Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 28, 2019

Selective Generation of Free Hydrogen Atoms in the Reaction of Methane with Diatomic Gold Boride Cations

  • Qiang Chen , Yan-Xia Zhao EMAIL logo , Jiao-Jiao Chen , Li-Xue Jiang and Sheng-Gui He EMAIL logo

Abstract

The thermal reaction of diatomic gold boride cation AuB+ with methane has been studied by using state-of-the-art mass spectrometry in conjunction with density functional theory calculations. The AuB+ ion can activate a methane molecule to produce exclusively the free hydrogen atom, an important intermediate in hydrocarbon transformation. This result is different from the reactivity of AuC+ and CuB+ counterparts with methane in previous studies. The AuC+ cation mainly transforms methane into ethylene. The CuB+ reaction system principally generates the free hydrogen atoms, but it also gives rise a portion of ethylene-like product H2B−CH2. The B atom of AuB+ is the active site to activate methane. The strong relativistic effect on gold plays an important role for the product selectivity. The mechanistic insights obtained from this study provide guidance for rational design of active sites with high product selectivity toward methane activation.

Award Identifier / Grant number: 91645203

Award Identifier / Grant number: 21773253

Award Identifier / Grant number: 2017M611002

Funding source: Beijing Natural Science Foundation

Award Identifier / Grant number: 2182092

Award Identifier / Grant number: 2018041

Funding statement: This work was supported by the National Natural Science Foundation of China (Funder Id: http://dx.doi.org/10.13039/501100001809, Nos. 91645203 and 21773253), the China Postdoctoral Science Foundation (Funder Id: http://dx.doi.org/10.13039/501100002858, No. 2017M611002), and the Beijing Natural Science Foundation (No. 2182092). Y.-X. Zhao thanks the grant from the Youth Innovation Promotion Association, Chinese Academy of Sciences (No. 2018041).

References

1. R. H. Crabtree, Chem. Rev. 95 (1995) 987.10.1021/cr00036a005Search in Google Scholar

2. J. H. Lunsford, Catal. Today 63 (2000) 165.10.1016/S0920-5861(00)00456-9Search in Google Scholar

3. R. A. Periana, O. Mironov, D. Taube, G. Bhalla, C. Jones, Science 301 (2003) 814.10.1126/science.1086466Search in Google Scholar PubMed

4. Q. Zhu, S. L. Wegener, C. Xie, O. Uche, M. Neurock, T. J. Marks, Nat. Chem. 5 (2013) 104.10.1038/nchem.1527Search in Google Scholar PubMed

5. X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan, X. Bao, Science 344 (2014) 616.10.1126/science.1253150Search in Google Scholar PubMed

6. J. Gao, Y. Zheng, J. M. Jehng, Y. Tang, I. E. Wachs, S. G. Podkolzin, Science 348 (2015) 686.10.1126/science.aaa7048Search in Google Scholar PubMed

7. A. I. Olivos-Suarez, À. Szécsényi, E. J. M. Hensen, J. Ruiz-Martinez, E. A. Pidko, J. Gascon, ACS Catal. 6 (2016) 2965.10.1021/acscatal.6b00428Search in Google Scholar

8. P. Schwach, X. Pan, X. Bao, Chem. Rev. 117 (2017) 8497.10.1021/acs.chemrev.6b00715Search in Google Scholar PubMed

9. According to our DFT calculations, the HOMO-LUMO gap of methane is estimated to be 10.5 eV at B3LYP/aug-cc-pVTZ level.Search in Google Scholar

10. A. A. Fokin, P. R. Schreiner, Chem. Rev. 102 (2002) 1551.10.1021/cr000453mSearch in Google Scholar PubMed

11. J. J. Spivey, G. Hutchings, Chem. Soc. Rev. 43 (2014) 792.10.1039/C3CS60259ASearch in Google Scholar PubMed

12. Z. Zakaria, S. K. Kamarudin, Renew. Sustain. Energy Rev. 65 (2016) 250.10.1016/j.rser.2016.05.082Search in Google Scholar

