Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 17, 2018

Superhydrophobic membrane: progress in preparation and its separation properties

  • Nurul F. Himma , Nicholaus Prasetya , Sofiatun Anisah and I Gede Wenten ORCID logo EMAIL logo

Abstract

Superhydrophobic membrane that is highly resistant to wetting by aqueous solution has gained great attention because of its potential to be applied in many emerging membrane processes such as membrane gas absorption (MGA) and membrane distillation (MD). Numerous approaches have been proposed to obtain membranes with superhydrophobic surface from materials with various degrees of hydrophobicity. This paper then reviews the progress in superhydrophobic membrane preparation and its separation properties. A brief description of superhydrophobicity is firstly presented. Preparation methods of the superhydrophobic membrane are subsequently reviewed, including direct processing method and surface modification of the existing membrane. Finally, the separation properties and challenges of superhydrophobic membranes are discussed. This article could provide an insight for further development of superhydrophobic membrane.

Nomenclature

γLV

liquid/vapor surface tension

γSV

solid/vapor surface tension

γSL

solid/liquid surface tension

θ

contact angle

r

ratio of the wetted surface area to the projected surface area below the droplet

θr

contact angle on a rough surface

θe

Young’s equilibrium contact angle

θc

heterogenous contact angle

f1

fraction of liquid area in contact with the membrane

f2

fraction of liquid area in contact with air in the porous membrane

θcr

critical intrinsic contact angle

θA

advancing contact angle

θR

receding contact angle

α

sliding angle

References

Abdulhameed MA, Othman MHD, Ismail AF, Matsuura T, Harun Z, Rahman MA, Puteh MH, Jaafar J, Rezaei M, Hubadillah SK. Carbon dioxide capture using a superhydrophobic ceramic hollow fibre membrane for gas-liquid contacting process. J Clean Prod 2017; 140, Part 3: 1731–1738.10.1016/j.jclepro.2016.07.015Search in Google Scholar

Adnan S, Hoang M, Wang H, Xie Z. Commercial PTFE membranes for membrane distillation application: effect of microstructure and support material. Desalination 2012; 284: 297–308.10.1016/j.desal.2011.09.015Search in Google Scholar

Agarwal S, von Arnim V, Stegmaier T, Planck H, Agarwal A. Role of surface wettability and roughness in emulsion separation. Sep Purif Technol 2013; 107: 19–25.10.1016/j.seppur.2013.01.001Search in Google Scholar

Ahmad AL, Mohammed HN, Ooi BS, Leo CP. Fabrication and characterization of superhydrophobic layer of low density polyethylene on polypropylene hollow fiber membrane. Caspian J Appl Sci Res 2013a; 2: 52–57.Search in Google Scholar

Ahmad AL, Mohammed HN, Ooi BS, Leo CP. Deposition of a polymeric porous superhydrophobic thin layer on the surface of poly(vinylidenefluoride) hollow fiber membrane. Pol J Chem Technol 2013b; 15: 1.10.2478/pjct-2013-0036Search in Google Scholar

Ahmad AL, Mohammed HN, Ooi BS, Leo CP. Preparation and characterization of a porous superhydrophobic polymeric surface via facile technique. J Polym Res 2013c; 20: 1–7.10.1007/s10965-013-0289-zSearch in Google Scholar

Ahmad NA, Leo CP, Ahmad AL. Superhydrophobic alumina membrane by steam impingement: minimum resistance in microfiltration. Sep Purif Technol 2013d; 107: 187–194.10.1016/j.seppur.2013.01.011Search in Google Scholar

Ahmad NA, Leo CP, Ahmad AL. Synthesis of superhydrophobic alumina membrane: effects of sol–gel coating, steam impingement and water treatment. Appl Surf Sci 2013e; 284: 556–564.10.1016/j.apsusc.2013.07.133Search in Google Scholar

Ahmad NA, Leo CP, Ahmad AL, Ramli WKW. Membranes with great hydrophobicity: a review on preparation and characterization. Sep Purif Rev 2014; 44: 109–134.10.1080/15422119.2013.848816Search in Google Scholar

Ahmed FE, Lalia BS, Hashaikeh R. A review on electrospinning for membrane fabrication: challenges and applications. Desalination 2015; 356: 15–30.10.1016/j.desal.2014.09.033Search in Google Scholar

Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: a comprehensive review. Desalination 2012; 287: 2–18.10.1016/j.desal.2011.08.027Search in Google Scholar

An AK, Guo J, Lee E-J, Jeong S, Zhao Y, Wang Z, Leiknes T. PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J Membr Sci 2017; 525: 57–67.10.1016/j.memsci.2016.10.028Search in Google Scholar

Ariono D, Khoiruddin K, Subagjo S, Wenten IG. Heterogeneous structure and its effect on properties and electrochemical behavior of ion-exchange membrane. Mater Res Express 2017; 4: 024006.10.1088/2053-1591/aa5cd4Search in Google Scholar

Aryanti PTP, Yustiana R, Purnama RED, Wenten IG. Performance and characterization of PEG400 modified PVC ultrafiltration membrane. Membr Water Treat 2015; 6: 379–392.10.12989/mwt.2015.6.5.379Search in Google Scholar

Aryanti PTP, Joscarita SR, Wardani AK, Subagjo S, Ariono D, Wenten IG. The influence of PEG400 and acetone on polysulfone membrane morphology and fouling behaviour. J Eng Technol Sci 2016; 48: 135–149.10.5614/j.eng.technol.sci.2016.48.2.1Search in Google Scholar

Azeredo J, Visser J, Oliveira R. Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories. Colloids Surf B 1999; 14: 141–148.10.1016/S0927-7765(99)00031-4Search in Google Scholar

Bae B, Chun BH, Kim D. Surface characterization of microporous polypropylene membranes modified by plasma treatment. Polymer 2001; 42: 7879–7885.10.1016/S0032-3861(01)00245-2Search in Google Scholar

Bakeri G, Matsuura T, Ismail AF, Rana D. A novel surface modified polyetherimide hollow fiber membrane for gas–liquid contacting processes. Sep Purif Technol 2012a; 89: 160–170.10.1016/j.seppur.2012.01.022Search in Google Scholar

Bakeri G, Ismail AF, Rana D, Matsuura T, Shariaty M. Investigation on the effects of fabrication parameters on the structure and properties of surface-modified membranes using response surface methodology. J Appl Polym Sci 2012b; 123: 2812–2827.10.1002/app.34802Search in Google Scholar

Bakeri G, Ismail AF, Rana D, Matsuura T. Development of high performance surface modified polyetherimide hollow fiber membrane for gas–liquid contacting processes. Chem Eng J 2012c; 198–199: 327–337.10.1016/j.cej.2012.05.105Search in Google Scholar

Bakeri G, Rana D, Ismail AF, Matsuura T, Ghaee A. Performance of surface-modified poly(etherimide) hollow-fiber membranes in a membrane gas−liquid contacting process with response surface methodology. J Appl Polym Sci 2013; 128: 1313–1325.10.1002/app.38548Search in Google Scholar

Bhushan B, Jung YC, Koch K. Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir 2009; 25: 3240–3248.10.1021/la803860dSearch in Google Scholar PubMed

Bittoun E, Marmur A. Optimizing super-hydrophobic surfaces: criteria for comparison of surface topographies. J Adhes Sci Technol 2009; 23: 401–411.10.1163/ej.9789004165939.i-496.24Search in Google Scholar

Brady RF, Singer IL. Mechanical factors favoring release from fouling release coatings. Biofouling 2000; 15: 73–81.10.1080/08927010009386299Search in Google Scholar PubMed

Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc 1944; 40: 546–551.10.1039/tf9444000546Search in Google Scholar

