imaging. 

• Tumor targeting with hormone peptides provides a basis 
for the development of new diagnostic and therapeutic 
approaches for cancer. 

• GnRH and somatostatin analogues are promising tools to 
target radionuclides and antineoplastic agents to tumor 
cells. 

This box summarises key points contained in the article. 

gonadotropin-releasing hormone (GnRH), bombesin, gastrin­
releasing peptide (GRP), neurotensin, substance P, vasoactive 
intenstinal peptide (VIP) and cholecystokinin (CCK)) have 
membrane-bound receptors on different types of tumor [5J. 
The receptors recognized by these hormone/neurotransmitter 
pep tides are G-protein-coupled receptors; therefore, they can 
internalize into the cells after binding of their ligands. Con­
sequently, a cytotoxic agent attached to the peptide can enter 
the tumor cell by a receptor-mediated way (Figure 1). The 
advantages of small pep tides as carriers are their excellent 
tissue permeability (except crossing the blood-brain barrier), 
the lack of immunogenicity, high affinity to the receptors, 
minimal side effects, rapid clearance from the body, easy 
synthesis and chemical modifications as well as detailed and 
precise characterization. The only disadvantage is their rapid 
proteolytic degradation, which can be partially prevented by 
insertion ofD-amino acids, reduced peptide bonds, N-methyl­
or non-native amino acids, and so on. However, it has to be 
taken into account that regulatoty peptides, which control and 
modulate the function of almost all key organs and metabolic 
processes, may also play prominent roles in cancer progres­
sion. Thus, peptide derivatives (agonists or antagonists) 
selected for drug delivety should have an inhibitoty but not 
stimulatoty effect on tumor growth [5,6J. Somatostatin and 
GnRH analogues have an inhibitory effect on tumor growth, 
whereas bombesin, GRP, VIP, CCK, and so on, stimulate it. 
Considering these aspects, the application of antagonistic 
derivaties as carriers in the case of the latest ones is suggested 
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by several authors [5,6J. However, others prefer agonists (e.g., 
in the case of bombesin) as drug targeting moieties owing to 
the observation that agonists induce rapid receptor-ligand 
internalization by tumor cells, which might be important in 
the case of targeted cancer chemotherapy [7,8J. 

Tumor targeting with peptides has found both diagnostic 
and therapeutic applications. In the case of cancer diagnosis 
and radiotherapy, a radio ligand is usually attached to the 
regulatory peptide carrier by the aid of a chelator. A wide 
variety of chelating agents (e.g., diethylenetriaminepentaacetic 
acid [DTPA] and 1,4,7,lO-tetraazacyclododecane-
1,4,7,1O-tetraacetic acid [DOTA]) have been developed for 
convenient radiolabeling of pep tides. Radionuclides such as 
99mTc, 111 In, 68Ga, 1231, 64Cu and 18p can be used for 
diagnosis and 90y, 177Lu and III In for therapeutic purposes. 
Radionuclides used in cancer radiotherapy emit high energy 
p-rays or Auger electrons and have longer half-life (> 60 h) in 
comparision with the y-ray or positron emitter radionucIides 
used as diagnostic tools [5.9J. 

Another therapeutic application of peptide-based tumor 
targeting is targeted cancer chemotherapy. In this case, cyto­
toxic drugs are attached to hormone/neurotransmitter 
pep tides with the aim of increasing their selectivity and 
decreasing the peripheral toxicity (Figure 1). 

The main difference between the conjugates containing 
radionuclides or drugs is that the antineoplastic agent should 
be released from the conjugate in order to obtain an 
efficient tumor growth inhibition, whereas in the case of 
radio pharmaceuticals this process is not necessary. There­
fore, the insertion of pH-sensitive or enzymatic cleavable 
linkers between the drug and the peptide might be 
required for the antitumor activity of the cytotoxic 
conjugates [IO.I IJ. 

The selection of the peptide to be used as a targeting moiety 
is based on the type of cancer to be treated. An important 
aspect of targeted cancer chemotherapy is that the receptor 
incidence and density must be different on tumoral tissues 
compared with normal ones. Therefore, VIP peptides seem 
not to be efficient for drug delivery compared with 
the others [5J. 

Here an overview is given of GnRH and somatostatin 
analogues that are widely used as carriers for radionucIides 
and antineoplastic agents. 

2. GnRH receptors as molecular targets for 
cancer diagnosis and therapy 

Type I and type II GnRH receptors (GnRH-IR and 
GnRH-IIR) have been identified among vertebrates, including 
mammals. GnRH-IR protein consists of329 amino acids and 
it has no C-terminal cytoplasmic tail [I2J. Therefore, 
GnRH-IRs do not desensitize rapidly and they internalize 
slowly [I3J. The full-length GnRH-IIR have been found in 
marmoset and rhesus monkeys but not in humans [I4,I5J. The 
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Figure 1. Cellular uptake of a free and conjugated drug into GnRH-receptor containing tumor cells (A) and into normal cells 
without GnRH receptors (B). 
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Figure 2. Schematic representation of signaling pathways of GnRH-I.1I in cancer cells. 
AP-l: Activator protein-l; EGFR: Epidermal growth factor receptor; Gai : G-protein o:i; GRB2: Growth factor receptor bound protein; JNK: c-Jun N-terminal kinase; MAPK: 
Mitogen-activated protein kinase; MAPKK: MAPK kinase; PI3K: Phosphoinositide 3 kinase; PTP: Phosphotyrosine phosphatase; RPTK: Receptor protein tyrosine kinase; 
SOS: Son of Seven less; Tep: Transcription factor. 

GnRH-IIR has a cytoplasmic tail and undergoes rapid 
arrestin-dependent internalization and desensitization [16J. 
The mRNA expression of this full-length GnRH-IIR has 
also been shown by real-time polymerase chain reaction 
(RT-PCR) in human cancer cell lines [17J. However, it became 
evident that GnRH-IIRs have a frameshift and a premature 
stop codon and thus they are not functional. Therefore, it is 
believed that the GnRH-II signaling might also occur through 

the GnRH-IR (Figure 2) [18J. By contrast, after knockout of 
GnRH-IR expression in endometrial and ovarian cancer cells, 
the anti proliferative effect of GnRH agonist Triptorelin 
([O-Trp6]-GnRH) was abrogated, whereas the tumor 
growth-inhibitory effect of GnRH-II persisted [19J. Recent 
data of extensive research have shown that functional 
GnRH-IIR might occur on human cancer cells [20J. However, 
an intensive study of the role of GnRH-IIRs on tumor cells 
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Table 1. In vivo and in vitro antitumor effect of AN-152 and AN-207 conjugates. 

