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Abstract

Experience-dependent changes in the strength of connections between neurons in the hippocampus 

(HPC) are critical for normal learning and memory consolidation, and disruption of this process 

drives a variety of neurological and psychiatric diseases. Proper HPC function relies upon discrete 

changes in gene expression driven by transcription factors (TFs) induced by neuronal activity. 

Here, we describe the induction and function of many of the most well-studied HPC TFs, 

including cyclic-AMP response element binding protein, serum-response factor, AP-1, and others, 

and describe their role in the learning process. We also discuss the known target genes of many of 

these TFs and the purported mechanisms by which they regulate long-term changes in HPC 

synaptic strength. Moreover, we propose that future research in this field will depend upon 

unbiased identification of additional gene targets for these activity-dependent TFs and subsequent 

meta-analyses that identify common genes or pathways regulated by multiple TFs in the HPC 

during learning or disease.
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Introduction

The hippocampus (HPC) is critical for a variety of human behaviors, including episodic 

learning and responses to stress, and dysfunction or death of HPC neurons underlies diseases 

like Alzheimer’s dementia, major depressive disorder, and posttraumatic stress disorder. 

Proper function of the HPC relies upon discrete changes in gene expression driven by 

transcription factors (TFs) engaged by neuronal activity. However, as these TFs are also 

critical for the function of many other brain regions and nonnervous tissues, using them as 

pharmacological targets for the treatment of diseases involving the HPC is not feasible. We 

therefore propose that the future of research in this field will depend upon unbiased 

identification of gene targets for these activity-dependent TFs and subsequent meta-analyses 

that identify common genes or pathways regulated by multiple TFs in the HPC during 

learning or disease. Such research may uncover factors or pathways whose regulation is 

unique to the HPC and which may therefore serve as viable pharmacological targets for 
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therapeutic intervention in neurological and psychiatric diseases involving HPC dysfunction. 

Here, we review the nature and mechanisms of activity-dependent TFs that are critical for 

HPC function, including their role in memory consolidation and long-term plasticity, as well 

as their currently known gene targets.

The HPC in memory consolidation

Memory consolidation underlies experience-dependent changes in our behavior (McGaugh, 

2000), driving adaptation to novel circumstances and setting the stage for expected behavior 

in familiar environments. Experiences induce a cascade of events across brain regions, 

starting with sensory information processing in cortical regions. The HPC is a unique brain 

region that consolidates this experiential input into memory traces that can be shunted into 

other regions, such as the cortex, for long-term storage. HPC is particularly important for 

consolidation of explicit, declarative memories, such as contextual and spatial information.

A period of stabilization is required before a short-term memory is preserved for long-term 

storage. Synaptic plasticity within the HPC underlies this stabilization, or consolidation, of a 

labile memory. The consolidation of long-term memories requires connectivity within HPC 

subregions (dentate gyrus [DG], CA3, CA1) forming a trisynaptic DG–CA3–CA1 loop 

(Figure 1). Specifically, excitatory glutamatergic inputs convey experiential, sensory 

information into entorhinal cortex (EC), from both cortical and limbic regions, such as 

amygdala. EC’s primary projections are to DG, known as the perforant pathway, although 

EC also projects to CA3, CA1, and subiculum. Glutamatergic DG granule cells project to 

pyramidal neurons in CA3 (the mossy fiber pathway), which send glutamatergic Schaffer 

collateral projections to pyramidal neurons in CA1. Connectivity within the trisynaptic loop 

is modulated by enduring forms of activity-dependent synaptic plasticity called long-term 

potentiation (LTP) and long-term depression (LTD). Synaptic plasticity is hypothesized to 

encode a memory trace by forming networks of strongly connected neurons, or memory 

engrams (Govindarajan et al., 2006; Neves et al., 2008; Silva et al., 2009). There-after, the 

CA1 sends projections through subiculum and back to EC, where memories can be 

distributed throughout cortex for long-term storage. The trisynaptic loop of DG–CA3–CA1, 

as well as the plasticity that occurs in these HPC synapses, underlies nearly all forms of 

explicit memory consolidation, and these changes are driven by transactivation of gene 

expression.

