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Abstract: Functionalized graphene-based nanocompo-
sites have opened new windows to address some
challenges for increasing the sensitivity, accuracy and
functionality of biosensors. Polyaniline (PANI) is one of
the most potentially promising and technologically
important conducting polymers, which brings together
the electrical features of metals with intriguing proper-
ties of plastics including facile processing and control-
lable chemical and physical properties. PANI/graphene
nanocomposites have attracted intense interest in
various fields due to unique physicochemical properties
including high conductivity, facile preparation and
intriguing redox behavior. In this article, a functiona-
lized graphene-grafted nanostructured PANI nanocom-
posite was applied for determining the ascorbic acid
(AA) level. A significant current response was observed
after treating the electrode surface with methacrylated
graphene oxide (MeGO)/PANI nanocomposite. The am-
perometric responses showed a robust linear range of
8–5,000 µM and detection limit of 2 µM (N = 5). Excellent
sensor selectivity was demonstrated in the presence of

electroactive components interfering species, commonly
found in real serum samples. This sensor is a promising
candidate for rapid and selective determination of AA.
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1 Introduction

Biosensors have attracted much attention due to their
unique properties such as simple procedure, easy
production, fast response and cost efficiency [1–3].
Polyaniline (PANI) is a semi-flexible conducting polymer
of the organic semiconductor family [4], which has
attracted intensive interest as a result of remarkable
features including superior conductivity [5], environ-
mental stability [6], intriguing redox process [7] and
inexpensive starting material [8]. In multidisciplinary
areas, various applications for PANI have been reported
such as biosensors, supercapacitors, biofuel cells,
actuators, corrosion protection, membranes, solar cell
devices, and rechargeable batteries [4,9–12]. Tunable
properties, good processability (facile synthesis process),
affordability, suitable electrochemical and environ-
mental stability, strong bimolecular interactions and
intriguing acid/base and doping/dedoping properties
have made PANI a promising polymer among inherently
conducting polymers [10].

Graphene, a single layer of carbon atoms with sp2

chemical bonds, is the base for all nanoscale carbon
materials such as fluorine bucky balls and carbon
nanotubes (CNTs) [13–20]. Simple production proce-
dures in comparison with other carbon nanomaterials
and several properties, including zero band gap, high
conductivity, flexibility, exceptional chemical stability,
extremely wide porous structure, high specific surface
area, high mobility of charge carriers and cost efficiency,
make the graphene a promising nanomaterial for the
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next era [21]. Graphene-based materials have been
extensively used in biosensor applications due to their
exceptional electrical, electrochemical and optical char-
acteristics [22,23].

Nanocomposites have attracted much attention due to
their exceptional properties [17,24–41]. Mechanical perfor-
mance and electrical conductivity are the main character-
istics that are developed with the combination of various
materials into a nanocomposite [42–46]. Recently, con-
ductive nanocomposites have captured the great interest
in bioelectronics and biosensing fields [47]. Among them,
graphene-grafted PANI nanocomposites are valuable
owing to their excellent characteristics [48–50]. Combina-
tion of conducting polymers into a conductive nanos-
tructure enhances the capacity, sensitivity, selectivity and
electrical conductivity depending on the preparation
methods and morphology. There are π-conjugated elec-
trons in both graphene and PANI. These composites
possessed several features including enhanced mechan-
ical strength and excellent electrical conductivity [51].
Also, graphene-grafted PANI nanocomposites are utilized
for preparing the electrode substrates. Recently, graphene-
grafted PANI nanocomposites with excellent electroche-
mical characteristics and great conductivity have been
utilized for numerous purposes such as biosensors, energy
storage tools and electrochemical devices [6].

Ascorbic acid (AA), a reducing agent and successful
antioxidant, plays some roles in preventing radical-
induced ailments such as tumors and neurodegenerative
[14,52]. The deficiency of AA can cause scrubbing,
whereas its overdose can lead to stomach cramps and
diarrhea [53]. The determination of AA levels is critical
for diagnosis of food ingredients. There is a crucial
necessity for determining AA level for healthcare and
food quality/security due to the healthiness and in-
dustrial worth of AA and its low dose in biological and
food samples [52].