Celia E, Darmanin T, Taffin de Givenchy E, Amigoni S, Guittard F. Recent advances in designing superhydrophobic surfaces. J Colloid Interface Sci 2013; 402: 1–18.10.1016/j.jcis.2013.03.041Search in Google Scholar PubMed

Cengiz U, Avci MZ, Erbil HY, Sarac AS. Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning. Appl Surf Sci 2012; 258: 5815–5821.10.1016/j.apsusc.2012.02.107Search in Google Scholar

Cerneaux S, Strużyńska I, Kujawski WM, Persin M, Larbot A. Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes. J Membr Sci 2009; 337: 55–60.10.1016/j.memsci.2009.03.025Search in Google Scholar

Chao-Hua X, Shun-Tian J, Jing Z, Jian-Zhong M. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Sci Technol Adv Mater 2010; 11: 033002.10.1088/1468-6996/11/3/033002Search in Google Scholar PubMed PubMed Central

Chen Y, Kim H. Preparation of superhydrophobic membranes by electrospinning of fluorinated silane functionalized poly(vinylidene fluoride). Appl Surf Sci 2009; 255: 7073–7077.10.1016/j.apsusc.2009.03.043Search in Google Scholar

Chen Y, Tian M, Li X, Wang Y, An AK, Fang J, He T. Anti-wetting behavior of negatively charged superhydrophobic PVDF membranes in direct contact membrane distillation of emulsified wastewaters. J Membr Sci 2017; 535: 230–238.10.1016/j.memsci.2017.04.040Search in Google Scholar

Choo K-H, Lee C-H. Understanding membrane fouling in terms of surface free energy changes. J Colloid Interface Sci 2000; 226: 367–370.10.1006/jcis.2000.6845Search in Google Scholar

Crick CR, Parkin IP. Preparation and characterisation of super-hydrophobic surfaces. Chem Eur J 2010; 16: 3568–3588.10.1002/chem.200903335Search in Google Scholar PubMed

de Morais Coutinho C, Chiu MC, Basso RC, Ribeiro APB, Gonçalves LAG, Viotto LA. State of art of the application of membrane technology to vegetable oils: a review. Food Res Int 2009; 42: 536–550.10.1016/j.foodres.2009.02.010Search in Google Scholar

deMontigny D, Tontiwachwuthikul P, Chakma A. Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for CO2 absorption. J Membr Sci 2006; 277: 99–107.10.1016/j.memsci.2005.10.024Search in Google Scholar

Dong X, Lin YS. Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation. Chem Commun 2013; 49: 1196–1198.10.1039/c2cc38512kSearch in Google Scholar PubMed

Dong Z-Q, Ma X-h, Xu Z-L, You W-T, Li F-b. Superhydrophobic PVDF–PTFE electrospun nanofibrous membranes for desalination by vacuum membrane distillation. Desalination 2014; 347: 175–183.10.1016/j.desal.2014.05.015Search in Google Scholar

Drelich J, Chibowski E, Meng DD, Terpilowski K. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 2011; 7: 9804–9828.10.1039/c1sm05849eSearch in Google Scholar

Drioli E, Curcio E, di Profio G. State of the art and recent progresses in membrane contactors. Chem Eng Res Des 2005; 83: 223–233.10.1205/cherd.04203Search in Google Scholar

Dumée LF, Gray S, Duke M, Sears K, Schütz J, Finn N. The role of membrane surface energy on direct contact membrane distillation performance. Desalination 2013; 323: 22–30.10.1016/j.desal.2012.07.012Search in Google Scholar

Ebnesajjad S. Chapter 9 - Plasma treatment of polymeric materials. In: Ebnesajjad S, editor. Surface treatment of materials for adhesive bonding (Second Edition). Oxford: William Andrew Publishing, 2014: 227–269.10.1016/B978-0-323-26435-8.00009-5Search in Google Scholar

Efome JE, Baghbanzadeh M, Rana D, Matsuura T, Lan CQ. Effects of superhydrophobic SiO2 nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation. Desalination 2015; 373: 47–57.10.1016/j.desal.2015.07.002Search in Google Scholar

Erbil HY. The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: a review. Surf Sci Rep 2014; 69: 325–365.10.1016/j.surfrep.2014.09.001Search in Google Scholar

Erbil HY, Demirel AL, Avcı Y, Mert O. Transformation of a simple plastic into a superhydrophobic surface. Science 2003; 299: 1377–1380.10.1126/science.1078365Search in Google Scholar PubMed

Essalhi M, Khayet M. Surface segregation of fluorinated modifying macromolecule for hydrophobic/hydrophilic membrane preparation and application in air gap and direct contact membrane distillation. J Membr Sci 2012; 417–418: 163–173.10.1016/j.memsci.2012.06.028Search in Google Scholar

Fan H, Shi Q, Yan H, Ji S, Dong J, Zhang G. Simultaneous spray self-assembly of highly loaded ZIF-8–PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation. Angew Chem Int Ed 2014; 53: 5578–5582.10.1002/anie.201309534Search in Google Scholar PubMed

Fan X, Liu Y, Quan X, Zhao H, Chen S, Yi G, Du L. High desalination permeability, wetting and fouling resistance on superhydrophobic carbon nanotube hollow fiber membrane under self-powered electrochemical assistance. J Membr Sci 2016; 514: 501–509.10.1016/j.memsci.2016.05.003Search in Google Scholar

Fane AG, Chong TH, Le-Clech P. Fouling in membrane processes. In: Drioli E, Giorno L, editors. Membrane operations. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2009: 121–138.10.1002/9783527626779.ch6Search in Google Scholar

Fang J, Wang H, Wang X, Lin T. Superhydrophobic nanofibre membranes: effects of particulate coating on hydrophobicity and surface properties. J Textile Inst 2011; 103: 937–944.10.1080/00405000.2011.631280Search in Google Scholar

Feng XJ, Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv Mater 2006; 18: 3063–3078.10.1002/adma.200501961Search in Google Scholar

Franco JA, Kentish SE, Perera JM, Stevens GW. Fabrication of a superhydrophobic polypropylene membrane by deposition of a porous crystalline polypropylene coating. J Membr Sci 2008; 318: 107–113.10.1016/j.memsci.2008.02.032Search in Google Scholar

Franco JA, deMontigny D, Kentish SE, Perera JM, Stevens GW. Effect of amine degradation products on the membrane gas absorption process. Chem Eng Sci 2009; 64: 4016–4023.10.1016/j.ces.2009.06.012Search in Google Scholar

Franco JA, Kentish SE, Perera JM, Stevens GW. Poly(tetrafluoroethylene) sputtered polypropylene membranes for carbon dioxide separation in membrane gas absorption. Ind Eng Chem Res 2011a; 50: 4011–4020.10.1021/ie102019uSearch in Google Scholar

Franco JA, deMontigny DD, Kentish SE, Perera JM, Stevens GW. Polytetrafluoroethylene (PTFE)-sputtered polypropylene membranes for carbon dioxide separation in membrane gas absorption: hollow fiber configuration. Ind Eng Chem Res 2011b; 51: 1376–1382.10.1021/ie200335aSearch in Google Scholar

Fu Y-J, Lai C-L, Chen J-T, Liu C-T, Huang S-H, Hung W-S, Hu C-C, Lee K-R. Hydrophobic composite membranes for separating of water–alcohol mixture by pervaporation at high temperature. Chem Eng Sci 2014; 111: 203–210.10.1016/j.ces.2014.02.010Search in Google Scholar

Good RJ. Contact angle, wetting, and adhesion: a critical review. J Adhes Sci Technol 1992; 6: 1269–1302.10.1163/156856192X00629Search in Google Scholar