LTP at CA3–CA1 synapses occurs via postsynaptic signaling mechanisms, resulting in a 

long-lasting increase in the amplitude of the excitatory response in the postsynaptic cell 

(Figure 1). This process is dependent on activation of ionotropic N-methyl-d-aspartate 

receptors (NMDARs), and the subsequent influx of Ca2+ results in an increased synaptic 

response mediated by changes in the surface expression and function of a-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and/or structural 

alterations in the postsynaptic element, the dendritic spine. LTP can be further divided into 

an early phase (that does not require gene transcription) and a transcription-dependent late 

phase. The process of LTD also contributes to memory consolidation and occurs in both an 

N-methyl-d-aspartate-dependent manner and/or through a process requiring postsynaptic 

metabotropic glutamate receptors (mGluRs). Whereas LTP is induced in CA3–CA1 
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synapses by high-frequency stimulation (HFS), LTD is induced by low-frequency 

stimulation (LFS) or stimulation of mGluRs. The postsynaptic signaling induced by LFS 

leads to AMPAR endocytosis, and like LTP, late phases of LTD are also dependent on gene 

expression (Huber et al., 2000; Manahan-Vaughan et al., 2000). Thus, the long-term changes 

in synaptic strength underlying memory result from changes in HPC transcription.

Transcription in the HPC

Transcription is a complex process whereby RNA polymerase II (RNApolII) transcribes a 

sequence of DNA into corresponding messenger RNA (mRNA). An assortment of molecular 

machinery regulates transcription: promoter regions that direct transcription; TFs that are 

bound to DNA and facilitate RNApolII binding to promoter regions; coregulators that act to 

promote or suppress transcription via their interaction with TFs; cofactors that mediate 

protein–protein interactions between TFs and coregulators; and chromatin regulators that act 

to remodel chromatin to enhance or suppress TF binding to DNA. The products of 

transcription include mRNAs that encode proteins and noncoding RNAs that can contribute 

to cellular complexes (like ribosomes), regulate the translation of mRNAs (i.e. microRNAs), 

or perform other less well-characterized functions. While each aspect of this complex 

transcriptional regulatory machinery may contribute to HPC function and learning, here, we 

will describe the specific role of TFs induced by cellular activity in the HPC and their role in 

memory consolidation.

Activity-dependent TFs are induced by repeated action potentials that drive the expression of 

immediate early genes (IEG), many of which encode TFs. Because many of these TFs have 

additional mechanisms of induction that do not rely on cell activity (Wisden et al., 1990), we 

will focus on two states: (1) a basal condition in which these TFs are regulating mRNA 

synthesis to prepare neurons for rapid RNA translation in response to activity and (2) 

activity-dependent induction of TFs leading to down-stream synthesis of mRNA from genes 

that are critical for long-term changes in neuronal function and connectivity underlying 

memory formation, such as potentiation or depression of synaptic activity. This system is 

complex, tightly regulated, and stable.

Activity-dependent gene transcription is necessary for the consolidation of memories 

(Alberini, 2009). Transcriptional regulation underlies cellular changes induced by de novo 
protein and mRNA synthesis critical for memory consolidation (Alberini and Kandel, 2014), 

and indeed, we have known for decades that infusion of transcriptional inhibitors into HPC 

prevents late-phase LTP (Nguyen et al., 1994). Specifically, this decrease occurs only when 

inhibitors are administered during the induction of LTP, and not after induction, e.g. during 

late phase. This highlights that early-phase LTP is de novo mRNA synthesis independent, 

whereas late-phase LTP requires transcription to induce RNA synthesis for later translation. 

It has been recently hypothesized that transcriptional regulation controls the expression of 

many synaptic proteins that support plasticity (Alberini and Kandel, 2014), and it appears 

likely that activity-dependent transcription regulated by a subset of TFs is necessary for 

plasticity underlying the consolidation of an active memory trace. A series of activity-

dependent TFs have been described that are critical for this transcription-dependent HPC 

plasticity and learning. We have divided these into (1) extracellular signal-activated TFs, 
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including cyclic-AMP (cAMP) response element binding protein (CREB), serum-response 

factor (SRF), and E26 (Ets)-like TF 1 (Elk-1), and (2) IEG TFs associated with plasticity 

and learning.

Extracellular signaling-activated TFs associated with hippocampal 

plasticity and learning

CREB

CREB is one of the most well-characterized TFs in learning and memory. It was originally 

described due to its association with the cAMP response element (CRE) DNA sequence 

(Montminy and Bilezikjian, 1987), and it is widely expressed throughout the brain, playing a 

critical role in plasticity in many brain regions, including HPC. There are multiple CREB 

proteins, most notably CREB1 and CREB2 (activating TF 4; ATF4), which may have 

opposing actions on plasticity, with CREB1 associated with enhancement or facilitation of 

long-term plasticity (see below) and ATF4/CREB2 associated with constraints on plasticity 