13. D. K. Böhme, H. Schwarz, Angew. Chem. Int. Ed. 44 (2005) 2336.10.1002/anie.200461698Search in Google Scholar PubMed

14. P. Gruene, D. M. Rayner, B. Redlich, A. F. van der Meer, J. T. Lyon, G. Meijer, A. Fielicke, Science 321 (2008) 674.10.1126/science.1161166Search in Google Scholar PubMed

15. G. E. Johnson, R. Mitrić, V. Bonačić-Koutecký, A. W. Castleman Jr., Chem. Phys. Lett. 475 (2009) 1.10.1016/j.cplett.2009.04.003Search in Google Scholar

16. H.-J. Zhai, L.-S. Wang, Chem. Phys. Lett. 500 (2010) 185.10.1016/j.cplett.2010.10.001Search in Google Scholar

17. S. Yin, E. R. Bernstein, Int. J. Mass Spectrom. 321-322 (2012) 49.10.1016/j.ijms.2012.06.001Search in Google Scholar

18. R. A. J. O’Hair, Int. J. Mass Spectrom. 377 (2015) 121.10.1016/j.ijms.2014.05.003Search in Google Scholar

19. T. Nagata, K. Miyajima, F. Mafuné, J. Phys. Chem. A 120 (2016) 7624.10.1021/acs.jpca.6b08257Search in Google Scholar PubMed

20. M. R. Fagiani, X. Song, S. Debnath, S. Gewinner, W. Schöllkopf, K. R. Asmis, F. A. Bischoff, F. Müller, J. Sauer, J. Phys. Chem. Lett. 8 (2017) 1272.10.1021/acs.jpclett.7b00273Search in Google Scholar PubMed

21. S. M. Lang, T. M. Bernhardt, V. Chernyy, J. M. Bakker, R. N. Barnett, U. Landman, Angew. Chem. Int. Ed. 56 (2017) 13406.10.1002/anie.201706009Search in Google Scholar PubMed

22. P. Ferrari, J. Vanbuel, N. M. Tam, M. T. Nguyen, S. Gewinner, W. Schöllkopf, A. Fielicke, E. Janssens, Chem. Eur. J. 23 (2017) 4120.10.1002/chem.201604894Search in Google Scholar PubMed

23. K. R. Asmis, A. Fielicke, Top. Catal. 61 (2018) 1.10.1007/s11244-018-0906-5Search in Google Scholar

24. D. Schröder, Angew. Chem. Int. Ed. 49 (2010) 850.10.1002/anie.200906518Search in Google Scholar PubMed

25. J. Roithová, D. Schröder, Chem. Rev. 110 (2010) 1170.10.1021/cr900183pSearch in Google Scholar PubMed

26. H. Schwarz, Angew. Chem. Int. Ed. 50 (2011) 10096.10.1002/anie.201006424Search in Google Scholar PubMed

27. Y.-X. Zhao, X.-N. Wu, J.-B. Ma, S.-G. He, X.-L. Ding, Phys. Chem. Chem. Phys. 13 (2011) 1925.10.1039/c0cp01171aSearch in Google Scholar PubMed

28. X.-L. Ding, X.-N. Wu, Y.-X. Zhao, S.-G. He, Acc. Chem. Res. 45 (2012) 382.10.1021/ar2001364Search in Google Scholar PubMed

29. H. Schwarz, Isr. J. Chem. 54 (2014) 1413.10.1002/ijch.201300134Search in Google Scholar

30. H. Schwarz, P. González-Navarrete, J. Li, M. Schlangen, X. Sun, T. Weiske, S. Zhou, Organometallics 36 (2017) 8.10.1021/acs.organomet.6b00372Search in Google Scholar