Goosen MFA, Sablani SS, Al-Hinai H, Al-Obeidani S, Al-Belushi R, Jackson D. Fouling of reverse osmosis and ultrafiltration membranes: a critical review. Sep Sci Technol 2005; 39: 2261–2297.10.1081/SS-120039343Search in Google Scholar

Grosso D. How to exploit the full potential of the dip-coating process to better control film formation. J Mater Chem 2011; 21: 17033–17038.10.1039/c1jm12837jSearch in Google Scholar

Gryta M. Long-term performance of membrane distillation process. J Membr Sci 2005; 265: 153–159.10.1016/j.memsci.2005.04.049Search in Google Scholar

Gryta M. Fouling in direct contact membrane distillation process. J Membr Sci 2008; 325: 383–394.10.1016/j.memsci.2008.08.001Search in Google Scholar

Gu J, Xiao P, Chen J, Liu F, Huang Y, Li G, Zhang J, Chen T. Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-in-oil emulsions. J Mater Chem A 2014; 2: 15268–15272.10.1039/C4TA01603CSearch in Google Scholar

Guo Z, Liu W. Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure. Plant Sci 2007; 172: 1103–1112.10.1016/j.plantsci.2007.03.005Search in Google Scholar

Guo Y, Wang Q. Facile approach in fabricating superhydrophobic coatings from silica-based nanocomposite. Appl Surf Sci 2010; 257: 33–36.10.1016/j.apsusc.2010.06.024Search in Google Scholar

Guo Z, Liu W, Su B-L. Superhydrophobic surfaces: from natural to biomimetic to functional. J Colloid Interface Sci 2011; 353: 335–355.10.1016/j.jcis.2010.08.047Search in Google Scholar

Guo W, Ngo H-H, Li J. A mini-review on membrane fouling. Bioresour Technol 2012; 122: 27–34.10.1016/j.biortech.2012.04.089Search in Google Scholar

Guo H, Ma Y, Qin Z, Gu Z, Cui S, Zhang G. One-step transformation from hierarchical-structured superhydrophilic NF membrane into superhydrophobic OSN membrane with improved antifouling effect. ACS Appl Mater Interfaces 2016; 8: 23379–23388.10.1021/acsami.6b07106Search in Google Scholar

Hamza A, Pham VA, Matsuura T, Santerre JP. Development of membranes with low surface energy to reduce the fouling in ultrafiltration applications. J Membr Sci 1997; 131: 217–227.10.1016/S0376-7388(97)00050-1Search in Google Scholar

Hamzah N, Leo CP. Fouling prevention in the membrane distillation of phenolic-rich solution using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles. Sep Purif Technol 2016; 167: 79–87.10.1016/j.seppur.2016.05.005Search in Google Scholar

Hancer M, Arkaz H. A facile fabrication of superhydrophobic nanocomposite coating with contact angles approaching the theoretical limit. Appl Surf Sci 2015; 354, Part B: 342–346.10.1016/j.apsusc.2015.05.113Search in Google Scholar

Hebbar RS, Isloor AM, Ismail AF. Chapter 12 – Contact angle measurements. In: Hilal N, Ismail AF, Matsuura T, Oatley-Radcliffe D, editors. Membrane characterization. Amsterdam: Elsevier, 2017: 219–255.10.1016/B978-0-444-63776-5.00012-7Search in Google Scholar

Hejazi I, Hajalizadeh B, Seyfi J, Sadeghi GMM, Jafari S-H, Khonakdar HA. Role of nanoparticles in phase separation and final morphology of superhydrophobic polypropylene/zinc oxide nanocomposite surfaces. Appl Surf Sci 2014; 293: 116–123.10.1016/j.apsusc.2013.12.112Search in Google Scholar

Hejazi I, Seyfi J, Hejazi E, Sadeghi GMM, Jafari SH, Khonakdar HA. Investigating the role of surface micro/nano structure in cell adhesion behavior of superhydrophobic polypropylene/nanosilica surfaces. Colloids Surf B 2015; 127: 233–240.10.1016/j.colsurfb.2015.01.054Search in Google Scholar PubMed

Himma NF, Anisah S, Prasetya N, Wenten IG. Advances in preparation, modification, and application of polypropylene membrane. J Polym Eng 2016; 36: 329–362.10.1515/polyeng-2015-0112Search in Google Scholar

Himma NF, Wardani AK, Wenten IG. The effects of non-solvent on surface morphology and hydrophobicity of dip-coated polypropylene membrane. Mater Res Express 2017a; 4: 054001.10.1088/2053-1591/aa6ee0Search in Google Scholar

Himma NF, Wardani AK, Wenten IG. Preparation of superhydrophobic polypropylene membrane using dip-coating method: the effects of solution and process parameters. Polym Plast Technol Eng 2017b; 56: 184–194.10.1080/03602559.2016.1185666Search in Google Scholar

Hu L, Zhang S, Zhang Y, Li B. A flexible nanofiber-based membrane with superhydrophobic pinning properties. J Colloid Interface Sci 2016; 472: 167–172.10.1016/j.jcis.2016.03.056Search in Google Scholar PubMed

Huang M, Si Y, Tang X, Zhu Z, Ding B, Liu L, Zheng G, Luo W, Yu J. Gravity driven separation of emulsified oil-water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. J Mater Chem A 2013; 1: 14071–14074.10.1039/c3ta13385kSearch in Google Scholar

Ji H, Chen G, Hu J, Yang X, Min C, Zhao Y. Fabrication of a stable superhydrophobic polypropylene surface by utilizing acetone as a non-solvent. J Dispersion Sci Technol 2011; 34: 134–139.10.1080/01932691.2011.629518Search in Google Scholar

Ji H, Chen G, Hu J, Wang M, Min C, Zhao Y. Biomimetic superhydrophobic surfaces. J Dispersion Sci Technol 2012; 34: 1–21.10.1080/01932691.2011.646625Search in Google Scholar

Jiang S, Li Y, Ladewig BP. A review of reverse osmosis membrane fouling and control strategies. Sci Total Environ 2017; 595: 567–583.10.1016/j.scitotenv.2017.03.235Search in Google Scholar PubMed

Ju J, Wang T, Wang Q. A facile approach in fabricating superhydrophobic and superoleophilic poly (vinylidene fluoride) membranes for efficient water–oil separation. J Appl Polym Sci 2015; 132: 42077.10.1002/app.42077Search in Google Scholar

Kang M, Jung R, Kim H-S, Jin H-J. Preparation of superhydrophobic polystyrene membranes by electrospinning. Colloids Surf Physicochem Eng Asp 2008; 313–314: 411–414.10.1016/j.colsurfa.2007.04.122Search in Google Scholar

Karoor S, Sirkar KK. Gas absorption studies in microporous hollow fiber membrane modules. Ind Eng Chem Res 1993; 32: 674–684.10.1021/ie00016a014Search in Google Scholar

Khaisri S, deMontigny D, Tontiwachwuthikul P, Jiraratananon R. Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor. Sep Purif Technol 2009; 65: 290–297.10.1016/j.seppur.2008.10.035Search in Google Scholar

Khan WS, Asmatulu R, Ceylan M, Jabbarnia A. Recent progress on conventional and non-conventional electrospinning processes. Fibers Polym 2013; 14: 1235–1247.10.1007/s12221-013-1235-8Search in Google Scholar

Khayet M, Matsuura T. Chapter 1 – introduction to membrane distillation. In: Khayet M, Matsuura T, editors. Membrane distillation. Amsterdam: Elsevier, 2011: 1–16.Search in Google Scholar