(Chen et al., 2003). However, the remainder of this section will focus solely on CREB1, 

hereafter referred to solely as CREB. CREB activity is mediated by its phosphorylation state 

(Bito et al., 1996), which lends to its stability, as unphosphorylated CREB is targeted for 

degradation (Mouravlev et al., 2007). CREB is induced in HPC during spatial learning 

(Mizuno et al., 2002) and HPC NMDAR-dependent avoidance learning (Cammarota et al., 

2000) and is critical for LTP (Yin et al., 1994). Furthermore, HPC CREB inhibition disrupts 

long-term memory consolidation (Bourtchuladze et al., 1994; Kida et al., 2002; Pittenger et 

al., 2002), and constitutively active CREB over-expression in HPC increases contextual 

memory (Restivo et al., 2009). CREB transcriptional activity is also mediated by its binding 

partners, including CREB binding protein (CBP) (Chrivia et al., 1993), which is important 

for spatial and contextual learning and dopamine-specific LTP in the HPC (Wood et al., 

2005, 2006). It appears, therefore, that CREB is necessary for late-phase or long-term 

memory consolidation, which is dependent on gene expression underlying de novo protein 

synthesis. Specifically, CREB may act as the transcriptional switch between protein 

synthesis-independent short-term memory and protein synthesis-dependent long-term 

memory.

CREB is regulated by multiple signaling cascades downstream of neuronal activity, 

including cAMP and Ca2+ (Figure 2) (Wheeler et al., 2012). Specifically, CREB 

phosphorylation occurs in conjunction with stimuli that induce LTP, and not simply with 

repeated neuronal firing (Deisseroth et al., 1996), indicating that signaling from the synapse 

is specifically required for CREB activation in the nucleus. Many molecules have been 

implicated in this signaling, including the cAMP-dependent protein kinase (PKA), 

extracellular signal-regulated kinase (ERK), and calmodulin-dependent protein kinases such 

as CaMKI, CaMKII, and CaMKIV (Bito et al., 1996; Benito and Barco, 2010). Many 

players in this signaling cascade leading to CREB phosphorylation are crucial for LTP 

(Malinow et al., 1989; Frey et al., 1993) and HPC transcription (Bading et al., 1993). 

Supporting this idea, constitutively active CREB (which contains mutations mimicking 

phosphorylation) primes hippocampal synapses for plasticity, thereby lowering the threshold 

for long-lasting, late-phase LTP (Barco et al., 2002) and leading to enhanced memory 
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consolidation. Knockout (KO) of specific CREB isoforms impaired HPC LTP in mice 

(Bourtchuladze et al., 1994), although other studies have failed or only very weakly 

replicated this effect (Gass et al., 1998; Pittenger et al., 2002), which may be attributed to a 

different genetic background or that prior studies used a mutant that only knocked out 

specific isoforms and not other CREB related genes. A dominant negative-inhibitor of 

CREB (KREB) disrupts learning, and some Ca2+-dependent forms of LTP are impaired by 

this CREB KO (Pittenger et al., 2002). Additionally, constitutively active CREB 

overexpression in HPC leads to increases in NMDAR-dependent LTP and silent synapse 

formation (Marie et al., 2005) and also enhances LTP and memory consolidation (Suzuki et 

al., 2011), while dominant negative CREB expression impairs memory consolidation 

(Kathirvelu et al., 2013). CREB has also been shown to regulate intrinsic plasticity, such as 

cell excitability (Dong et al., 2006; Lopez de Armentia et al., 2007; Benito and Barco, 

2010), which supports the premise that CREB activity may confer a competitive advantage 

allowing for the recruitment of CREB-induced cells during the formation of a memory trace 

(Han et al., 2007; Benito and Barco, 2010), a hypothesis corroborated experimentally in the 

amygdala (Kim et al., 2014; Yiu et al., 2014). Finally, a plethora of CREB target genes play 

a significant role in synaptic, structural, and intrinsic plasticity and signaling (Table 1), and 

newer studies are beginning to reveal the full complement of basal and memory-related 

genes that are targeted by CREB (Lakhina et al., 2015).

SRF

SRF is a member of the MADS-box (MCM1, Agamous, Deficiens, SRF) family of TFs that 

share a conserved sequence motif and tend to recruit other TFs in multiregulatory complexes 

but have different DNA binding properties and heterodimer partners (Shore and Sharrocks, 

1995). SRF binds the serum-response element (SRE) in many genes, including c-fos 
(Treisman, 1987), and is integral for IEG induction through Elk-1-dependent (see below) 

and -independent mechanisms (Xia et al., 1996). Binding to the SRE is dependent on SRF 

phosphorylation, which is downstream of some of the same signaling cascades that activate 

CREB (Figure 2), including ERK (Xia et al., 1996).