Tumor type Receptor expression Cell types that AN-152 AN-207 
in specimens express GnRH-R 

Breast > 50 MCF-7 AN-152 > Dox* AN-207 » Dox 
MDA-MB-231 n.d. XXXX' 
MDA-MB-435 n.d. XXX 
MX-1 XXX XXXXX 
T47-D AN-152 > Dox n.d. 
HCC-70 AN-152> Dox n.d. 
ZR-75-1 AN-152 <Dox n.d. 
MXT (mouse) XXXX XXXX 

Ovarian > 70 OV-10630VCAR-3 XXXX XXX 
ES-2 XXXXX n.d. 
EFO-21 XX XXX 
EFO-27 AN-152> Dox n.d. 

AN-152 <Dox n.d. 

Endometrial > 75 Ishikawa AN-152 > Dox n.d. 
HEC-1A XXX XXX 
HEC-1B XXXXX n.d. 
RC-95-2 n.d. XXX 

Prostate > 85 LNCaP XXXX n.d. 
MDA-PCa-26 XXX n.d. 
MDA-PCa-2b XXX XXX 
DU-145 n.d. XXXX 
C4-2 XXX (PSA inh} n.d. 
PC-82 n.d. XXX 
LuCaP-35 n.d. XXXX 
R-3327 -H (rat) XXX XXX 
R-3327-AT-1 (rat) XX n.d. 

Colon n.d. HT-29 XX XXX 
HCT-116 X XXX 
HCT-15 XXXX XXXX 
LoVo XXX XXX 
Colo-320DM XXXX XX 

Renal 80 A-498 n.d. XXXX 
ACHN n.d. XXXX 
786-0 n.d. XXX 

Melanoma 100 MRI-H255 n.d. XXXX 
MRI-H187 n.d. XXX 

Lung n.d. NCI-H720 AN-152 > Dox n.d. 

Non-Hodgkin's lymphoma 100 RL n.d. XXXX 
HT n.d. XXXX 

Hepatocellular n.d. SK-Hep-1 n.d. XXXX 

Oral n.d. KB AN-152 > Dox n.d. 

Laryngeal n.d. HEp-2 AN-15~ > Dox n.d. 

* AN·152 > Dox represents the comparison of the in vitro antitumor effect of free drug and its GnRH derivative conjugate. 

'In vivo studies: XXXXX: regression; XXXX: > 70% inhibition; XXX: 50 - 70% inhibition; XX: 25 - 50% inhibition; n.d.: not determined. 

§PSA inh.: not the tumor volume, but PSA level was determined as a measure of the inhibitory effect. 

The effects are not absolutely comparable because of different doses and treatment schedules used. 

and of the mechanism of action of GnRH-II should be carried 
out. In addition to GnRH-IR, GnRH-IIR might be a good 
target for tumor therapy. 

basis for the development of diagnostic and therapeutic 
approaches of cancer (Figure 1). 

GnRH-R expression was identified on different tumors 
(breast, ovarian, endometrial, prostate, renal, brain, pancreatic, 
melanomas, non-Hodgkin's lymphomas, etc.) (Table 1) [21-23). 

The limited number ofGnRH-Rs in normal tissues provided a 
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3. Cytotoxic GnRH derivatives 

Cytotoxic GnRH derivatives were initially developed by 
SchaIly's group after the mid-1980s. The first series of 



conjugates contained agonistic (e.g., [D-Lys6)-GnRH; Glp­
His-Trp-Ser-Tyr-D-Lys-Leu-Arg-Pro-Gly-NH2) or antago­
nistic (e.g., [Ac-D-Nal(2) I,D_Phe(pCl)2,D_PaI3,Arg5,D_Lys6, 
D-Ala10)-GnRH) GnRH derivatives as carriers and cytotoxic 
moieties such as alkylating agents cisplatin and melphalane, 
antimetabolite methotrexate, DNA intercalating agents doxo­
rllbicin (Dox) and (2-hydroxymethyl)anthraquinone [21.24,25J. 
Based on the results of in vitro and in vivo studies using these 
compounds, more efficient conjugates were developed in 
which Dox or its analogue (2-pyrrolino-Dox; AN-20l, which 
is 500 - lOOO times more potent than Dox) were attached to 
[D-Lys6)-GnRH [26J. In these compounds AN-152 (1) 
(Figure 3A) and AN-20? (2) (Figure 3B), the cytotoxic agents 
connected to glutaric acid by means of an ester bond 
(Dox-l4-0-hemiglutarate), were conjugated to the f:-amino 
group of D-Lys6 of GnRH. The ester bond could be cleaved 
by carboxylesterases (CE), leading to the release of the free 
cytotoxic radicals. Cellular uptake studies showed that the 
conjugates were internalized in a receptor-mediated way by 
GnRH-R-positive cells (Figure lA) but not by GnRH-R­
negative cells (Figure IB). The receptor-mediated 
internalization was also confimed by blocking the receptors 
with the superagonist Triptorelin [27J. 

The antitumor action of AN-l52 and AN-207 was studied 
intensively on numeouros tumor types (Table 1). Their effi­
ciency was tumor type-dependent, but in almost all cases AN-
207 had higher antitumor activity. Significant in vivo tumor 
growth inhibition and the regression of several tumor types 
(e.g., ovarian, endometrial, breast and prostate cancers) were 
observed. These results have been reviewed exten­
sively [3.21,28,29J. In the last few years, the strong inhibitory 
activity of the conjugates has been shown on more tumor 
types, such as renal, non-Hodgkin's lymphomas, melanomas, 
colorectal and hepatocellular carcinoma cell lines that 
expressed GnRH-Rs [22,23.30-32J. In most cases, the intrave­
nous-administered conjugates were far less toxic and inhibited 
the growth of GnRH receptor-positive tumors better than the 
equimolar doses of free doxorubicin. Furthermore, AN-152 
induces apoptosis in GnRH receptor-positive human ovarian 
and endometrial cancer cell lines without activating the 
MDR-l (multi-drug resistance-I) efflux pump system [33J. 