31. Y.-X. Zhao, Z.-Y. Li, Y. Yang, S.-G. He, Acc. Chem. Res. 51 (2018) 2603.10.1021/acs.accounts.8b00403Search in Google Scholar PubMed

32. N. Dietl, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 51 (2012) 5544–5555.10.1002/anie.201108363Search in Google Scholar

33. G. de Petris, A. Troiani, M. Rosi, G. Angelini, O. Ursini, Chem. Eur. J. 15 (2009) 4248.10.1002/chem.200802581Search in Google Scholar

34. L. Yue, J. Li, S. Zhou, X. Sun, M. Schlangen, S. Shaik, H. Schwarz, Angew. Chem. Int. Ed. 56 (2017) 10219.10.1002/anie.201703485Search in Google Scholar

35. D. Schröder, H. Schwarz, Angew. Chem. Int. Ed. 29 (1990) 1433.10.1002/anie.199014331Search in Google Scholar

36. D. Schröeder, A. Fiedler, J. Hrusak, H. Schwarz, J. Am. Chem. Soc. 114 (1992) 1215.10.1021/ja00030a014Search in Google Scholar

37. Y.-M. Chen, D. E. Clemmer, P. B. Armentrout, J. Am. Chem. Soc. 116 (1994) 7815.10.1021/ja00096a044Search in Google Scholar

38. M. F. Ryan, A. Fiedler, D. Schröeder, H. Schwarz, Organometallics 13 (1994) 4072.10.1021/om00022a051Search in Google Scholar

39. D. Schröder, H. Schwarz, Angew. Chem. Int. Ed. Engl. 34 (1995) 1973.10.1002/anie.199519731Search in Google Scholar

40. D. Schröder, H. Schwarz, D. E. Clemmer, Y. Chen, P. B. Armentrout, V. I. Baranov, D. K. Böhme, Int. J. Mass Spectrom. Ion Processes 161 (1997) 175.10.1016/S0168-1176(96)04428-XSearch in Google Scholar

41. F. Aguirre, J. Husband, C. J. Thompson, K. L. Stringer, R. B. Metz, J. Chem. Phys. 116 (2002) 4071.10.1063/1.1448489Search in Google Scholar

42. D. Schröder, H. Schwarz, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 18114.10.1073/pnas.0801849105Search in Google Scholar PubMed PubMed Central

43. N. Dietl, C. van der Linde, M. Schlangen, M. K. Beyer, H. Schwarz, Angew. Chem. Int. Ed. 50 (2011) 4966.10.1002/anie.201100606Search in Google Scholar PubMed

44. S. G. Ard, J. J. Melko, V. G. Ushakov, R. Johnson, J. A. Fournier, N. S. Shuman, H. Guo, J. Troe, A. A. Viggiano, J. Phys. Chem. A 118 (2014) 2029.10.1021/jp5000705Search in Google Scholar PubMed

45. Z.-Y. Li, H.-F. Li, Y.-X. Zhao, S.-G. He, J. Am. Chem. Soc. 138 (2016) 9437.10.1021/jacs.6b03940Search in Google Scholar PubMed

46. A. Fiedler, I. Kretzschmar, D. Schröder, H. Schwarz, J. Am. Chem. Soc. 118 (1996) 9941.10.1021/ja960157kSearch in Google Scholar

47. M. Brönstrup, D. Schröder, I. Kretzschmar, H. Schwarz, J. N. Harvey, J. Am. Chem. Soc. 123 (2001) 142.10.1021/ja003138qSearch in Google Scholar PubMed

48. J.-B. Ma, Z.-C. Wang, M. Schlangen, S.-G. He, H. Schwarz, Angew. Chem. Int. Ed. 51 (2012) 5991.10.1002/anie.201201698Search in Google Scholar PubMed

49. Z.-C. Wang, N. Dietl, R. Kretschmer, J.-B. Ma, T. Weiske, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 51 (2012) 3703.10.1002/anie.201200015Search in Google Scholar PubMed