Electrochemical methods have established rapid and
low-cost performance as well as fast response with high
selectivity, stability and sensitivity in determining some
biomolecules and analytes [54]. Nanostructured compo-
sites such as palladium (Pd) nanowire-modified gra-
phene [55], multiwall CNTs dispersed in polyhistidine
[56], Fe3O4@gold (Au)-loaded graphene [57] and ZnO
nanowire on hierarchical graphene [58] were reported
for developing the sensitivity and selectivity of AA.
Moreover, other nanocomposites including graphene-
grafted PANI [52], graphene-supported platinum (Pt)
nanoparticles [59], over-oxidized polypyrrole, PdNPs/Au
[60] and 3D graphene foam CuO nanoflowers [61] have
been exploited for determining AA.

Our group previously synthesized NFG/AgNPs/PANI
for AA biosensing, which was more complex and
expensive [52]. Moreover, we synthesized methacrylated
graphene oxide (MeGO)/PANI nanocomposite and char-
acterized it by physiochemical and electrochemical tests
[6]. In this study, a simpler nanocomposite based on
MeGO-grafted PANI is applied as electrochemical bio-
sensor that has several benefits including cost efficiency,
high sensitivity and good selectivity over AA determina-
tion. The linear range and detection limit of the sensing
device are 8–5,000 and 2 µM, respectively. This platform
shows the excellent stability over electroactive
compounds.

2 Materials and methods

2.1 Chemicals

The potassium ferricyanide (K3Fe(CN)6), potassium
permanganate (KMnO4), sulfuric acid (H2SO4), potas-
sium nitrate (KNO3), sodium nitrate (NaNO3) and
graphite fine powder (spectroscopic grade, particle size
≤50 µm) were obtained from Merck. Aniline (99%),
dimethylformamide, phosphate-buffered saline (PBS),
N-hydroxysuccinimide and 1-ethyl-3-(3-dimethylamino-
propyl) carbodiimide hydrochloride were purchased
from Sigma.

2.2 Synthesis of MeGO

Graphite oxide was synthesized via the modified
Hummer method [62]. Then, MeGO nanomaterials were
prepared based on our previous studies [21,49].

2.3 MeGO-grafted FTO electrode

For preparing the amended electrode substrate, FTO
glass plates (8 resistance) with the surface area of
0.25 cm2 were provided and sequential ultrasonic
cleaning was performed for 10min in isopropanol,
ethanol, acetone and deionized (DI) water. Under Ar
gas flow, the FTO sheets were dried. Then, MeGO
suspended in DI was deposited (20, 30 and 40 µL) on
the FTO surface by the cast coating method, and it was
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allowed to dry at 45°C, and the optimum volume was
selected (40 µL).

2.4 Electropolymerization of aniline

Electropolymerization of PANI on the electrode surface
was established according to our previous study [6].
Briefly, electrodepositing PANI on the MeGO-grafted FTO
was initiated with 20 successive cyclic voltammograms
(CVs) in a solution consisting of 0.03 M aniline
monomer. Then, 0.5 M H2SO4 was applied on the
electrode surface.

3 Results and discussion

Transmission electron microscopy (TEM) and field
emission scanning electron microscopy (FESEM) tests
were applied for investigating the morphology, topo-
graphy and uniformity of the functionalized MeGO and
MeGO/PANI nanocomposite. Figure 1a depicts the TEM
image demonstrating a very thin layer of MeGO. The
MeGO synthesized in this research was more transparent
and uniform in comparison with previous works [63].
Based on previous results, the graphene nanosheets with
excellent transparency had flake-like shapes and wrin-
kles and were more stable upon the exposure to the
electron beam.