SRF is highly expressed in all subregions of HPC (Herdegen et al., 1997; Ramanan et al., 

2005), where it plays an important role in plasticity and learning. SRF has many gene targets 

(Table 1), including IEGs and other genes associated with synaptic plasticity, and gene 

targeting appears to be regulated by various cofactors and phosphorylation states (Knöll and 

Nordheim, 2009). For example, the CCAAT-enhancer binding protein (C/EBP-β) gene 

requires SRF binding to SRE for transactivation of SRE-associated genes (Sealy et al., 1997) 

and Elk-1 contributes to SRF induction of c-fos (Marais et al., 1993), although SRF 

transcriptional activity may also be Elk-1-independent (Miranti et al., 1995).

SRF has been widely implicated in plasticity and learning. For example, SRF KO mice 

display impaired IEG induction, mild deficits in LTP (for discussion, see Etkin et al., 2006), 

and robust deficits in LTD in CA1 neurons, while displaying no change in basal excitatory 

signaling (Ramanan et al., 2005; Etkin et al., 2006). SRF appears especially important for 

structural plasticity that may underlie neuronal circuit remodeling; its expression closely 

follows neuronal development (Stringer et al., 2002), and its deletion produces profound 
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structural changes in HPC (Knöll et al., 2006; Stritt and Knöll, 2010). In particular, SRF 

regulates neurite outgrowth and proper axonal guidance (Knöll et al., 2006; Li et al., 2014), 

in addition to dendritic spine development and neuronal migration (Stritt and Knöll, 2010). 

These functions appear to be mediated by SRF’s regulation of actin cytoskeletal genes 

(Table 1), and this regulation is associated with a host of outcomes including cell 

differentiation and development, intracellular trafficking, and synapse remodeling. SRF may 

also affect axonal development indirectly, as SRF deletion decreases myelination by 

reducing oligodendrocyte differentiation via paracrine signaling (Stritt et al., 2009). Despite 

SRF’s importance in actin cytoskeletal organization associated with circuitry remodeling 

and spine morphogenesis, it does not appear to be necessary for neuronal survival (Ramanan 

et al., 2005). These findings support the hypothesis that SRF translates synaptic activity into 

neuronal connectivity in HPC via actin cytoskeletal reorganization (Knöll and Nordheim, 

2009).

Elk-1

Elk-1 is a member of the Ets family of oncogenes (Rao et al., 1989) and modulates HPC 

plasticity and memory consolidation through its interactions with other TFs, such as SRF. 

While Elk-1 is expressed in many cell types throughout the body, in the brain, it is 

exclusively expressed in neurons (Sgambato et al., 1998), with strong expression in both DG 

and CA regions of HPC. Elk-1 mRNA can be found in soma, dendrites, and axons, 

suggesting that it may play a role in local activity-dependent translation, in addition to its 

role in transcription. Elk-1 transcriptional activity is induced by growth factors (Marais et 

al., 1993) and glutamatergic signaling (Vanhoutte et al., 1999) through phosphorylation by 

the MAPK/ERK cascade (Figure 2). Elk-1 transcriptionally targets SRE to drive SRE-

associated gene expression, such as IEGs (Hipskind et al., 1991; Janknecht and Nordheim, 

1993). Elk-1 dimerizes with other cofactors and TFs, including SRF and CBP, to regulate 

gene expression (Hipskind et al., 1991; Janknecht and Nordheim, 1992, 1996). Unlike SRF, 

which can act in an Elk-1-independent manner (Miranti et al., 1995), there is scant evidence 

that Elk-1 can regulate gene expression without this dimerization.

Both LTP and LTD in HPC neurons induce MAPK/ERK-dependent Elk-1 phosphorylation 

(Davis et al., 2000; Thiels et al., 2002), and mGluR-induced LTD requires SRF/Elk-1 for 

induction of IEGs (Lindecke et al., 2006). Elk-1 KO mice, while displaying normal 

development and few abnormal phenotypes, show no change in basal c-fos expression but a 

decrease in kainite-induced seizure induction of c-fos in HPC (Cesari et al., 2004). However, 

early growth response protein 1 (egr1)/zinc finger protein 268 (zif268) induction by seizures 

was normal in Elk-1 KO mice, suggesting that induction of IEGs may be compensated by 

other TFs, e.g. SRF, in Elk-1-deficient mice. This is in line with evidence indicating that 

activity-dependent induction of SRF-mediated transcription of IEGs acts in both an Elk-1-

dependent and independent manner, with Elk-1 enhancing SRF-SRE transcriptional 

activation (Xia et al., 1996).