50. Y.-X. Zhao, Z.-Y. Li, Z. Yuan, X.-N. Li, S.-G. He, Angew. Chem. Int. Ed. 53 (2014) 9482.10.1002/anie.201403953Search in Google Scholar PubMed

51. L.-N. Wang, Z.-X. Zhou, X.-N. Li, T.-M. Ma, S.-G. He, Chem. Eur. J. 21 (2015) 6957.10.1002/chem.201406497Search in Google Scholar PubMed

52. Y.-X. Zhao, X.-N. Li, Z. Yuan, Q.-Y. Liu, Q. Shi, S.-G. He, Chem. Sci. 7 (2016) 4730.10.1039/C6SC00539JSearch in Google Scholar PubMed PubMed Central

53. X. Sun, S. Zhou, M. Schlangen, H. Schwarz, Chem. Eur. J 23 (2017) 1498.10.1002/chem.201605496Search in Google Scholar PubMed

54. S. Zhou, J. Li, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 55 (2016) 7257.10.1002/anie.201601965Search in Google Scholar PubMed

55. X.-N. Wu, J. Li, M. Schlangen, S. Zhou, P. Gonzalez-Navarrete, H. Schwarz, Chem. Eur. J. 23 (2017) 788.10.1002/chem.201605226Search in Google Scholar PubMed

56. K. K. Irikura, J. L. Beauchamp, J. Am. Chem. Soc. 113 (1991) 2769.10.1021/ja00007a070Search in Google Scholar

57. K. Koszinowski, M. Schlangen, D. Schröder, H. Schwarz, Int. J. Mass Spectrom. 237 (2004) 19.10.1016/j.ijms.2004.06.009Search in Google Scholar

58. L. G. Parke, C. S. Hinton, P. B. Armentrout, J. Phys. Chem. C 111 (2007) 17773.10.1021/jp070855zSearch in Google Scholar

59. S. M. Lang, T. M. Bernhardt, R. N. Barnett, U. Landman, Angew. Chem. Int. Ed. 49 (2010) 980.10.1002/anie.200905643Search in Google Scholar PubMed

60. P. B. Armentrout, L. Parke, C. Hinton, M. Citir, ChemPlusChem 78 (2013) 1157.10.1002/cplu.201300147Search in Google Scholar PubMed

61. C. J. Cassady, S. W. McElvany, J. Am. Chem. Soc. 112 (1990) 4788.10.1021/ja00168a025Search in Google Scholar

62. Z.-Y. Li, Z. Yuan, Y.-X. Zhao, S.-G. He, Chem. Eur. J. 20 (2014) 4163.10.1002/chem.201304042Search in Google Scholar PubMed

63. Q.-Y. Liu, J.-B. Ma, Z.-Y. Li, C. Zhao, C.-G. Ning, H. Chen, S.-G. He, Angew. Chem. Int. Ed. 55 (2016) 5760.10.1002/anie.201600618Search in Google Scholar PubMed

64. J. Li, S. Zhou, M. Schlangen, T. Weiske, H. Schwarz, Angew. Chem. Int. Ed. 55 (2016) 13072.10.1002/anie.201606707Search in Google Scholar PubMed

65. H.-F. Li, Y.-X. Zhao, Z. Yuan, Q.-Y. Liu, Z.-Y. Li, X.-N. Li, C.-G. Ning, S.-G. He, J. Phys. Chem. Lett. 8 (2017) 605.10.1021/acs.jpclett.6b02568Search in Google Scholar PubMed

66. C. Geng, J. Li, T. Weiske, M. Schlangen, S. Shaik, H. Schwarz, J. Am. Chem. Soc. 139 (2017) 1684.10.1021/jacs.6b12514Search in Google Scholar PubMed