Khemakhem M, Khemakhem S, Ben Amar R. Emulsion separation using hydrophobic grafted ceramic membranes by. Colloids Surf Physicochem Eng Asp 2013; 436: 402–407.10.1016/j.colsurfa.2013.05.073Search in Google Scholar

Khoiruddin K, Hakim AN, Wenten IG. Advances in electrodeionization technology for ionic separation-a review. Membr Water Treat 2014a; 5: 87–108.10.12989/mwt.2014.5.2.087Search in Google Scholar

Khoiruddin K, Widiasa IN, Wenten IG. Removal of inorganic contaminants in sugar refining process using electrodeionization. J Food Eng 2014b; 133: 40–45.10.1016/j.jfoodeng.2014.02.015Search in Google Scholar

Khoiruddin K, Ariono D, Subagjo S, Wenten IG. Surface modification of ion-exchange membranes: Methods, characteristics, and performance. J Appl Polym Sci 2017; 134: 45540.10.1002/app.45540Search in Google Scholar

Kim B-S, Harriott P. Critical entry pressure for liquids in hydrophobic membranes. J Colloid Interface Sci 1987; 115: 1–8.10.1016/0021-9797(87)90002-6Search in Google Scholar

Kim SH. Fabrication of superhydrophobic surfaces. J Adhes Sci Technol 2008; 22: 235–250.10.1163/ej.9789004165939.i-496.5Search in Google Scholar

Klaassen R, Feron PHM, Jansen AE. Membrane contactors in industrial applications. Chem Eng Res Des 2005; 83: 234–246.10.1205/cherd.04196Search in Google Scholar

Kota AK, Kwon G, Tuteja A. The design and applications of superomniphobic surfaces. NPG Asia Mater 2014; 6: e109.10.1038/am.2014.34Search in Google Scholar

Krajewski SR, Kujawski W, Bukowska M, Picard C, Larbot A. Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions. J Membr Sci 2006; 281: 253–259.10.1016/j.memsci.2006.03.039Search in Google Scholar

Kujawa J, Cerneaux S, Koter S, Kujawski W. Highly efficient hydrophobic titania ceramic membranes for water desalination. ACS Appl Mater Interfaces 2014; 6: 14223–14230.10.1021/am5035297Search in Google Scholar PubMed

Kujawa J, Cerneaux S, Kujawski W. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. J Membr Sci 2015; 474: 11–19.10.1016/j.memsci.2014.08.054Search in Google Scholar

Kujawski W. Pervaporative removal of organics from water using hydrophobic membranes. Binary mixtures. Sep Sci Technol 2000; 35: 89–108.10.1081/SS-100100145Search in Google Scholar

Kuo C-Y, Lin H-N, Tsai H-A, Wang D-M, Lai J-Y. Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. Desalination 2008; 233: 40–47.10.1016/j.desal.2007.09.025Search in Google Scholar

Kwon G, Kota AK, Li Y, Sohani A, Mabry JM, Tuteja A. On-demand separation of oil-water mixtures. Adv Mater 2012; 24: 3666–3671.10.1002/adma.201201364Search in Google Scholar PubMed

Kwon G, Post E, Tuteja A. Membranes with selective wettability for the separation of oil–water mixtures. MRS Commun 2015; 5: 475–494.10.1557/mrc.2015.61Search in Google Scholar

Lee HJ, Michielsen S. Lotus effect: superhydrophobicity. J Textile Inst 2006; 97: 455–462.10.1533/joti.2006.0271Search in Google Scholar

Lee C, Baik S. Vertically-aligned carbon nano-tube membrane filters with superhydrophobicity and superoleophilicity. Carbon 2010; 48: 2192–2197.10.1016/j.carbon.2010.02.020Search in Google Scholar

Lee SH, Dilworth ZR, Hsiao E, Barnette AL, Marino M, Kim JH, Kang J-G, Jung T-H, Kim SH. One-step production of superhydrophobic coatings on flat substrates via atmospheric Rf plasma process using non-fluorinated hydrocarbons. ACS Appl Mater Interfaces 2011a; 3: 476–481.10.1021/am101052zSearch in Google Scholar PubMed

Lee CH, Johnson N, Drelich J, Yap YK. The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration. Carbon 2011b; 49: 669–676.10.1016/j.carbon.2010.10.016Search in Google Scholar

Lee MW, An S, Latthe SS, Lee C, Hong S, Yoon SS. Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil. ACS Appl Mater Interfaces 2013; 5: 10597–10604.10.1021/am404156kSearch in Google Scholar PubMed

Li X, Chen G, Ma Y, Feng L, Zhao H, Jiang L, Wang F. Preparation of a super-hydrophobic poly(vinyl chloride) surface via solvent–nonsolvent coating. Polymer 2006; 47: 506–509.10.1016/j.polymer.2005.08.097Search in Google Scholar

Li X-M, Reinhoudt D, Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 2007; 36: 1350–1368.10.1039/b602486fSearch in Google Scholar PubMed

Li SF, Qin F, Qin PY, Karim MN, Tan TW. Preparation of PDMS membrane using water as solvent for pervaporation separation of butanol-water mixture. Green Chem 2013; 15: 2180–2190.10.1039/c3gc40291fSearch in Google Scholar

Li J, Wang N, Yan H, Ji S, Zhang G. Designing superhydrophobic surfaces with SAM modification on hierarchical ZIF-8/polymer hybrid membranes for efficient bioalcohol pervaporation. RSC Adv 2014a; 4: 59750–59753.10.1039/C4RA10655ESearch in Google Scholar

Li X, Wang C, Yang Y, Wang X, Zhu M, Hsiao BS. Dual-biomimetic superhydrophobic electrospun polystyrene nanofibrous membranes for membrane distillation. ACS Appl Mater Interfaces 2014b; 6: 2423–2430.10.1021/am4048128Search in Google Scholar PubMed

Li X, Fan X, Brandani S. Difference in pore contact angle and the contact angle measured on a flat surface and in an open space. Chem Eng Sci 2014c; 117: 137–145.10.1016/j.ces.2014.06.024Search in Google Scholar

Li Y, Zhu Z, Yu J, Ding B. Carbon nanotubes enhanced fluorinated polyurethane macroporous membranes for waterproof and breathable application. ACS Appl Mater Interfaces 2015; 7: 13538–13546.10.1021/acsami.5b02848Search in Google Scholar

Li C, Boban M, Snyder SA, Kobaku SPR, Kwon G, Mehta G, Tuteja A. Paper-based surfaces with extreme wettabilities for novel, open-channel microfluidic devices. Adv Funct Mater 2016a; 26: 6121–6131.10.1002/adfm.201601821Search in Google Scholar

Li H, Zhao X, Wu P, Zhang S, Geng B. Facile preparation of superhydrophobic and superoleophilic porous polymer membranes for oil/water separation from a polyarylester polydimethylsiloxane block copolymer. J Mater Sci 2016b; 51: 3211–3218.10.1007/s10853-015-9632-6Search in Google Scholar

Liao Y, Wang R, Tian M, Qiu C, Fane AG. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J Membr Sci 2013a; 425–426: 30–39.10.1016/j.memsci.2012.09.023Search in Google Scholar

Liao Y, Wang R, Fane AG. Engineering superhydrophobic surface on poly(vinylidene fluoride) nanofiber membranes for direct contact membrane distillation. J Membr Sci 2013b; 440: 77–87.10.1016/j.memsci.2013.04.006Search in Google Scholar

Liao Y, Loh C-H, Wang R, Fane AG. Electrospun superhydrophobic membranes with unique structures for membrane distillation. ACS Appl Mater Interfaces 2014a; 6: 16035–16048.10.1021/am503968nSearch in Google Scholar

Liao Y, Wang R, Fane AG. Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation. Environ Sci Technol 2014b; 48: 6335–6341.10.1021/es405795sSearch in Google Scholar