Although the tumor growth inhibition effect of AN-207 
was higher, AN-152 was the first cytotoxic GnRH derivative 
investigated in preclinical and clinical studies. In the Phase I 
clinical trial for ovarian and endometrial cancers ('£terna 
Zentaris, AEZS-I08), AN-l52 was well tolerated using esca­
lated doses of 160 and 267 mg/m2. Even at the highest dose, 
the hematological toxicity of AN-152 was low and the other 
non-hematological side effects were mild [34J. The Phase II 
clinical trial started in January 2008. 

It is worth mentioning that the side effects of the conjugates 
were mainly related to the easy drug release by CE. In an early 
study, it was demonstrated that the half-life of AN-152 in 
mouse serum was - 20 min, whereas in human serum it lasted 
a longer time, with a half-life of 2 h [35J. This difference could 

be explained by the CE levels in mouse and human sera (the 
CE level in mouse serum is - 10 times higher than in human 
serum). Therefore, to reduce the toxicity of the conjugate in 
many in vivo experiments, diisopropyl-fluorophosphate was 
used as a CE inhibitor. In this way the half-life of AN-152 in 
mouse serum was enhanced to - 70 min and the maximal 
tolerated dose (MTD) was increased from 200 to 2 x 400 nM. 
The hydrolyzed Dox and especially 2-pyrrolino-Dox had a 
non-receptor specific cytotoxic effect on rapidly proliferating 
cells, the main toxic side effect being the myelotoxicity. 
Another side effect might originate from the presence of 
GnRH-Rs on normal reproductive cells and gonadotroph 
cells. The temporary damage of gonadotrophs using AN-207 
was recovered - 1 week after cessation of the treatment [36J. 
In the case of hormone-dependent tumors patients are 
usually hypophysectomized, thus this side effect of the 
cytotoxic GnRH derivatives is not harmful [37J. 

A natural isoform ofGnRH, GnRH-III (Glp-His-Trp-Ser­
His-Asp-Trp-Lys-Pro-Gly-NH2), which is a weak GnRH 
agonist, has recently been used as a carrier in the authors' 
laboratories. This hormone peptide, isolated from sea lamprey 
(Petromyzon marinus) [38J, specifically binds to the GnRH-Rs 
on cancer cells [39J. GnRH-III has antiproliferative activity on 
several tumor cell lines and 500 - 1000 times less potency in 
LH and FSH secretion both in vitro and in vivo, indicating its 
selective antitumor activity [40J. The modification of the side 
chain of Lys8 did not result in the loss of the antiproliferative 
activity ofGnRH-III [41J. Furthermore, the absence of the free 
f:-amino group of lysine decreased the endocrine effect of the 
compounds [42J. Therefore, Lys8 might be used as a conju­
gation site for the attachment of cytotoxic drugs. 
Daunorubicin (Dau), an anthracycline derivative that differs 
from doxorubicin in the substitution at the C-14-position (H 
instead of OH) and has lower cardiotoxicity than Dox, was 
conjugated to GnRH-III via oxime (3) (Figure 3C) or hydra­
zone (4) bonds (Figure 3D). As the oxime bond is relatively 
stable under physiological conditions, a GFLG tetrapeptide 
spacer known to be cleaved by lysosomal enzymes, especially 
by Cathepsin B which is overexpressed in tumor cells [41,43,44J, 
was inserted between the drug and the hormone peptide. Ester 
bond-containing Dox-GnRH-III conjugates were also pre­
pared. In vitro cytostatic effect of the conjugates was deter­
mined by MTI assay on MCF-7 human breast cancer and 
HT-29 human and C26 murine colon carcinoma cell 
lines [25,4I]. The results were compared with the IC50 values 
of the free drugs and AN-l52. All compounds were more 
potent on breast cancer cell lines; however, there were no 
significant differences between their antitumor effects on 
colon cancer cells. The ester bond-containing conjugates 
had similar antitumor activity as the free drugs and one order 
of magnitude higher activity than that of the conjugates 
containing hydrazone or oxime bonds. 

The in vivo toxicity study on BD F-l mice indicated high 
tolerability of oxime bond-linked GnRH -III(Dau=Aoa-GFLG) 
conjugate. This conjugate had an MTD > 54 Ilmol 
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Figure 3. Chemical structures of cytotoxic GnRH derivatives: ester bond-linked doxorubicin-[D-Lys61-Gn RH (A) and 2-pyrrolino­
doxorubicin-[D-lys61-GnRH (B), oxime bond containing daunorubicin-GnRH-1II (C), hydrazone bond-linked daunorubicin­
GnRH-1II (D) and of a radiolabeled GnRH derivative, D-lys6(Ahx-[ 18F1FBOA)-GnRH (E). 
Ahx: £-Aminohexanoic acid; FBOA: p-Fluorobenzyloxime acetyl. 
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Figure 3. Chemical structures of cytotoxic GnRH derivatives: ester bond-linked doxorubicin-[D-Lys6]-Gn RH (A) and 2-pyrrolino­
doxorubicin-[D-Lys6]-GnRH (B). oxime bond containing daunorubicin-GnRH-1II (C). hydrazone bond-linked daunorubicin­
GnRH-1II (D) and of a radiolabeled GnRH derivative. D-Lys6(Ahx-[18F]FBOA)-GnRH (E). (Continued) 
Ahx: e-Aminohexanoic acid; FBOA: p-Fluorobenzyloxime acetyl. 

Dau-content in the conjugate per kilogram using intraper­
itoneal administration. The in vivo antitumor activity of the 
conjugate was evaluated on C26 colon cancer-bearing mice 
and the tumor growth inhibition was 20 - 46% depending 
on the dose and on the time schedule. Similar results were 
obtained after the administration of the free Dau. However, 
the survival of the animals treated with the conjugate 
increased by 15 - 40% compared to the controls, whereas 
the animals treated with the free drugs died earlier [41J. 

Rahimipour et al. applied [D-Lys6]-GnRH and [D-GlpI,D_ 
Phe2,D-Trp3,D-LysG]-GnRH (an antagonistic peptide) to 
increase the selectivity of protoporphyrin IX (PpIX) as a 
photosensitizer for photodinamic therapy [45J. In both cases, 
PpIX was conjugated to D-Lys6 by means of amide bonds. 
The conjugates bound to the GnRH-Rs with lower affinity 
than the parent peptides, but their selective and efficient 
phototoxicity compared with the unconjugated PpIX could 
be demonstrated. 