67. H.-F. Li, L.-X. Jiang, Y.-X. Zhao, Q.-Y. Liu, T. Zhang, S.-G. He, Angew. Chem. Int. Ed. 57 (2018) 2662.10.1002/anie.201712463Search in Google Scholar PubMed

68. S. Zhou, J. Li, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 55 (2016) 11678.10.1002/anie.201606259Search in Google Scholar PubMed

69. S. Zhou, J. Li, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 55 (2016) 14863.10.1002/anie.201607960Search in Google Scholar PubMed

70. Q. Chen, Y.-X. Zhao, L.-X. Jiang, H.-F. Li, J.-J. Chen, T. Zhang, Q.-Y. Liu, S.-G. He, Phys. Chem. Chem. Phys. 20 (2018) 4641.10.1039/C8CP00071ASearch in Google Scholar PubMed

71. Y.-K. Li, J.-H. Meng, S.-G. He, Int. J. Mass Spectrom. 381-382 (2015) 10.10.1016/j.ijms.2015.02.001Search in Google Scholar

72. Q. Chen, Y.-X. Zhao, L.-X. Jiang, J.-J. Chen, S.-G. He, Angew. Chem. Int. Ed. 57 (2018) 14134.10.1002/anie.201808780Search in Google Scholar PubMed

73. X.-N. Wu, B. Xu, J.-H. Meng, S.-G. He, Int. J. Mass Spectrom. 310 (2012) 57.10.1016/j.ijms.2011.11.011Search in Google Scholar

74. Z. Yuan, Y.-X. Zhao, X.-N. Li, S.-G. He, Int. J. Mass Spectrom. 354-355 (2013) 105.10.1016/j.ijms.2013.06.004Search in Google Scholar

75. Z. Yuan, Q.-Y. Liu, X.-N. Li, S.-G. He, Int. J. Mass Spectrom. 407 (2016) 62.10.1016/j.ijms.2016.07.004Search in Google Scholar

76. J. G. Dillard, Chem. Rev. 73 (1973) 589.10.1021/cr60286a002Search in Google Scholar

77. G. Gioumousis, D. P. Stevenson, J. Chem. Phys. 29 (1958) 294.10.1063/1.1744477Search in Google Scholar

78. G. Kummerlöwe, M. K. Beyer, Int. J. Mass Spectrom. 244 (2005) 84.10.1016/j.ijms.2005.03.012Search in Google Scholar

79. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, a. D. J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT (2009).Search in Google Scholar

80. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Search in Google Scholar

81. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.10.1063/1.464913Search in Google Scholar

82. Q. Chen, H. Bai, H.-J. Zhai, S.-D. Li, L.-S. Wang, J. Chem. Phys. 139 (2013) 044308.10.1063/1.4816010Search in Google Scholar PubMed

83. K. A. Peterson, C. Puzzarini, Theor. Chem. Acc. 114 (2005) 283.10.1007/s00214-005-0681-9Search in Google Scholar

84. R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 96 (1992) 6796.10.1063/1.462569Search in Google Scholar

85. H. B. Schlegel, J. Comput. Chem. 3 (1982) 214.10.1002/jcc.540030212Search in Google Scholar

86. C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 90 (1989) 2154.10.1063/1.456010Search in Google Scholar

87. E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO 3.1, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI (1996).Search in Google Scholar

88. A. L. Allred, J. Inorg. Nucl. Chem. 17 (1961) 215.10.1016/0022-1902(61)80142-5Search in Google Scholar

89. P. Pyykko, J. P. Desclaux, Acc. Chem. Res. 12 (2002) 276.10.1021/ar50140a002Search in Google Scholar

90. H. Schwarz, Angew. Chem. Int. Ed. 42 (2003) 4442.10.1002/anie.200300572Search in Google Scholar PubMed

Received: 2019-11-13
Accepted: 2019-01-28
Published Online: 2019-02-28
Published in Print: 2019-06-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2018-1334/html
Scroll to top button