Lin S-H, Tung K-L, Chen W-J, Chang H-W. Absorption of carbon dioxide by mixed piperazine–alkanolamine absorbent in a plasma-modified polypropylene hollow fiber contactor. J Membr Sci 2009; 333: 30–37.10.1016/j.memsci.2009.01.039Search in Google Scholar

Lipnizki F, Hausmanns S, Ten P-K, Field RW, Laufenberg G. Organophilic pervaporation: prospects and performance. Chem Eng J 1999; 73: 113–129.10.1016/S1385-8947(99)00024-8Search in Google Scholar

Liu T, Kim CJ. Turning a surface superrepellent even to completely wetting liquids. Science 2014; 346: 1096–1100.10.1126/science.1254787Search in Google Scholar PubMed

Liu M, Jia Z, Liu F, Jia D, Guo B. Tailoring the wettability of polypropylene surfaces with halloysite nanotubes. J Colloid Interface Sci 2010; 350: 186–193.10.1016/j.jcis.2010.06.047Search in Google Scholar PubMed

Liu X-L, Li Y-S, Zhu G-Q, Ban Y-J, Xu L-Y, Yang W-S. An organophilic pervaporation membrane derived from metal–organic framework nanoparticles for efficient recovery of bio-alcohols. Angew Chem Int Ed 2011a; 50: 10636–10639.10.1002/anie.201104383Search in Google Scholar PubMed

Liu G, Xiangli F, Wei W, Liu S, Jin W. Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a surface graft/coating approach. Chem Eng J 2011b; 174: 495–503.10.1016/j.cej.2011.06.004Search in Google Scholar

Liu S, Liu G, Zhao X, Jin W. Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation. J Membr Sci 2013; 446: 181–188.10.1016/j.memsci.2013.06.025Search in Google Scholar

Liu Z, Wang H, Wang E, Zhang X, Yuan R, Zhu Y. Superhydrophobic poly(vinylidene fluoride) membranes with controllable structure and tunable wettability prepared by one-step electrospinning. Polymer 2016; 82: 105–113.10.1016/j.polymer.2015.11.045Search in Google Scholar

Lu X, Zhang C, Han Y. Low-density polyethylene superhydrophobic surface by control of its crystallization behavior. Macromol Rapid Commun 2004; 25: 1606–1610.10.1002/marc.200400256Search in Google Scholar

Lu J, Yu Y, Zhou J, Song L, Hu X, Larbot A. FAS grafted superhydrophobic ceramic membrane. Appl Surf Sci 2009; 255: 9092–9099.10.1016/j.apsusc.2009.06.112Search in Google Scholar

Lv Y, Yu X, Jia J, Tu S-T, Yan J, Dahlquist E. Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption. Appl Energy 2012a; 90: 167–174.10.1016/j.apenergy.2010.12.038Search in Google Scholar

Lv Y, Yu X, Tu S-T, Yan J, Dahlquist E. Experimental studies on simultaneous removal of CO2 and SO2 in a polypropylene hollow fiber membrane contactor. Appl Energy 2012b; 97: 283–288.10.1016/j.apenergy.2012.01.034Search in Google Scholar

Ma M, Hill RM. Superhydrophobic surfaces. Curr Opin Colloid Interface Sci 2006; 11: 193–202.10.1016/j.cocis.2006.06.002Search in Google Scholar

Maab H, Francis L, Al-saadi A, Aubry C, Ghaffour N, Amy G, Nunes SP. Synthesis and fabrication of nanostructured hydrophobic polyazole membranes for low-energy water recovery. J Membr Sci 2012; 423–424: 11–19.10.1016/j.memsci.2012.07.009Search in Google Scholar

Madaeni SS, Zinadini S, Vatanpour V. Preparation of superhydrophobic nanofiltration membrane by embedding multiwalled carbon nanotube and polydimethylsiloxane in pores of microfiltration membrane. Sep Purif Technol 2013; 111: 98–107.10.1016/j.seppur.2013.03.033Search in Google Scholar

Mansourizadeh A, Ismail AF. Hollow fiber gas–liquid membrane contactors for acid gas capture: a review. J Hazard Mater 2009; 171: 38–53.10.1016/j.jhazmat.2009.06.026Search in Google Scholar PubMed

Mansourizadeh A, Aslmahdavi Z, Ismail AF, Matsuura T. Blend polyvinylidene fluoride/surface modifying macromolecule hollow fiber membrane contactors for CO2 absorption. Int J Greenhouse Gas Control 2014; 26: 83–92.10.1016/j.ijggc.2014.04.027Search in Google Scholar

Meng S, Ye Y, Mansouri J, Chen V. Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation. J Membr Sci 2014; 463: 102–112.10.1016/j.memsci.2014.03.027Search in Google Scholar

Milne AJB, Amirfazli A. The Cassie equation: how it is meant to be used. Adv Colloid Interface Sci 2012; 170: 48–55.10.1016/j.cis.2011.12.001Search in Google Scholar PubMed

Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 2000; 16: 5754–5760.10.1021/la991660oSearch in Google Scholar

Momen G, Farzaneh M. A ZnO-based nanocomposite coating with ultra water repellent properties. Appl Surf Sci 2012; 258: 5723–5728.10.1016/j.apsusc.2012.02.074Search in Google Scholar

Mosadegh-Sedghi S, Rodrigue D, Brisson J, Iliuta MC. Wetting phenomenon in membrane contactors – causes and prevention. J Membr Sci 2014; 452: 332–353.10.1016/j.memsci.2013.09.055Search in Google Scholar

Motlagh NV, Birjandi FCh, Sargolzaei J. Super-non-wettable surfaces: a review. Colloids Surf Physicochem Eng Asp 2014; 448: 93–106.10.1016/j.colsurfa.2014.02.016Search in Google Scholar

Munirasu S, Banat F, Durrani AA, Haija MA. Intrinsically superhydrophobic PVDF membrane by phase inversion for membrane distillation. Desalination 2017; 417: 77–86.10.1016/j.desal.2017.05.019Search in Google Scholar

Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 1997; 79: 667–677.10.1006/anbo.1997.0400Search in Google Scholar

Nishikawa N, Ishibashi M, Ohta H, Akutsu N, Matsumoto H, Kamata T, Kitamura H. CO2 removal by hollow-fiber gas-liquid contactor. Energy Convers Manage 1995; 36: 415–418.10.1016/0196-8904(95)00033-ASearch in Google Scholar

Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y. The lowest surface free energy based on − CF3 alignment. Langmuir 1999; 15: 4321–4323.10.1021/la981727sSearch in Google Scholar

Oliveira SM, Alves NM, Mano JF. Cell interactions with superhydrophilic and superhydrophobic surfaces. J Adhes Sci Technol 2012; 28: 843–863.10.1080/01694243.2012.697776Search in Google Scholar

Park EJ, Kim DH, Lee JH, Ha S, Song C, Kim YD. Fabrication of a superhydrophobic and oleophobic PTFE membrane: an application to selective gas permeation. Mater Res Bull 2016; 83: 88–95.10.1016/j.materresbull.2016.05.022Search in Google Scholar

Patel SU, Chase GG. Separation of water droplets from water-in-diesel dispersion using superhydrophobic polypropylene fibrous membranes. Sep Purif Technol 2014; 126: 62–68.10.1016/j.seppur.2014.02.009Search in Google Scholar

Patel SU, Patel SU, Chase GG. Electrospun superhydrophobic poly(vinylidene fluoride-co-hexafluoropropylene) fibrous membranes for the separation of dispersed water from ultralow sulfur diesel. Energy Fuels 2013; 27: 2458–2464.10.1021/ef400248cSearch in Google Scholar