Drug delivery systems based on GnRH targeting moieties 
were developed by Dharap et al. Camptothecin (CPT) was 
connected to Glp-His-T rp-Ser-Tyr-D-Lys-Leu-Arg-Pro-EA 
(EA: ethylamide) through a polyethylene glycol (PEG) chain. 
CPT was attached to the cysteine by means of an ester bond 
and then Cys-CPT was conjugated to NHS-PEG-VS (NHS: 
N-hydroxysuccinimide; VS: vinylsulfone) by a thioether bond. 
After that, the GnRH derivative was attached to the PEG 
conjugate by means of an amide bond. PEG increased 
the solubility and bioavailibility of the conjugate. The 

GnRH-PEG-CPT conjugate showed higher cytotoxICIty 
and apoptosis induction than the free CPT or PEG­
CPT [46J. These results indicated the efficiency of receptor­
mediated endocytosis for selective drug targeting over the 
simple diffusion or direct endocytosis [47J. Moreover, in vivo 
experiments did not show any disturbance of the reproductive 
functions of female mice. GnRH-PEG-CPT conjugate accu­
mulated in tumor cells but, similarly to the free CPT and 
PEG-CPT, caused overexpression of BCL-2 and BCL-XL 
genes and thereby increased the cellular antiapoptotic defense. 
To overcome this drawback, a multifunctional targeted 
proapoptotic drug delivery system was designed. This new 
conjugate contained a BH3 antiapoptotic peptide 
(MGQVGRQLAIIGDDINRRY) beside the GnRH deriva­
tive, CPT and PEG. The conjugation of the three components 
to PEG was performed by inserting a multifunctional citric 
acid spacer that allowed simultaneous binding of several copies 
of different active components to one polymeric carrier [48.49J. 

It is important to note that BH3 peptide could not enter the 
cells without any targeting moiety [50J. The conjugate contain­
ing all four components induced the greatest supression of the 
antiapoptotic gene expression and the highest cytotoxic and 
apoptotic effects in A2780 human ovarian carcinoma cell line 
as compared with the conjugates CPT-PEG-BH3 and 
GnRH-PEG-CPT or their physical mixture. The conjugate 
also showed antitumor activity on A2780/AD multi-drug 
resistant human ovarian carcinoma cell line, but the effect 
was lower than in case of non-resistant cell lines. 
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4. Radiolabeled GnRH derivatives 

Except radio iodinated compounds, only a few data have been 
published so far about the development of other radiolabeled 
GnRH derivatives. Barda et aL prepared a 99l1lTc-labeled 
GnRH derivative as a potential single photon emission com­
puted tomography (SPECT) tracer [51]. However, the insertion 
of the radiometal via backbone cyclization of the peptide led to 
a dramatic loss of the binding affinity. Schottelius et aL inves­
tigated 68Ga_ and !8F-labeled GnRH analogues [521. Ga was 
incorporated by the aid of DOT A, while for the insertion ofF, 
p-fluorobenzyloxime acetyl (FBOA) moiety was applied. 
DOTA was attached directly to the f-amino group of D-Lys 
in [D-LysG)-GnRH, whereas in case of the fluor-containing 
derivative, either p-alanine or f-aminohexanoic acid (Ahx) 
were inserted between the peptide and the radioligand. In 
the in vitro binding experiments, radio iodinated Triptorelin 
e25I-[D-Trp6)-GnRH) was also used. The compound radi­
olabeled with 68Ga had vety Iow binding capacity, whereas the 
binding of fluorinated derivatives was four to six times lower 
than the radiolabeled Triptorelin. Compared with Triptorelin, 
the internalization of D-Lys6(Ahx-e sF)FBOA)-GnRH (5) 
(Figure 3E) into EFO-27 ovarian carcinoma cells was 
86 ± 16%, whereas the P-Ala-derivative showed only 
42 ± 3%. There was no significant internalization observed 
in case of the Ga-labeled GnRH derivative. These data sug­
gested that the lipophilicity of the compound that modified the 
lysine side chain and the distance between the peptide backbone 
and the radiolabeled moiety had significant influence on the 
binding capacity of the conjugate to the receptor and on its 
internalization properties. However, the biodistribution of the 
conjugates in OVCAR-3 ovarian tumor-bearing mice indi­
cated no significant tumor localization (- 0.5%) of radiolabeled 
compounds. The results showed a very Iow level of GnRH-R 
expression on tumor cell surfaces, suggesting that the GnRH-R 
system is not a suitable target for peptide-receptor imaging 
using radiolabeled GnRH analogues. This is in contrast to the 
effective tumor growth inhibition by cytotoxic GnRH deriva­
tives. The contradiction might be explained by the observations 
that GnRH-R protein is inefficiently processed by the cells 
under physiological conditions and it is retained at the site of 
production [531. A proportion of intracellular receptors might 
traffic to the cell surface duting stimulation, thus providing a 
rationale for the successful application of GnRH analogues for 
suppressing the tumor growth [54J. 

Considering these data, one can conclude that GnRH-Rs 
represent a highly interesting target for pharmacological 
interventions; however, many open questions have to be 
answered in the future. 

5. Somatostatin receptors as molecular targets 
for cancer diagnosis and therapy 

It has been shown that somatostatin and its analogues can 
inhibit tumor growth. Their action is mediated by specific, 
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high-affinity somatostatin receptors located on the plasma 
membrane of the tumor cells. Up to now, five human 
somatostatin receptor subtypes (sst! - ssts) have been cloned 
and partially characterized [5.91. The most frequent reeeptor 
subtypes on tumor cells are sst2 and sst5' On ligand binding, 
sst3 and sst2 internalize more efficiently than sstl or sst5' 
Somatostatin receptors were detected in a Iow amount in 
human brain and in many peripheral tissues such as pancreas, 
gut, thyroid, adrenal and kidney. Therefore, during the 
application of somatostatin analogues for targeted therapy, 
the unwanted side effects should be carefully investigated. 
As both somatostatin-14 and somatostatine-28 bound 
with high affinity to all receptor subtypes, more selective 
derivatives to sst2 and sst5 were developed for tumor 
therapy, one of the most efficient compounds being 
octreotide (OCT, Sandostatin®, Sandoz), a cyclic octapeptide 
alcohol (D-Phe-c(Cys-Phe-D-Trp-Lys-Thr-Cys)-Thr-ol) [55J. 

