Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 13, 2018

Synthesis of InP/ZnS Nanocrystals and Phase Transfer by Hydrolysis of Ester

  • Franziska Lübkemann , Timo C. Gusenburger , Dominik Hinrichs , Rasmus Himstedt , Dirk Dorfs and Nadja C. Bigall EMAIL logo

Abstract

The synthesis of highly luminescent non-toxic nanocrystals (NCs) and the subsequent phase transfer to aqueous solution by hydrolysis of the crystal-bound ester are presented. Therefore, the synthesis of the spherical semiconductor system InP/ZnS was modified by changing the sulfur precursor in the synthesis from 1-dodecanethiol to dodecyl 3-mercaptopropionate (D3MP). By employing D3MP both as sulfur precursor for the ZnS shell growth and as stabilizing ligand, the phase transfer from organic to aqueous solution can be performed easily. Instead of the usually employed ligand exchange with mercaptopropionic acid, the NCs are only shaken with a sodium borate buffer in order to obtain aqueous soluble NCs by hydrolysis of the ester. In future work, the NCs must be protected against aggregation and the long term stability has to be increased. The optical properties of the samples are investigated by UV/Vis and photoluminescence spectroscopy, and the morphology of the nanoparticles (NPs) before and after phase transfer is determined by transmission electron microscopy.

Acknowledgement

The authors (N.B. and F.L.) are grateful for financial support from the German Federal Ministry of Education and Research (BMBF) within the framework of the program NanoMatFutur, support code 03X5525. Furthermore, the project leading to these results has in part received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 714429). The authors (D.D., F.L. and D.H.) are grateful for the financial support from Volkswagen foundation (lower Saxony/Israel cooperation, Grant ZN2916). The author D.D. thanks the DFG (research Grant 1580/5-1). R.H. is grateful to Hannover School for Nanotechnology (HSN) for funding. The authors thank Prof. Caro and Prof. Armin Feldhoff for access to powder X-ray diffraction measurements. The authors thank the Laboratorium of Nano- and Quantum Engineering of the Leibniz Universität Hannover for support.

References

1. L. Carbone, C. Nobile, M. De Giorgi, F. Della Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I. R. Franchini, M. Nadasan, A. F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, L. Manna, Nano Lett. 7 (2007) 2942.10.1021/nl0717661Search in Google Scholar PubMed

2. N. J. Borys, M. J. Walter, J. Huang, D. V. Talapin, J. M. Lupton, Science 330 (2010) 1371.10.1126/science.1198070Search in Google Scholar PubMed

3. S. Deka, K. Miszta, D. Dorfs, A. Genovese, G. Bertoni, L. Manna, Nano Lett. 10 (2010) 3770.10.1021/nl102539aSearch in Google Scholar PubMed

4. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 101 (1997) 9463.10.1021/jp971091ySearch in Google Scholar

5. L. Li, P. Reiss, J. Am. Chem. Soc. 130 (2008) 11588.10.1021/ja803687eSearch in Google Scholar PubMed

6. M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science 281 (1998) 2013.10.1126/science.281.5385.2013Search in Google Scholar PubMed

7. K. E. Sapsford, T. Pons, I. L. Medintz, H. Mattoussi, Sensors 6 (2006) 925.10.3390/s6080925Search in Google Scholar

8. O. T. Bruns, H. Ittrich, K. Peldschus, M. G. Kaul, U. I. Tromsdorf, J. Lauterwasser, M. S. Nikolic, B. Mollwitz, M. Merkel, N. C. Bigall, S. Sapra, R. Reimer, H. Hohenberg, H. Weller, A. Eychmüller, G. Adam, U. Beisiegel, J. Heeren, Nat. Nanotechnol. 4 (2009) 193.10.1038/nnano.2008.405Search in Google Scholar PubMed

9. C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706.10.1021/ja00072a025Search in Google Scholar

10. M. Green, H. Harwood, C. Barrowman, P. Rahman, A. Eggeman, F. Festry, P. Dobson, T. Ng, J. Mater. Chem. 17 (2007) 1989.10.1039/b615871dSearch in Google Scholar

11. J. F. L. Lox, F. Eichler, T. Erdem, M. Adam, N. Gaponik, H. V. Demir, V. Lesnyak, A. Eychmüller, Z. Phys. Chem. 233 (2019) 23.10.1515/zpch-2017-1086Search in Google Scholar

12. J. van Embden, A. S. R. Chesman, J. J. Jasieniak, Chem. Mater. 27 (2015) 2246.10.1021/cm5028964Search in Google Scholar

13. N. C. Bigall, T. Härtling, M. Klose, P. Simon, L. M. Eng, A. Eychmüller, Nano Lett. 8 (2008) 4588.10.1021/nl802901tSearch in Google Scholar

14. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem. B 106 (2002) 7177.10.1021/jp025541kSearch in Google Scholar

15. M. Santhosh, T. Chitravel, R. Jayaprakasam, V. N. Vijayakumar, Z. Phys. Chem. 230 (2016) 1551.10.1515/zpch-2016-0757Search in Google Scholar