Peng Y, Fan H, Dong Y, Song Y, Han H. Effects of exposure time on variations in the structure and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation. Appl Surf Sci 2012a; 258: 7872–7881.10.1016/j.apsusc.2012.04.108Search in Google Scholar

Peng Y, Fan H, Ge J, Wang S, Chen P, Jiang Q. The effects of processing conditions on the surface morphology and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation. Appl Surf Sci 2012b; 263: 737–744.10.1016/j.apsusc.2012.09.152Search in Google Scholar

Purwasasmita M, Juwono PB, Karlina AM, Khoiruddin K, Wenten IG. Non-dissolved solids removal during palm kernel oil ultrafiltration. Reaktor 2013; 14: 284–290.10.14710/reaktor.14.4.284-290Search in Google Scholar

Purwasasmita M, Kurnia D, Mandias FC, Khoiruddin K, Wenten IG. Beer dealcoholization using non-porous membrane distillation. Food Bioprod Process 2015; 94: 180–186.10.1016/j.fbp.2015.03.001Search in Google Scholar

Qing Y-Q, Yang C-N, Shang Y, Sun Y-Z, Liu C-S. Facile approach in fabricating hybrid superhydrophobic fluorinated polymethylhydrosiloxane/TiO2 nanocomposite coatings. Colloid Polym Sci 2015; 293: 1809–1816.10.1007/s00396-015-3570-3Search in Google Scholar

Quéré D. Wetting and roughness. Annu Rev Mater Res 2008; 38: 71–99.10.1146/annurev.matsci.38.060407.132434Search in Google Scholar

Rahbari-Sisakht M, Ismail AF, Rana D, Matsuura T. Effect of novel surface modifying macromolecules on morphology and performance of Polysulfone hollow fiber membrane contactor for CO2 absorption. Sep Purif Technol 2012a; 99: 61–68.10.1016/j.seppur.2012.08.021Search in Google Scholar

Rahbari-Sisakht M, Ismail AF, Rana D, Matsuura T. A novel surface modified polyvinylidene fluoride hollow fiber membrane contactor for CO2 absorption. J Membr Sci 2012b; 415–416: 221–228.10.1016/j.memsci.2012.05.002Search in Google Scholar

Rana D, Matsuura T. Surface modifications for antifouling membranes. Chem Rev 2010; 110: 2448–2471.10.1021/cr800208ySearch in Google Scholar

Rangwala HA. Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors. J Membr Sci 1996; 112: 229–240.10.1016/0376-7388(95)00293-6Search in Google Scholar

Razmjou A, Arifin E, Dong G, Mansouri J, Chen V. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J Membr Sci 2012; 415–416: 850–863.10.1016/j.memsci.2012.06.004Search in Google Scholar

Ren L-F, Xia F, Shao J, Zhang X, Li J. Experimental investigation of the effect of electrospinning parameters on properties of superhydrophobic PDMS/PMMA membrane and its application in membrane distillation. Desalination 2017; 404: 155–166.10.1016/j.desal.2016.11.023Search in Google Scholar

Rezaei M, Ismail AF, Hashemifard SA, Bakeri G, Matsuura T. Experimental study on the performance and long-term stability of PVDF/montmorillonite hollow fiber mixed matrix membranes for CO2 separation process. Int J Greenhouse Gas Control 2014a; 26: 147–157.10.1016/j.ijggc.2014.04.021Search in Google Scholar

Rezaei S, Manoucheri I, Moradian R, Pourabbas B. One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication. Chem Eng J 2014b; 252: 11–16.10.1016/j.cej.2014.04.100Search in Google Scholar

Rezaei M, Ismail AF, Bakeri G, Hashemifard SA, Matsuura T. Effect of general montmorillonite and Cloisite 15A on structural parameters and performance of mixed matrix membranes contactor for CO2 absorption. Chem Eng J 2015; 260: 875–885.10.1016/j.cej.2014.09.027Search in Google Scholar

Rezaei-DashtArzhandi M, Ismail AF, Bakeri G, Hashemifard SA, Matsuura T. Effect of hydrophobic montmorillonite (MMT) on PVDF and PEI hollow fiber membranes in gas–liquid contacting process: a comparative study. RSC Adv 2015; 5: 103811–103821.10.1039/C5RA21754GSearch in Google Scholar

Rioboo R, Voué M, Vaillant A, Seveno D, Conti J, Bondar AI, Ivanov DA, De Coninck J. Superhydrophobic surfaces from various polypropylenes. Langmuir 2008; 24: 9508–9514.10.1021/la801283jSearch in Google Scholar PubMed

Roach P, Shirtcliffe NJ, Newton MI. Progess in superhydrophobic surface development. Soft Matter 2008; 4: 224–240.10.1039/B712575PSearch in Google Scholar

Sarkar MK, Bal K, He F, Fan J. Design of an outstanding super-hydrophobic surface by electro-spinning. Appl Surf Sci 2011; 257: 7003–7009.10.1016/j.apsusc.2011.03.057Search in Google Scholar

Sas I, Gorga RE, Joines JA, Thoney KA. Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning. J Polym Sci Part B Polym Phys 2012; 50: 824–845.10.1002/polb.23070Search in Google Scholar

Seyfi J, Hejazi I, Jafari S-H, Khonakdar HA, Mohamad Sadeghi GM, Calvimontes A, Simon F. On the combined use of nanoparticles and a proper solvent/non-solvent system in preparation of superhydrophobic polymer coatings. Polymer 2015; 56: 358–367.10.1016/j.polymer.2014.11.047Search in Google Scholar

Shan L, Fan H, Guo H, Ji S, Zhang G. Natural organic matter fouling behaviors on superwetting nanofiltration membranes. Water Res 2016; 93: 121–132.10.1016/j.watres.2016.01.054Search in Google Scholar PubMed

Shang YW, Si Y, Raza A, Yang LP, Mao X, Ding B, Yu JY. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation. Nanoscale 2012; 4: 7847–7854.10.1039/c2nr33063fSearch in Google Scholar

Sheikholeslami R. Fouling mitigation in membrane processes: report on a workshop held January 26–29, 1999, Technion – Israel Institute of Technology, Haifa, Israel. Desalination 1999; 123: 45–53.10.1016/S0011-9164(99)00058-2Search in Google Scholar

Shirtcliffe NJ, McHale G, Atherton S, Newton MI. An introduction to superhydrophobicity. Adv Colloid Interface Sci 2010; 161: 124–138.10.1016/j.cis.2009.11.001Search in Google Scholar

Si Y, Guo Z. Superwetting materials of oil-water emulsion separation. Chem Lett 2015; 44: 874–883.10.1246/cl.150223Search in Google Scholar

Song K-H, Lee K-R. Pervaporation of flavors with hydrophobic membrane. Korean J Chem Eng 2005; 22: 735–739.10.1007/BF02705791Search in Google Scholar

Song K-H, Song J-H, Lee K-R. Vapor permeation of ethyl acetate, propyl acetate, and butyl acetate with hydrophobic inorganic membrane. Sep Purif Technol 2003; 30: 169–176.10.1016/S1383-5866(02)00140-5Search in Google Scholar

Song K-H, Lee K-R, Rim J-M. Pervaporation of esters with hydrophobic membrane. Korean J Chem Eng 2004; 21: 693–698.10.1007/BF02705507Search in Google Scholar

Song W, Lima AC, Mano JF. Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates. Soft Matter 2010; 6: 5868–5871.10.1039/c0sm00901fSearch in Google Scholar