6. Cytotoxic somatostatin derivatives 

In the mid-1980s, similarly to GnRH derivatives, intensive 
studies of new somatostatin analogues were carried out by 
Schally's group. An analogue of octreotide (H-D-Phe-c(Cys­
Tyr-D-Trp-Lys-Val-Cys)-Thr-NH2, RC-l2l) [28.561 was 
found to be efficient, especially for drug targeting. An initial 
study of a conjugate in which methotrexate was linked to 
the N terminus of RC-l21 indicated the tolerance of the 
carrier for the amino terminal modifications. Later on, Dox 
and pyrrolino-Dox (AN-20l) were conjugated to RC-12l, 
resulting in AN-162 (6) (Figure 4A) and AN-238 (7) 
(Figure 48) derivatives [57J. The conjugates that fully retained 
the cytotoxicity of the drugs and the receptor binding affinity 
of the peptide carrier showed strong growth inhibition of 
various tumors (Table 2) that express sst2, sst3 and sst5 (breast, 
renal, ovarian, lung, colorectal, pancreatic tumors) [3.6.58.591. 
AN-238, similarly to the AN-207 GnRH analogue, was very 
effective intravenously at - 200 nmol/kg doses corresponding 
to 0.4 - 0.45 mg/kg. The estimated human doses would be 
- 22.5 mg/50 kg. In mice, AN-238 showed no or low toxicity 
up to a dose of 400 nmol/kg. The toxic side effects might be 
related to the release of AN-20 1 resulting from the cleavage of 
the ester bond bycarboxylesterases. The toxicity occurred mostly 
on the fast dividing cells, such as gastrointestinal or myeloid 
cells, resulting in a transient fall in the white blood cell (WBC) 
count and body weight. As the esterase activity is much lower in 
humans than in mice, the hematotoxicity of AN-238 is 
expected to be reduced in patients, as demonstrated in case of 
the GnRH derivative. In addition, no significant nephrotoxicity 
was observed under the treatment with AN-238. 

In the past few years, it has been shown that AN-238 is 
efficient on human endometrial carcinomas that have not 
responded well to chemotherapy [60J. Chemoresistance 
mediated by membrane transporters, such as multi-drug 
resistance (MDR-I) glycoprotein, can be avoided by targeted 
therapy. AN-238 not only induced tumor growth inhibition 
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Figure 4. Chemical structures of cytotoxic somatostatin derivatives in which doxorubicin (A) and 2-pyrrolino-doxorubicin (B) 
were attached via ester bond to an octreotide analogue; ester bond-linked paclitaxel-octreotide (C) and carbamate containing 
camptothecin-somatostatin derivative conjugate (D). 

(50 - 65%) of endometrial carcinomas, but also the expression 
of MDR-I protein during the treatment was much lower than 
in case of the treatment with AN-20l. 

Lung cancer is one of the tumor types that can be treated 
better by targeted therapy based on somatostatin derivative 
carriers than by using cytotoxic GnRH derivatives. About 80% 
of all lung cancers are classified as non-small cell lung cancer 
(NSCLC). Therefore, the presence of somatostatin receptors in 
NSCLCs to a greater extent than in normal cells makes them 
good targets for cytotoxic somatostatin derivatives [61,62), 
AN-238 was found to be effective on H69 (SCLC) and 
H157, H838 (NSCLCs) [63,64J. However, large-scale synthesis 
of an AN-238 is still in progress, Therefore, AN-162 (JEterna 
Zentaris, AEZS-124) was used for preclinical studies, and it has 
recently been investigated for the inhibition of NSCLCs [65J. 
All studied NSCLCs (A549, H460, H838 and H1299) 
expressed sstl> sst2 and sst4. Strong expression of mRNA for 
sst5 was found in A549 and H460 and it was marginal in 

H838, whereas sst3 was present in H460 and H1299. A549, 
H460 and H1299 are resistant to doxorubicin, thus AN-162 
was more effective than the free drug on proliferation inhibi­
tion in vitro, The best results (- 17% cell viability at 50 llM) 
were obtained in the case of H460 cells that express all the 
receptor subtypes, A less significant difference between Dox 
and AN-162 was observed in the case ofH1299 cells, which do 
not express ssts, In Dox-sensitive H838 cells, both Dox and 
AN-162 showed significant proliferation inhibition at much 
lower concentrations. In vivo studies showed - 70% tumor 
growth inhibition on H460 xenografted nude mice, and 
- 55% on H1299 xenografted ones. Up regulation of apoptotic 
genes by the treatment with AN-162 was also indicated, 
Similar results were obtained on tumor growth inhibition of 
the MDA-MB-231 estrogen-independent human breast 
cancer cell line xenografted into nude mice [66J, 

The treatment of hepatic cancer cells with a combination of 
two or three cytotoxic conjugates (AN-207 and AN-238 with 
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Figure 4. Chemical structures of cytotoxic somatostatin derivatives in which doxorubicin (A) and 2-pyrrolino-doxorubicin (B) 
were attached via ester bond to an octreotide analogue; ester bond-linked paclitaxel-octreotide (C) and carbamate containing 
camptothecin-somatostatin derivative conjugate (D). (Continued) 

an extra bombesin-Dox conjugate; AN-2I5) resulted in higher 
in vitro tumor growth inhibition in comparision with their 
separate administration [32J. 

It has been shown that Paclitaxel (PTX) has high antitumor 
activity owing to its ability to promote tubulin assembly into 
microtubules, but it has a low cell specificity. Therefore, it was 
modified by succinic acid on its 2'-OH functional group and 
attached by means of an amide bond to the N terminus of 
octreotide [67]. This linkage allows the drug release by carboxyl­
esterases, regenerating the free 2'-OH, which appears essential 
for tubulin binding [68]. MCF-7 human breast cancer cell lines 
expressing sstl> SStz, sst4 and sst5 but not sst3, as welI as CHO 
(Chinese hamster ovary) celIs that have a very low level of 
somatostatin receptor (196 fmollmg) were used to study the 
biological activity of the PTX-OCT (8) conjugate (Figure 4C). 
In the presence ofPTX or PTX-OCT (10-6

, 10-5 and 10.4 M), 
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the percentage ofMCF-7 celIs containing tubulin bundles was 
similar (67, 83 and 92% or 65, 81 and 93%, respectively). 
However, on CHO celIs, only PTX was significantly active. 
A large amount of octreotide could antagonize the cellular 
uptake of the conjugate but not of PTX, suggesting the 
difference between the celIular uptake mechanisms of the 
compounds (receptor-mediated versus passive diffusion). 
The viability of the MCF-7 celIs incubated for 24 h with 
the conjugate or with the free PTX was similar (46 ± 2.7 and 
41 ± 3.3%, respectively). These results indicate that PTX­
OCT conjugate is highly selective to the cells containing 
somatostatin receptors in comparision with the celIs that 
express low levels of the receptors. 