Although Elk-1 is induced by learning (Cammarota et al., 2000; Sananbenesi et al., 2002), to 

date, no study has identified a specific and critical role for HPC Elk-1 in memory formation. 

Indeed, SRF but not Elk-1 inhibition impairs spatial learning (Dash et al., 2005). Similarly, 

Eagle et al. Page 6

Rev Neurosci. Author manuscript; available in PMC 2019 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



no impairments in learning have been observed in Elk-1 KO mice (Cesari et al., 2004). 

Delineating the function of Elk-1 in plasticity and learning is further complicated by its 

close association with SRF, which is uniquely important for HPC plasticity and learning (see 

above). This makes it difficult to accurately identify Elk-1 gene targets that are not directly 

transcribed by SRF (Table 1). However, given the critical role of MAPK/ERK signaling in 

synaptic plasticity and learning (Davis et al., 2000; Sweatt, 2004), it is likely Elk-1 is 

involved in some aspect of HPC plasticity and learning that remains to be determined.

IEG TFs associated with hippo-campal plasticity and learning

Egr1/Zif268/NGFI-A/Krox-24

Egr1, which is also known as zif268, nerve growth factor-induced A, and Krox-24, is an IEG 

encoded by the EGR1 gene. It shows rapid, robust induction following neuronal activation 

that return to basal levels within 24 h (Knapska and Kaczmarek, 2004). Egr1 expression is 

induced by NMDAR activation (Worley et al., 1993) but is also widely regulated by a 

number of different signaling cascades, including trophic factors, membrane-depolarization-

induced glutamate signaling, and Ca2+ signaling (Condorelli et al., 1994; Ghosh et al., 1994; 

Knapska and Kaczmarek, 2004). The promoter region of EGR1 includes six SRE sites, a 

CRE site, and an activator protein 1 (AP1) binding site (Veyrac et al., 2014), indicating that 

its induction is downstream of CREB, SRF, Elk-1, and Fos TFs, and it is induced by 

MAPK/ERK signaling via Elk-1, SRF, and CREB (Davis et al., 2000), suggesting that egr1 

is a nexus for activity-dependent gene expression.

EGR1 KO mice show decreased long-term in vivo LTP and impairment in long-term 

memory formation (Jones et al., 2001), as well as destabilized place cell representations 

(Renaudineau et al., 2009). Conversely, inducible overexpression of egr1 enhances long-

term spatial memory and LTP in DG neurons (Penke et al., 2014), although egr1 may play a 

larger role in reconsolidation of a memory, rather than its initial consolidation (Lee et al., 

2004). Although egr1 appears to be necessary for plasticity, few gene targets supporting this 

have thus far been uncovered. Nevertheless, NMDAR-dependent induction of egr1 leads to 

the subsequent repression of the synaptic structure protein PSD-95; this is followed by 

endocytosis of AMPA receptors and robust LTD (Qin et al., 2015). The majority of gene 

targets of egr1 have been identified in cancer studies and include genes involved in cell 

proliferation, differentiation, and survival, as well as apoptosis (Veyrac et al., 2014); 

however, preliminary microarray studies have further implicated additional target genes of 

egr1 in the brain (James et al., 2005). Notably, this included genes previously associated 

with plasticity, such as synapsin II and gephyrin, as well as serum/glucocorticoid regulated 

kinase and c-Jun (Table 1). Thus, although it is clear that egr1 is critical for learning, the 

mechanisms by which it controls synaptic function remain to be fully revealed.

AP1

AP1 is a TF complex composed of heterodimers between Fos family proteins, Jun family 

proteins, Jun dimerization proteins, and/or ATF proteins. A typical AP1 complex consists of 

Fos-Jun heterodimers that utilize leucine zippers present in both proteins for dimerization 

and a basic region that interacts with DNA. Because of the variety of AP1 complexes that 
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can form, they are associated with diverse induction stimuli, a number of coactivators/

corepressors, and a wide variety of gene targets. For the sake of brevity, we will focus 

mainly on the Fos family of TFs due to their well-known role in HPC plasticity and learning; 

however, the remaining members are also important for HPC function (Minatohara et al., 

2015).

c-fos

The Fos family of TFs is comprised of c-fos, FosB (and its splice variants, ΔFosB and 