Song W, Oliveira MB, Sher P, Gil S, Nóbrega JM, Mano JF. Bioinspired methodology for preparing magnetic responsive chitosan beads to be integrated in a tubular bioreactor for biomedical applications. Biomed Mater 2013; 8: 045008.10.1088/1748-6041/8/4/045008Search in Google Scholar PubMed

Su C, Xu Y, Zhang W, Liu Y, Li J. Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water. Appl Surf Sci 2012; 258: 2319–2323.10.1016/j.apsusc.2011.10.005Search in Google Scholar

Suk DE, Matsuura T, Park HB, Lee YM. Development of novel surface modified phase inversion membranes having hydrophobic surface-modifying macromolecule (nSMM) for vacuum membrane distillation. Desalination 2010; 261: 300–312.10.1016/j.desal.2010.06.058Search in Google Scholar

Sun X. Effects of the based membrane on the hydrophobicity of super-hydrophobic PES membrane and its structural properties. Mod Appl Sci 2010; 4: 71.10.5539/mas.v4n2p71Search in Google Scholar

Tanasescu S, Yáng Z, Martynczuk J, Varazashvili V, Maxim F, Teodorescu F, Botea A, Totir N, Gauckler LJ. Effects of A-site composition and oxygen nonstoichiometry on the thermodynamic stability of compounds in the Ba–Sr–Co–Fe–O system. J Solid State Chem 2013; 200: 354–362.10.1016/j.jssc.2013.01.030Search in Google Scholar

Tang XM, Si Y, Ge JL, Ding B, Liu LF, Zheng G, Luo WJ, Yu JY. In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil-water separation. Nanoscale 2013; 5: 11657–11664.10.1039/c3nr03937dSearch in Google Scholar PubMed

Taurino R, Fabbri E, Messori M, Pilati F, Pospiech D, Synytska A. Facile preparation of superhydrophobic coatings by sol–gel processes. J Colloid Interface Sci 2008; 325: 149–156.10.1016/j.jcis.2008.05.007Search in Google Scholar PubMed

Tian M, Yin Y, Yang C, Zhao B, Song J, Liu J, Li X-M, He T. CF4 plasma modified highly interconnective porous polysulfone membranes for direct contact membrane distillation (DCMD). Desalination 2015; 369: 105–114.10.1016/j.desal.2015.05.002Search in Google Scholar

Tijing LD, Choi J-S, Lee S, Kim S-H, Shon HK. Recent progress of membrane distillation using electrospun nanofibrous membrane. J Membr Sci 2014; 453: 435–462.10.1016/j.memsci.2013.11.022Search in Google Scholar

Tijing LD, Woo YC, Choi J-S, Lee S, Kim S-H, Shon HK. Fouling and its control in membrane distillation – a review. J Membr Sci 2015; 475: 215–244.10.1016/j.memsci.2014.09.042Search in Google Scholar

Tijing LD, Woo YC, Shim W-G, He T, Choi J-S, Kim S-H, Shon HK. Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation. J Membr Sci 2016; 502: 158–170.10.1016/j.memsci.2015.12.014Search in Google Scholar

Tres MV, Ferraz HC, Dallago RM, Di Luccio M, Oliveira JV. Characterization of polymeric membranes used in vegetable oil/organic solvents separation. J Membr Sci 2010; 362: 495–500.10.1016/j.memsci.2010.07.011Search in Google Scholar

Tur E, Onal-Ulusoy B, Akdogan E, Mutlu M. Surface modification of polyethersulfone membrane to improve its hydrophobic characteristics for waste frying oil filtration: radio frequency plasma treatment. J Appl Polym Sci 2012; 123: 3402–3411.10.1002/app.34400Search in Google Scholar

Ulbricht M. Advanced functional polymer membranes. Polymer 2006; 47: 2217–2262.10.1016/j.polymer.2006.01.084Search in Google Scholar

Vandezande P. Next-generation pervaporation membranes: recent trends, challenges and perspectives. In: Basile A, Figoli A, Khayet M, editors. Pervaporation, vapour permeation and membrane distillation. Oxford: Woodhead Publishing, 2015: 107–141.10.1016/B978-1-78242-246-4.00005-2Search in Google Scholar

Wang R, Zhang HY, Feron PHM, Liang DT. Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Sep Purif Technol 2005; 46: 33–40.10.1016/j.seppur.2005.04.007Search in Google Scholar

Wang S, Li Y, Fei X, Sun M, Zhang C, Li Y, Yang Q, Hong X. Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy–siloxane modified SiO2 nanoparticles: a possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle. J Colloid Interface Sci 2011; 359: 380–388.10.1016/j.jcis.2011.04.004Search in Google Scholar PubMed

Wang L, Zhang Z, Zhao B, Zhang H, Lu X, Yang Q. Effect of long-term operation on the performance of polypropylene and polyvinylidene fluoride membrane contactors for CO2 absorption. Sep Purif Technol 2013; 116: 300–306.10.1016/j.seppur.2013.05.051Search in Google Scholar

Wang F, Li J, Zhu H, Zhang H, Tang H, Chen J, Guo Y. Physical modification of polytetrafluoroethylene flat membrane by a simple heat setting process and membrane wetting remission in SGMD for desalination. Desalination 2014; 354: 143–152.10.1016/j.desal.2014.09.030Search in Google Scholar

Wang N, Shi G, Gao J, Li J, Wang L, Guo H, Zhang G, Ji S. MCM-41@ZIF-8/PDMS hybrid membranes with micro- and nanoscaled hierarchical structure for alcohol permselective pervaporation. Sep Purif Technol 2015; 153: 146–155.10.1016/j.seppur.2015.09.004Search in Google Scholar

Wang X, Chen J, Fang M, Wang T, Yu L, Li J. ZIF-7/PDMS mixed matrix membranes for pervaporation recovery of butanol from aqueous solution. Sep Purif Technol 2016; 163: 39–47.10.1016/j.seppur.2016.02.040Search in Google Scholar

Wang Z, Tang Y, Li B. Excellent wetting resistance and anti-fouling performance of PVDF membrane modified with superhydrophobic papillae-like surfaces. J Membr Sci 2017; 540: 401–410.10.1016/j.memsci.2017.06.073Search in Google Scholar

Wardani AK, Hakim AN, Khoiruddin K, Wenten IG. Combined ultrafiltration-electrodeionization technique for production of high purity water. Water Sci Technol 2017; 75: 2891–2899.10.2166/wst.2017.173Search in Google Scholar

Warsinger DM, Servi A, Van Belleghem S, Gonzalez J, Swaminathan J, Kharraz J, Chung HW, Arafat HA, Gleason KK, Lienhard V JH. Combining air recharging and membrane superhydrophobicity for fouling prevention in membrane distillation. J Membr Sci 2016; 505: 241–252.10.1016/j.memsci.2016.01.018Search in Google Scholar

Wei X, Zhao B, Li X-M, Wang Z, He B-Q, He T, Jiang B. CF4 plasma surface modification of asymmetric hydrophilic polyethersulfone membranes for direct contact membrane distillation. J Membr Sci 2012; 407–408: 164–175.10.1016/j.memsci.2012.03.031Search in Google Scholar

Wenten IG, Widiasa IN. Enzymatic hollow fiber membrane bioreactor for penicilin hydrolysis. Desalination 2002; 149: 279–285.10.1016/S0011-9164(02)00789-0Search in Google Scholar

Wenten IG, Khoiruddin K. Recent developments in heterogeneous ion-exchange membrane: preparation, modification, characterization and performance evaluation. J Eng Sci Technol 2016a; 11: 916–934.Search in Google Scholar

Wenten IG, Khoiruddin K. Reverse osmosis applications: prospect and challenges. Desalination 2016b; 391: 112–125.10.1016/j.desal.2015.12.011Search in Google Scholar