Recently, two PTX molecules were attached to the Lys­
modified octreotide (2PTX-OCT) and the conjugate was 
tested on human NSCLC tumors [69.70J. Higher in vitro 



Table 2. In vivo and in vitro antitumor effect of AN-238 and other cytotoxic somatostatin derivative-conjugates. 

Tumor type Receptor expression Cell types that AN-238 
in specimens express SSTR 

Breast sst2, sst5 MX-1 XXXXX* 
sst2, sst5 MDA-MB-231 XXX 
sst2, sst5 MCF-7-MIII XXX 
55t2a, s5t4, 55t1, 55t5 MCF-7 n.d. 

Ovarian sst2a, s5t3, s5t5 UCI-107 XXX 
OVCAR-3 XXX 
ES-2 XX 

Endometrial 55t2a, 55t5 HEC-1A XXX 
sst2a, 5st5 RL-95-2 XXX 
55t2a, s5t5 AN3CA XXX 

Prostate MDA-PCa-2b XXX (PSA)§ 
55t2a, 55t5 C4-2 XXX (PSA) 
5st2a, sst5 DU-145 XXXX 
s5t2a, sst5 PC-3 XXXX 

R-3327-AT-1 XXXX 

Colon 5st2, 55t5 HCT-15 XXXX 
55t5 HT-29 XXXX 
55t2, 5st5, sst3 HCT-116 XXXX 

Renal sst2a SW-839 XXX 
sst5 786-0 XXXX 

Melanoma 5stl-55t5 MRI-H255 XXX 
MRI-H187 XXX 

Lung 5st2, (5st5) H838 (NSCLC) XXX 
5st2a, (55t5) H157 (NSCLC) XXXX 
s5t5, S5t3, sst1, (55t2) H727 AN-238 <AN-201 
(s5t2a) H720 AN-238 <AN-201 
5st1, s5t2a, 55t3, (s5t5) KRJ-I AN-238 = AN-201 
55t2a, 55t4, s5t1, 5st5 A549 (NSCLC) n.d. 
sst2a, (55t5) H69 (SCLC) XXX 
5st2 H345 (SCLC) AN-238 <AN-201 
5st2a, 5st5, sst3, 55t1 H460 (NSCLC) n.d. 
s5t2a, 55t4, sst1, sst3 H1299 (NSCLC) n.d. 

Gastric 55t2a, 55t5, sst3 AGS XXX 
s5t2a, 55t5, (s5t3) Hs 746T XXXX 
sst2a, 5st5, (5st3 NCI-N87 XXX 

MKN-45 AN-238 <AN-201 

Pancreatic 55t3, 5st5 SW-1990 XXXX 
5St3, (sst2), (5st5) Panc-1 XXXX 
5St3, (sst2), (55t5) Capan-1 XXXX 
5st3, sst2, (sst5) Capan-2 XXX 
s5t2, 55t5 CFPAC-1 XXXX 
5St3, sst2, (s5t5) Mia-PaCa-2 XX 

Non-Hodgkin's lymphoma 5St 1-5St5 RL XXXX 
5st1-sst5 NL XXXX 

Hepatocellular 55t2, S5t3, 5st5 SK-Hep-1 XXXX 
sst2, 55t3, sst5 HepG2 AN-238 > AN-201 
5st2, s5t3, 55t5 Hep3B AN-238 > AN-201 

Brain 55t2 IMR-32 neuroblastoma n.d. 
sst2 U-118MG glioblastoma XX 
55t2 U87-MG glioblastoma XXXXX 

*In vivo studies: XXXXX: regression; XXXX: > 70% inhibition; XXX: 50 70% inhibition; XX: 25 - 50% inhibition; n.d.: not determined. 

'AN-162> Dox represents the comparison of the in vitro antitumor effect of free drug and its GnRH derivative conjugate. 

*PSA inh.: not the tumor volume, but PSA level was determined as a measure of the inhibitory effect. 

~CPT was more active than CPT-L 1-SSA and CPT-L2-SSA. 

The effects are not absolutely comparable because of different doses and treatment schedules used. 

Others 

XXXX (AN-162) 
PTX-OCT - PTX 

XXX (2Ptx-OCT) 
AN-1 62 < Dox* 
CPT-L 1(L2)-SSA 
AN-162 <Dox 
CPT-L 1 (L2)-SSA 
XXX (AN-162) 
XXX (AN-162) 

AN-162 <Dox 

CPT-L1 (L2)-SSA" 
< XX (AN-162) 
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and in vivo antitumor activity of 2PTX-OCT than that of 
PTX-OCT and free PTX was clearly demonstrated. Further­
more, its toxicity indicated by the white blood cell count was 
significantly lower than that of the free PTX. The antitumor 
effect of 2PTX-OCT (3 x 150 nmoIlkg) resulted in the same 
inhibition on H838 xenografted nude mice (60.7%) as 
observed by Schally's group using AN-238 (- 60%) [64J. 

Fuselier et al. conjugated camptothecin as a cytotoxic agent 
to a somatostatin derivative D-Ser-Nle-D-Tyr-D-Ser-c(Cys­
Phe-D-Trp-Lys-Thr-Cys)-Thr-NH2• The N-terminal linking 
motif allowed the attachment of large groups without signif­
icant loss of receptor recognition of the cyclic somatostatin 
analogue [71J. CPT, which has antitumor activity by inhibiting 
the topoisomerase I, contains a hydroxyl group as a conjuga­
tion site, similarly to Dox and PTX. However, in this study a 
carbamate was applied as a linker because of its high stability 
in plasma compared with the commonly used ester-type 
linkage. The idea was that the cytotoxic agent should be 
masked until the internalization of the conjugate. Basic con­
ditions or enzymatic attack result in the nucleophile-assisted 
release of the free camptothecin. Carbamates are metabolized 
by P450 enzyme that is upregulated in human cancer 
cells [72,73J. The half-life of the prepared compounds was 
between 18 and 106 h in rat serum, depending on the type 
of carbamate linker. The highest cytotoxic activity on human 
neuroblastoma IMR-32 cells was obtained in the case of 
CPT -N-methyl-aminoethyl-Gly-D-Ser-Nle-D-T yr-D-Ser-c( Cys­
Phe-D-Trp-Lys-Thr-Cys)-Thr-NH2 (CPT-Ll-SSA) (9) 
(Figure 4D) (IC50 = 54.2 ± 6 nM). Furthermore, the anti tu­
mor activity of the conjugate was evaluated on small cell lung 
cancer cells [74J. The conjugate bound to the NCI-H69 
homogenate one order of magnitude better than its 
non-methylated version (CPT-aminoethyl-Gly-D-Ser-Nle-D­
Tyr-D-Ser-c(Cys-Phe-D-Trp-Lys-Thr-Cys)-Thr-NH2 [CPT­
L2-SSAJ). Significant in vitro cytotoxicity of the conjugate 
at 0.3 - 1 flM concentration was obtained on NCI-H69 and 
NCI-H345 cell lines that have mRNA for sst2 receptors. 