16. A. Dumbrava, D. Berger, G. Prodan, F. Moscalu, A. Diacon, Z. Phys. Chem. 232 (2017) 61.10.1515/zpch-2017-0005Search in Google Scholar

17. P. K. Giri, S. Bhattacharyya, D. K. Singh, R. Kesavamoorthy, B. K. Panigrahi, K. G. M. Nair, J. Appl. Phys. 102 (2007) 093515.10.1063/1.2804012Search in Google Scholar

18. C. F. Burmeister, A. Kwade, Chem. Soc. Rev. 42 (2013) 7660.10.1039/c3cs35455eSearch in Google Scholar

19. H. G. Scheibel, J. Porstendörfer, J. Aerosol Sci. 14 (1983) 113.10.1016/0021-8502(83)90035-6Search in Google Scholar

20. I. W. Lenggoro, K. Okuyama, J. Fernández de la Mora, N. Tohge, J. Aerosol Sci. 31 (2000) 121.10.1016/S0021-8502(99)00534-0Search in Google Scholar

21. Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, P. H. Fleming, Appl. Phys. Lett. 81 (2002) 3046.10.1063/1.1512829Search in Google Scholar

22. N. Uchitomi, H. Toyota, T. Takahashi, Z. Phys. Chem. 230 (2016) 499.10.1515/zpch-2015-0649Search in Google Scholar

23. J. E. B. Katari, V. L. Colvin, A. P. Alivisatos, J. Phys. Chem. 98 (1994) 4109.10.1021/j100066a034Search in Google Scholar

24. O. I. Mićić, J. Sprague, Z. Lu, A. J. Nozik, Appl. Phys. Lett. 68 (1996) 3150.10.1063/1.115807Search in Google Scholar

25. O. Zerzouf, M. Haase, Z. Phys. Chem. 221 (2007) 393.10.1524/zpch.2007.221.3.393Search in Google Scholar

26. T. Mokari, U. Banin, Chem. Mater. 15 (2003) 3955.10.1021/cm034173+Search in Google Scholar

27. S. Xu, J. Ziegler, T. Nann, J. Mater. Chem. 18 (2008) 2653.10.1039/b803263gSearch in Google Scholar

28. S. Haubold, M. Haase, A. Kornowski, H. Weller, ChemPhysChem 2 (2001) 331.10.1002/1439-7641(20010518)2:5<331::AID-CPHC331>3.0.CO;2-0Search in Google Scholar

29. T. Kodanek, H. M. Banbela, S. Naskar, P. Adel, N. C. Bigall, D. Dorfs, Nanoscale 7 (2015) 19300.10.1039/C5NR06221GSearch in Google Scholar

30. S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, C. de Mello Donegá, Nano Lett. 3 (2003) 503.10.1021/nl034054tSearch in Google Scholar

31. W. R. Algar, U. J. Krull, ChemPhysChem 8 (2007) 561.10.1002/cphc.200600686Search in Google Scholar PubMed

32. E. M. Hutter, F. Pietra, R. J. A. Van Dijk-Moes, D. Mitoraj, J. D. Meeldijk, C. De Mello Donegá, D. Vanmaekelbergh, Chem. Mater. 26 (2014) 1905.10.1021/cm404122fSearch in Google Scholar

33. X. Tang, E. Kröger, A. Nielsen, C. Strelow, A. Mews, T. Kipp, Langmuir 33 (2017) 5253.10.1021/acs.langmuir.7b00615Search in Google Scholar PubMed

34. T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Rädler, G. Natile, W. J. Parak, Nano Lett. 4 (2004) 703.10.1021/nl035172jSearch in Google Scholar

35. I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 4 (2005) 435.10.1038/nmat1390Search in Google Scholar PubMed

36. W. Wang, A. Kapur, X. Ji, M. Safi, G. Palui, V. Palomo, P. E. Dawson, H. Mattoussi, J. Am. Chem. Soc. 137 (2015) 5438.10.1021/jacs.5b00671Search in Google Scholar PubMed

37. M. J. Turo, J. E. Macdonald, ACS Nano 8 (2014) 10205.10.1021/nn5032164Search in Google Scholar PubMed

38. M. J. Turo, X. Shen, N. K. Brandon, S. Castillo, A. M. Fall, S. T. Pantelides, J. E. Macdonald, Chem. Commun. 52 (2016) 12214.10.1039/C6CC05951ASearch in Google Scholar

39. C. Byrne, F. Sallas, D. K. Rai, J. Ogier, R. Darcy, Org. Biomol. Chem. 7 (2009) 3763.10.1039/b907232bSearch in Google Scholar PubMed

40. C. Grammer, “http://www.univie.ac.at/pasad.,” (2018).Search in Google Scholar

41. C. Gammer, C. Mangler, C. Rentenberger, H. P. Karnthaler, Scr. Mater. 63 (2010) 312.10.1016/j.scriptamat.2010.04.019Search in Google Scholar

42. D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, L.-W. Wang, Science 344 (2014) 1380.10.1126/science.1252727Search in Google Scholar PubMed

Received: 2018-02-23
Accepted: 2018-05-09
Published Online: 2018-06-13
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.6.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2018-1167/html
Scroll to top button