Wenten IG, Julian H, Panjaitan NT. Ozonation through ceramic membrane contactor for iodide oxidation during iodine recovery from brine water. Desalination 2012; 306: 29–34.10.1016/j.desal.2012.08.032Search in Google Scholar

Wenten IG, Khoiruddin K, Himma NF. Membrane-based carbon capture technology: Challenges and opportunities in Indonesia. Adv Sci Lett 2017; 23: 5768–5771.10.1166/asl.2017.8827Search in Google Scholar

Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem 1936; 28: 988–994.10.1021/ie50320a024Search in Google Scholar

West JOF, Critchlow GW, Lake DR, Banks R. Development of a superhydrophobic polyurethane-based coating from a two-step plasma-fluoroalkyl silane treatment. Int J Adhes Adhes 2016; 68: 195–204.10.1016/j.ijadhadh.2016.03.007Search in Google Scholar

Wongchitphimon S, Wang R, Jiraratananon R. Surface modification of polyvinylidene fluoride-co-hexafluoropropylene (PVDF–HFP) hollow fiber membrane for membrane gas absorption. J Membr Sci 2011; 381: 183–191.10.1016/j.memsci.2011.07.022Search in Google Scholar

Xu Y, Yan X-T. Chemical vapour deposition. London: Springer, 2010.10.1007/978-1-84882-894-0Search in Google Scholar

Xu Z, Liu Z, Song P, Xiao C. Fabrication of super-hydrophobic polypropylene hollow fiber membrane and its application in membrane distillation. Desalination 2017; 414: 10–17.10.1016/j.desal.2017.03.029Search in Google Scholar

Xue C-H, Jia S-T, Zhang J, Ma J-Z. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Sci Technol Adv Mater 2010; 11: 033002.10.1088/1468-6996/11/3/033002Search in Google Scholar PubMed PubMed Central

Yang Y-F, Wan L-S, Xu Z-K. Surface engineering of microporous polypropylene membrane for antifouling: a mini-review. J Adhes Sci Technol 2011; 25: 245–260.10.1163/016942410X520835Search in Google Scholar

Yang C, Li X-M, Gilron J, Kong D-F, Yin Y, Oren Y, Linder C, He T. CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. J Membr Sci 2014; 456: 155–161.10.1016/j.memsci.2014.01.013Search in Google Scholar

Yang C, Tian M, Xie Y, Li X-M, Zhao B, He T, Liu J. Effective evaporation of CF4 plasma modified PVDF membranes in direct contact membrane distillation. J Membr Sci 2015; 482: 25–32.10.1016/j.memsci.2015.01.059Search in Google Scholar

Young T. An essay on the cohesion of fluids. Philos Trans R Soc Lond 1805; 95: 65–87.Search in Google Scholar

Youngblood JP, McCarthy TJ. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma. Macromolecules 1999; 32: 6800–6806.10.1021/ma9903456Search in Google Scholar

Yu X, An L, Yang J, Tu S-T, Yan J. CO2 capture using a superhydrophobic ceramic membrane contactor. J Membr Sci 2015; 496: 1–12.10.1016/j.memsci.2015.08.062Search in Google Scholar

Yu HB, Li RF. Preparation and properties of biomimetic superhydrophobic composite coating. Surf Eng 2016; 32: 79–84.10.1179/1743294414Y.0000000301Search in Google Scholar

Yuan Z, Chen H, Tang J, Chen X, Zhao D, Wang Z. Facile method to fabricate stable superhydrophobic polystyrene surface by adding ethanol. Surf Coat Technol 2007; 201: 7138–7142.10.1016/j.surfcoat.2007.01.021Search in Google Scholar

Zhang Y, Wang R. Novel method for incorporating hydrophobic silica nanoparticles on polyetherimide hollow fiber membranes for CO2 absorption in a gas–liquid membrane contactor. J Membr Sci 2014; 452: 379–389.10.1016/j.memsci.2013.10.011Search in Google Scholar

Zhang X, Shi F, Niu J, Jiang Y, Wang Z. Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 2008a; 18: 621–633.10.1039/B711226BSearch in Google Scholar

Zhang H-Y, Wang R, Liang DT, Tay JH. Theoretical and experimental studies of membrane wetting in the membrane gas–liquid contacting process for CO2 absorption. J Membr Sci 2008b; 308: 162–170.10.1016/j.memsci.2007.09.050Search in Google Scholar

Zhang Y, Wang R, Zhang L, Fane AG. Novel single-step hydrophobic modification of polymeric hollow fiber membranes containing imide groups: its potential for membrane contactor application. Sep Purif Technol 2012; 101: 76–84.10.1016/j.seppur.2012.09.009Search in Google Scholar

Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L. Superhydrophobic and superoleophilic pvdf membranes for effective separation of water-in-oil emulsions with high flux. Adv Mater 2013a; 25: 2071–2076.10.1002/adma.201204520Search in Google Scholar PubMed

Zhang J, Song Z, Li B, Wang Q, Wang S. Fabrication and characterization of superhydrophobic poly (vinylidene fluoride) membrane for direct contact membrane distillation. Desalination 2013b; 324: 1–9.10.1016/j.desal.2013.05.018Search in Google Scholar

Zhang B, Liu L, Xie S, Shen F, Yan H, Wu H, Wan Y, Yu M, Ma H, Li L, Li J. Built-up superhydrophobic composite membrane with carbon nanotubes for water desalination. RSC Adv 2014; 4: 16561–16566.10.1039/c3ra47436dSearch in Google Scholar

Zhang G, Li J, Wang N, Fan H, Zhang R, Zhang G, Ji S. Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles. J Membr Sci 2015; 492: 322–330.10.1016/j.memsci.2015.05.070Search in Google Scholar

Zhang W, Li Y, Liu J, Li B, Wang S. Fabrication of hierarchical poly (vinylidene fluoride) micro/nano-composite membrane with anti-fouling property for membrane distillation. J Membr Sci 2017; 535: 258–267.10.1016/j.memsci.2017.04.051Search in Google Scholar

Zhao XD, Xu GQ, Liu XY. Superhydrophobic surfaces: beyond lotus effect. In: Liu XY, editor. Bioinspiration. New York, NY: Springer, 2012: 331–378.10.1007/978-1-4614-5372-7_9Search in Google Scholar

Zhao X, Chen W, Su Y, Zhu W, Peng J, Jiang Z, Kong L, Li Y, Liu J. Hierarchically engineered membrane surfaces with superior antifouling and self-cleaning properties. J Membr Sci 2013; 441: 93–101.10.1016/j.memsci.2013.04.012Search in Google Scholar

Zheng Z, Gu Z, Huo R, Ye Y. Superhydrophobicity of polyvinylidene fluoride membrane fabricated by chemical vapor deposition from solution. Appl Surf Sci 2009; 255: 7263–7267.10.1016/j.apsusc.2009.03.084Search in Google Scholar

Zhou H, Shi R, Jin W. Novel organic–inorganic pervaporation membrane with a superhydrophobic surface for the separation of ethanol from an aqueous solution. Sep Purif Technol 2014; 127: 61–69.10.1016/j.seppur.2014.02.032Search in Google Scholar

Zhu H, Guo Z. Understanding the separations of oil/water mixtures from immiscible to emulsions on super-wettable surfaces. J Bionic Eng 2016; 13: 1–29.10.1016/S1672-6529(14)60156-6Search in Google Scholar

Zhu Y, Wang D, Jiang L, Jin J. Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater 2014; 6: e101.10.1038/am.2014.23Search in Google Scholar

Received: 2017-05-08
Accepted: 2017-11-24
Published Online: 2018-01-17
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2017-0030/html
Scroll to top button