CPT was also attached to the same somatostatin analogue 
via a cleavable carbamate group but using a different peptide 
linker sequence (D-Lys-D-Tyr-Lys-D-Tyr-D-Lys) [75J. This 
conjugate retained the potent biological activity and had 
comparatively Iow toxicity [76J. Its efficiency against PC-3 
prostate cancer cell invasion was also demonstrated [77J. The 
CPT-somatostatin vector conjugate inhibited the expression 
of MMP-2 and MMP-9, but not the expression of MMP-3 
and MMP-I0 (MMP; matrix metalloproteinase) in PC-3 
tumor cells. MMP-2 and MMP-9 have higher expression 
levels in tumor cells than in normal tissues and their expression 
correlates with the metastatic potential of the tumor cells [78J. 
CPT and the conjugate, but not the somatostatin analogue, 
inhibited the expression of aV~3 and aV~5 integrins at cell 
surfaces, tumor progression and metastasis, leading to the 
conclusion that CPT was responsible for this effect. 

All these data show that the conjugation of CPT to 
somatostatin analogues increases the water solubility of 

90 

CPT, lowers the toxicity and increases the selectivity. The 
specific antitumor and antiangiogenic effects depend on the 
tumor cells that overexpressed somatostatin receptors. 

7. Somatostatin-based boron neutron capture 
therapy 

Boron neutron capture therapy (BNCT) is based on the nuclear 
capture and fission reactions that occur when non-radioactive 
lOB is irradiated with low energy (0.025 eV) thermal neutrons to 
produce 11 B in an unstable form, which undergoes instanta­
neous nuclear fission to produce a-particles and recoiling 7Li 
nuclei. These high linear energy transfer particles have a range of 
5 -9 flm, thereby restricting their destructive effects to only those 
cells containing lOB. If lOB could be accumulated selectively in 
tumor tissues, which subsequently could be irradiated with 
thermal neutrons, the nuclear reaction products would specif­
ically destroy the tumor DNA. The presence of 109 (1.67 X 

10-15 mole) boron atoms per cell is generally required to achieve 
an antitumor effect. The target cells that efficiently bind the 
somatostatin conjugates contain several hundred femtomols 
(- 10-9 

- 10-10 mole) of receptor per milligram membrane 
protein (- 107 cells) that might allow the uptake of the required 
amount of doso-boran cluster derivative for efficient BNCT. 
For this purpose, [Tyr3]-octreotate (D-Phe-c(Cys-Tyr-D-Trp­
Lys-Thr-Cys)-Thr-OH) coupled with a borane cluster was 
prepared and functionally studied [79,80J. [Tyr3]-octreotate is 
an octreotide analogue with carboxyl group at the C terminus 
and Tyr in position 3 instead of Phe, which shows higher 
binding affinity and internalization rate [5,81]. A correlation was 
found between the binding affinity and the length of the 
inserted spacer between the borane cluster (10 boron atoms) 
and the octreotate [80J. However, the attachment of a higher 
number of doso-borane clusters (20 boron atoms altogether) in 
the conjugate had a negative influence on the affinity of the 
peptide. The binding affinity of the best compound (10) 
(Figure 5A) was 2 - 3 nM (IC50) on sst2> but also some binding 
was observed on SSt3' sst4 and sst5 receptor subtypes. This range 
was similar to that observed in the case of radioligand-labeled 
somatostatin derivatives. Results of in vivo studies have 
not been published yet; however, the promising in vitro 
binding affinity of the conjugates to the somatostatin 
receptor-containing cells (Chinese hamster ovary carcinoma 
cells [CHO-KIJ and Chinese hamster fibrobIasts [CCL39J) 
may open a new direction for BNCT. 

8. Radiolabeled somatostatin derivatives 

Targeted radiotherapy of tumors overexpressing soma­
tostatin receptors was shown to be a promising cancer thera­
peutic approach [5,9J. Although 11IIn-DTPA-octreotide 
(OctreoScan®, MaIlinckrodt Medical) has become the most 
widely used tracer for somatostatin receptor scintigraphy [82,83J, 
in the case of radiotherapy 9Dy-DOTA-Tyr3-octreotide 
('Dy-DOTATOC, 11) (Figure 5B) has been the most frequently 
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Figure 5. Chemical structures of a somatostatin conjugate for boron neutron capture therapy (A) and of radiolabeled 
somatostatin derivatives: 90Y-DOTA-Tyr3-octreotide (B) arid 177lu-DOTA-Tyr3-octreotate (C). 

used clinically for > 15 years [84,85J. In the last decade, 
numerous compounds were developed in order to increase 
the receptor selectivity and/or bioactivity of the radiolabeled 
somatostatin derivatives. The modifications were carried our 
on the peptide sequence or by changing the radionuclides and/ 
or chelator. Insertion of Ga into DOT ATOC markedly 
improved the sst2 binding affinity and the in vivo 
tumor imaging [86-88J. Recent data also showed the high 
efficiency of 99ffiTc-EDDAlHYNIC-TOC for radioimaging 
(EDDA: ethylenediamine-N,N-diacetic acid, HYNIC: 
6-hydrazinopyridine-3-carboxylic acid) [89-91J. The treatment 

of neuroendocrine gastroenteropancreatic tumors with 177Lu_ 
DOTA-Tyr3-octreotate C77Lu-DOTATATE, 12) 
(Figure 5e), which had high affinity to sstz, resulted in 
complete or partial tumor remission in 30% of patients in 
comparision with 10 - 30% in the case of 90Y-DOTATOC 
treatment [92J. 177Lu-DOTATATE also showed lower and 
mostly transient side effects (e.g., nephrotoxicity) and milder 
bone marrow supression than 90Y-DOTATOC. However, 
owing to the higher adsorbed dose but the lower tissue pen­
etration range of 177Lu than of 90y, the I77Lu-DOTATATE 
may be more effective for smaller tumors. The combination of 
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the two compounds might be also beneficial [92,93J. Incor­
poration of multiple DOTA chelators into the [Tyr3