Δ2ΔFosB), Fra1, and Fra2. While not completely reliant upon neuronal activity (for 

example, see Wisden et al., 1990), the induction of these TFs is directly associated with 

neuronal activity, to the point that c-fos staining is commonly used as a marker of neuronal 

activity (Sagar et al., 1988). The list of environmental and cellular stimuli, signaling 

pathways, proteins, induction protocols, growth factors, etc., that have been implicated in the 

regulation of c-fos are too broad a subject for the current review, but it is clear that neurons 

produce c-fos in response to any activity-inducing stimulus. However, there is scant 

evidence investigating the gene targets of c-fos and their role in cellular function, 

specifically in memory consolidation and plasticity. The majority of its known gene targets 

come from studies in cancer, inflammation, and bone development (Grigoriadis et al., 1993; 

Matsuo et al., 2000, 2004; Matthews et al., 2007), while its targets in neurons are largely 

unknown. Many have made the claim that c-fos is merely induced by neuronal activity and 

does not contribute to long-term cellular changes. We propose here that c-fos is particularly 

important for plasticity and initial memory consolidation. This is based on preliminary 

studies described in more detail below showing a correlation between c-fos induction and 

plasticity, newer studies implicating a role for c-fos in plasticity and learning, and studies 

showing c-fos may represent aspects of activity associated with a memory engram.

c-fos plays a key role in downstream gene expression underlying neuronal activity 

(Dragunow and Robertson, 1987; Kaczmarek et al., 1988; Sheng et al., 1990); however, it 

may also underlie plasticity and learning (Kaczmarek, 1993) by regulating gene expression, 

including the expression of other TFs associated with plasticity (Sheng and Greenberg, 

1990). c-fos is regulated by a variety of factors including SRF/Elk-1 and CREB (Sheng and 

Green-berg, 1990; Sheng et al., 1990; Hipskind et al., 1991) and is repressed by other 

factors, such as ΔFosB (Nakabeppu and Nathans, 1991; Renthal et al., 2008). c-fos is 

transiently and robustly induced, with a half-life ranging from minutes up to a couple hours 

(Sheng and Greenberg, 1990; Kovács, 1998; Ferrara et al., 2003). It is hypothesized to target 

a wide variety of genes associated with cell differentiation, cell and synapse development, 

synaptic plasticity, and learning (Alberini, 2009; West and Greenberg, 2011); however, 

conclusive evidence for c-fos-specific gene targets, especially those involved in HPC 

plasticity, has not yet been provided.

Correlative and some preliminary causal evidence suggest that c-fos is important for 

memory consolidation. In particular, c-fos is induced in the HPC by memory tasks, 

including spatial learning and a brightness discrimination form of associative learning 

(Tischmeyer et al., 1990; Guzowski et al., 2001), and inhibition of c-fos impairs memory for 

the brightness discrimination (Grimm et al., 1997). c-fos is also induced in HPC by LTP 
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(Dragunow et al., 1989; Fleischmann et al., 2003) and has been found to be necessary for 

induction of LTP (Fleischmann et al., 2003) and LTD (Kemp et al., 2013). Furthermore, 

brain-specific KO of c-fos produces marked impairments in learning and memory and HPC 

plasticity (Fleischmann et al., 2003). Recent evidence using manipulations of c-fos to 

inactivate neuronal ensembles, reactivate consolidated memories, or generate false memory 

traces suggests a role for c-fos in more than just neuronal activation (Garner et al., 2012; Liu 

et al., 2012; Cruz et al., 2015). Thus, c-fos is required for transcription-dependent changes in 

HPC neurons underlying memory consolidation. Future studies examining c-fos gene targets 

and any link between c-fos and synaptic plasticity will reveal the full extent of its functions 

underling HPC memory consolidation.

FosB

FosB is encoded by the FosB gene and shares many characteristics and gene targets with c-

fos. Like c-fos, FosB has low basal expression in HPC (Herdegen et al., 1995) and is 

transiently and robustly induced by neuronal activity (Nestler et al., 1999), with a similar 

half-life in cells (Dobrazanski et al., 1991; Ferrara et al., 2003; Ulery et al., 2006). FosB KO 

mice show decreased neurogenesis in DG (Yutsudo et al., 2013) and impairment in rearing 

pups but have normal spatial learning and olfactory discrimination (Brown et al., 1996). 

Nevertheless, FosB gene targets and its role in plasticity and learning remain unknown; 

however, other FosB gene products (detailed below) may provide a novel mechanism for 

chronic activity-dependent gene expression associated with plasticity and learning.