)_ 

octreotate was described as a possible way to increase the 
efficacy [94J, Recently, it has been shown that the gemcitabine 
pretreatment up regulated the somatostatin receptor expres­
sion and acted as a radiosensitizer. The uptake of 
177Lu-DOTATOC was 1.5 - 3 times greater than that of 
untreated control cells [95J. Furthermore, the replacement 
of p-emitting 177Lu (Emax = 0.5 MeV) in DOTATOC by 
a-emitting 213Bi (Em • x = 5.87 MeV, half-life 45.6 min) 
increased the effectivity 3.4 times [96J. The short-distance 
energy deposition of a-ray (- 0.1 mm) might be very active 
for inhibiting the tumor growth without side effects in the case 
of efficient tumor localization. Moreover, this high energy 
radiation depresses enzymatic DNA repair mechanisms. 

The usefulness of somatostatin antagonists for tumor tar­
geting has been demonstrated in the last few years. Somato­
statin receptor-selective antagonists did not trigger receptor 
internalization, yet they were excellent tumor markers [97,98J. 

Antagonists are more hydrophobic and chemically more stable 
than agonists, resulting in longer duration of action and 
possible stabilization in the lipid-rich environment of the 
receptors. The strong receptor-ligand interaction and the 
slow internalization in the case of antagonists may provide 
a longer-lasting accumulation of the radioligand-Iabeled 
antagonist conjugate on tumor cells. A series of highly sstT 
selective somatostatin antagonists for radio targeting were 
prepared [99J. The two most promising compounds were 
DOTA-pN02Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys)­
D-Tyr-NH2 and DOTA-Cpa-c[D-Cys-Aph(Hor)-D-Aph 
(Cbm)-Lys-Thr-Cys)-D-Tyr-NH2 (Cpa: 4-CI-phenylalanine; 
Aph: 4-aminophenylalanine; Cbm: carbamoyl; Hor: 
L-hydroorotyl) with high binding affinities (ICso < 1 nM). 
These results suggest that somatostatin antagonists as targeting 
moieties are suitable for radiotherapy. 

9. Conclusion 

T umor targeting with hormone peptides provides a basis for 
the development of various cancer diagnostic and therapeutic 
approaches (targeted chemotherapy, targeted radiotherapy, 
photodynamic therapy and BNCT). The increased selectivity 
and decreased peripheral toxicity of such systems have already 
been demonstrated on different types of tumor. Moreover, 
increased solubiliry and bioavailability can be obtained by the 
application of these conjugates. Both somatostatin- and 
GnRH-containing conjugates are effective for targeting anti­
neoplastic agents; however, the advantages of somatostatin 
analogues in targeted radiotherapy have been presented 
clearly. The first most active anticancer drug-peptide hor­
mone conjugates are now in preclinical or clinical trials. 
However, it has to be taken into account that the side effects 
are mostly related to the low stability in serum of peptide drug 
conjugates, which leads to early drug release and consequently 
to 'nonspecific' toxicity. Furthermore, the presence of 
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hormone receptors (especially somatostatin receptors) on 
normal cells might prevent the clinical application of some 
compounds. Therefore, the application of targeting moieties 
with increased specificity for the peptide receptors expressed 
on cancer cells and the application of linkers/spacers 
between the peptide and the drug that are stable in serum 
might improve the selectivity and efficacy of hormone-drug 
conjugates in targeted chemotherapy. 

10. Expert opinion 

Targeted chemotherapy represents a promising approach for 
the treatment of cancer. One possibility to enhance the 
selectivity and to decrease the peripheral toxicity of the 
well-known antineoplastic agents as well as radionuclides is 
the attachment to hormone pep tides that bind to their 
receptors overexpressed on tumor cells. However, only a 
few of these hormone peptides (GnRH and somatostatin) 
inhibit the tumor growth by receptor-mediated signal trans­
duction pathway, the others stimulate the cell proliferation. 
Although the hormone peptide-drug conjugates are used at 
concentrations lower than the hormone dose required for 
tumor growth inhibition, the pep tides with inhibitory effect 
should be preferentially used as targeting moieties for the 
preparation of drug delivery systems. Furthermore, the appli­
cation of agonist derivatives instead of antagonists (preferred 
in the case of stimulatory pep tides) might have a further 
benefit of faster receptor-ligand internalization. The internal­
ization may be more important in the case of delivery of 
antineoplastic agents that have an intracellular site of action, 
whereas the intracellular delivery of radionuclides might not 
be necessary, especially in the case ofp-emitters. However, the 
internalization of somatostatin agonist-bound radionuclids 
may lead to longer residence times of radionuclids in the 
tumor cells. 

There are many promising data that confirm the efficiency 
of targeted therapy based on hormone peptides as targeting 
moieties. However, their receptors on cancer cells are limited, 
and their distribution on the cell surface might be hetero­
geneous. Futhermore, some receptors desensitize under 
continuous exposure to the hormone conjugate treatment. 
Research in the future should be focused on increasing 
the efficacy of the targeted therapeutic approaches. Several 
strategies to be pursued are the following. 

(1) The combination of conjugates containing different 
targeting moieties. In this case different hormone receptors 
can be targeted. The same or different anticancer drugs can be 
attached to the selected hormone pep tides. The latter com­
bination might have the benefit that the drugs have different 
sites of action, resulting in high toxic effects on tumor cells. 

(2) The development of conjugates in which two antineo­
plastic agents are coupled to a single hormone peptide. In this 
case, there should be an appropriate distance between 
the drugs and the targeting peptide in order to avoid the 
significant decrease of receptor binding affinity of the 



hormone. The number of drug molecules in a conjugate could 
be increased by the aid of multifunctional linkers. 

(3) The combination of radionuclides and anticancer drugs 
in one conjugate or physical mixing of two different 
conjugates with the aim of combining radiotherapy and 
chemotherapy. 

(4) The development of targeted nanoparticles containing 
encapsuled drugs by modifying their surface with hormone 
peptides. 

As intensive research is conducted in this field, more and 
more compounds as drug candidates might reach preclinical 
and clinical trials in the near future. Although in this review 
only GnRH- and somatostatin-based targeting approaches 
have been discussed in detail, other types of pep tides as 
targeting moieties should be taken into account for 
further studies. 
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