ΔFosB

Splice variation of FosB gene transcripts produces a premature stop codon resulting in the 

truncated ΔFosB protein. The splice variant lacks two c-terminal degron domains lending it 

increased stability (Carle et al., 2007); most other Fos TFs have a half-life of a few hours, 

while ΔFosB has an unusually long-half life, up to 7 days in vivo (Hope et al., 1994; 

Andersson et al., 2003; Ulery-Reynolds et al., 2009). In addition, Ca2+-signaling may 

contribute to this stability, as CaMKII has been shown to phosphorylate ΔFosB at Ser27, 

thereby enhancing its stability (Ulery-Reynolds et al., 2009; Robison et al., 2013). While 

ΔFosB has a well-characterized role in the nucleus accumbens (NAc) in stress-and reward-

related behavior (Robison and Nestler, 2011; Nestler, 2015), more recent evidence suggests 

that it is induced by a variety of stimuli in HPC, including ischemia (McGahan et al., 1998), 

drugs of abuse (Perrotti et al., 2008), stress (Perrotti et al., 2004; Vialou et al., 2015), 

antidepressants (Vialou et al., 2015), and spatial learning (Eagle et al., 2015). While the 

mechanism for the induction of HPC ΔFosB is unknown, ΔFosB is induced by SRF and 

CREB in NAc (Vialou et al., 2012). Engram-specific induction of ΔFosB may under-lie 

memory consolidation, as specific ΔFosB inhibition in HPC impairs multiple forms of 

learning (Eagle et al., 2015). Interestingly, ΔFosB overexpression in HPC also impaired 

memory consolidation, perhaps due to dysregulation of preferential connectivity underlying 

memory engrams (Eagle et al., 2015). While its gene targets are not well known in HPC, 

studies in other brain regions show that ΔFosB regulates a number of genes associated with 

plasticity, including c-fos, cdk5, CaMKII, and glutamate receptors, such as GluA2 

(Nakabeppu and Nathans, 1991; Kelz et al., 1999; Chen et al., 2000; Robison et al., 2014). 

Moreover, ΔFosB overexpression regulates syn-apses in both NAc (Grueter et al., 2013) and 
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HPC (Yutsudo et al., 2013) and induces immature spine formation in HPC CA1 pyramidal 

neurons (Eagle et al., 2015) and D1R-expressing medium spiny neurons of the NAc (Grueter 

et al., 2013).

Because of its unusual stability, ΔFosB is a unique target for studies examining long-term 

plasticity or learning in response to chronic environmental changes. This is especially 

relevant considering that other activity-dependent TFs, such as c-fos, homeostatically 

decrease expression in HPC after repeated daily trials of learning (Nikolaev et al., 1992; 

Hess et al., 1995; Bertaina-Anglade et al., 2000), which, interestingly, may even be regulated 

by ΔFosB (Renthal et al., 2008). Therefore, ΔFosB is an attractive target for further 

investigation into chronic HPC activity-dependent gene expression driving long-term 

behavioral adaptations or disease.

C/EBP-B, ATF, others

C/EBP-βb is expressed in adult, but not fetal, brain, primarily in HPC, cerebellum, and 

cortex (Kuo et al., 1990), where it binds the CCAAT box motif to regulate gene expression. 

C/EBP is induced in HPC by learning and is required for long-term memory consolidation 

(Taubenfeld et al., 2001a,b). It has been shown to colocalize with phosphorylated CREB, 

and CRE-mediated gene expression is required for its induction during memory formation 

(Athos et al., 2002). C/EBP also appears to be regulated by cAMP and mediates long-term 

facilitation in Aplysia (Alberini et al., 1994), but its role in HPC plasticity has yet to be 

established. C/EBP acts as a positive feedback mechanism for brain-derived neurotrophic 

factor (BDNF) by potentiating BDNF upregulation leading to further C/EBP induction 

(Bekinschtein et al., 2007; Bambah-Mukku et al., 2014), and BDNF strongly induces HPC 

LTP (Ying et al., 2002).

ATF4/CREB2, or ATF4, regulates CRE-mediated gene expression and has been 

hypothesized to act as a transcriptional repressor of plasticity and memory consolidation 

(Guan et al., 2002). Supporting this, ATF4 inhibition was shown to enhance HPC-dependent 

memory consolidation and LTP (Chen et al., 2003). Conversely, new evidence demonstrates 

that ATF4 knockdown decreases dendritic spines, glutamatergic neurotransmission, and 

expression of synaptic GluA1 and PSD95. Moreover, this decreases LTP and LTD in HPC 

CA1, impairs long-term memory formation, and is rescued by ATF4 overexpression (Liu et 

al., 2014; Pasini et al., 2015). Thus, ATF4 appears critical for memory formation, but its 

precise role in HPC function remains debatable.

More recently, a host of additional activity-dependent TFs important for plasticity and 

memory consolidation have begun to emerge. For example, the myocyte enhancer factor-2 

family of TFs has been shown to act as a critical negative regulator of synaptic plasticity and 

learning (Rashid et al., 2014). Interestingly, stress may also be associated with HPC 

plasticity, with glucocorticoid and mineralocorticoid receptors having diverse roles in HPC 

plasticity in response to stress (Kim and Diamond, 2002; Avital et al., 2006; Berger et al., 

2006; Gray et al., 2013). Finally, NF-kB, or nuclear factor kappa-B, which has a wide variety 

of functions in the brain and other tissues, may play a significant role in HPC plasticity and 

learning (Albensi and Mattson, 2000; Meffert et al., 2003; Kaltschmidt et al., 2006) through 

changes in synapse function and synaptogenesis (Boersma et al., 2011). The identification of 
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these and other activity-dependent TFs and their associated gene targets illustrates the 

complexity of HPC transcription and its role in synaptic, structural, and intrinsic plasticity 

underlying learning, a knot that must be untangled in order to advance the science of 

learning and the treatment of diseases involving HPC dysfunction.

Pushing the field forward: uncovering novel pathways

As catalogued in brief above, the role of activity-dependent TFs in HPC function has been 

extensively studied, and this has greatly advanced the learning and memory field. However, 

in order for future studies of these TFs to directly impact the treatment of neurological and 

psychiatric disorders involving dysfunction of the HPC, it will be necessary to determine 

novel HPC genes and pathways that are common targets of multiple TFs during learning 

and/or in models of disease. Such advances may arise from comparing data sets generated 

by mRNA sequencing (RNAseq) experiments on HPC tissue after learning or in a disease 

model. Overlaying such data sets generated from animals in which select TFs have been 

overexpressed or silenced could reveal common genes regulated in HPC by multiple 

activity-dependent TFs under relevant conditions (Figure 3A), many of which may become 

pharmacologically feasible therapeutic targets. Similarly, using chromatin 

immunoprecipitation (ChIP) for specific TFs followed by unbiased sequencing approaches 

will reveal direct binding targets (Figure 3B), and meta-analyses combining all of these 

approaches should uncover common path-ways whose dysfunction drives disease. Such ‘big 

data’ approaches are already underway in many labs, and the coming decade should give rise 

to a host of advances in the field of HPC gene expression that will impact both the science of 

learning and the treatment of disease.
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Figure 1: Hippocampal synaptic plasticity relies on activity-dependent transcription.
(A) Depiction of bilateral location of dorsal (dHPC) and ventral (vHPC) mouse HPC (top) 

and of a coronal slice of dHPC (bottom) showing the connections between the subregions 

and the general direction of glutamatergic projections (red arrows). (B) Graphical 

representation of LTP (left) and LTD (right) induced by HFS or LFS, respectively. Gray 

region indicates long-lasting change in synaptic strength requiring activity-dependent 

transcription. (C) Select molecular mechanisms of LTP and LTD at CA3–CA1 glutamatergic 

synapses involving products of genes regulated by activity-dependent TFs (see Table 1).
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Figure 2: Common signaling cascades leading to activity-dependent TF activation.
Extracellular signals and changes in membrane potential can lead to increases in second-

messenger (cAMP and Ca2+) or ERK signaling that converge on kinase activity within the 

nucleus resulting in phosphorylation and activation of CREB and SRF complexes. These 

bind to specific elements in promoter regions to regulate transcription of a variety of genes, 

including IEGs that encode other activity-dependent TFs, like c-fos and FosB.
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Figure 3: Identifying novel genes and pathways regulated by activity-dependent HPC gene 
transcription.
(A) Hypothetical heat plots of RNAseq and proteomic experiments in which individual 

activity-dependent TFs are genetically or pharmacologically manipulated to reveal genes 

whose expression is directly or indirectly regulated by each TF. Comparing the unbiased 

output of such experiments will reveal common potential gene targets that may underlie 

learning or disease (orange boxes). (B) Similarly, ChIPseq experiments using antibodies 

against individual activity-dependent TFs to precipitate bound chromatin from HPC of mice 

undergoing learning or models of disease will reveal common gene targets for activity-

dependent TF binding (orange box). Combining the data from such experiments will 

produce new molecular models of learning and disease.
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