Figure 1b shows the microstructure of MeGO/PANI
sample by the FESEM analysis. A porous structure was

observed after electropolymerization of PANI on the
MeGO surface. The forming of the pellet/flake-like
microstructure and variations in the topography and
morphology of the MeGO substrate corroborated the
formation of PANI on the surface (Figure 1b). Clearly, the
black regions and transparent edges were ascribed to
PANI and MeGO nanosheets in MeGO/PANI nanocompo-
site, respectively. AA, an important factor for the
synthesis and maintenance of collagen in tissue regen-
eration [64], was tested on our biosensor to assess its
performance. CVs of the electrode modified with MeGO/
PANI nanocomposites were conducted in the absence
and the presence of AA (Figure 2). The results showed
the highest catalytic effect for the AA solution.

To obtain the reaction mechanism of AA with the
electrode surface, the changes in the oxidation peak of
AA in the nanocomposite electrode were examined at

Figure 1: The morphology and uniformity of the amended electrodes: (a) TEM and (b) FESEM images of the MeGO and pellet/flake-like
MeGO/PANI, respectively.

Figure 2: CVs of (a) MeGO/PANI in 0.02M PBS without AA and
(b) with 10 mM AA at the scan rate of 100mV s−1.
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different scan rates. The increase of scan rates from 10 to
700mV s−1 slightly changed the oxidation peak poten-
tials (Figure 3). AA oxidation peak current versus scan
rate ½ with higher regression coefficient is linear. This
indicates that the reaction mechanisms of AA with the
electrode surface follow the diffusion mechanism. More-
over, the peak potential shifts to more positive potential
with the increasing scan rate, which is another sign for
the diffusion mechanism of AA on the electrode surface.
Oxidation peak potential of AA catalysis was selected for
chronoamperometry techniques to obtain the linear
range of the sensor.

Successive aliquots of increasing concentrations of
AA were tested on the sensor to obtain amperometric
responses of the nanocomposite-modified electrodes.
The electrode shows amperometric responses propor-
tional to the AA concentration. The MeGO/PANI elec-
trode demonstrates higher current (less uniform re-
sponse) along with higher noise compared to MeGO
electrode at the same concentrations of AA. This can be
attributed to the active edges of graphene, which result
in better interactions with AA. The nanocomposite
electrode presents greater stability than MeGO electrode.

Figure 4a depicts the current increase in AA level
from 8 to 5,000 μM in 0.02 M PBS (pH = 7.4). A linear
trend is observed between the peak current and the AA

level in Figure 4b (with a correlation of R2 = 0.99). The
detection limit of the amperometric responses was
evaluated to be 2 µM (S/N = 5). Therefore, by addition
of the AA aliquot (dropwise) to the PBS buffer, the
current response (output) of the nanocomposite-based
biosensor dramatically promotes to the AA redox
reaction linearly with analyte biosensing enviable range.
As given in Table 1, the electroanalytic and sensing
features of the functionalized MeGO/PANI nanocompo-
site are meaningfully more than the AA biosensors from
the previous reports. Some samples have low detection
limit, while others show wide linear sensing range. In
comparison with other studies, our sensing device shows
very low detection limit and wide linear range. There-
fore, this strategy for developing an analytical device
could be established as a promising protocol to promote
the sensing performance.

Figure 3: The plots of (a) scan rate and (b) peak current versus scan
rate ½.

Figure 4: Calibration curve and amperometric responses (linear
range) of the MeGO/PANI-functionalized biosensor for determining
AA and investigating the surface redox reaction. Applied potential
was +0.8 V.
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The selectivity of the MeGO/PANI nanocomposite
was evaluated in the presence of some interferences. The
current responses of the interfering species were also
analyzed at the modified electrode. The selectivity of the
sensor was tested in PBS 0.02 M (pH = 7.4) with 10mM
interferences and 5mM AA. As shown in Figure 5, a
significant current response was observed for AA redox
reaction, while interferences could not influence the
current responses. In spite of the high concentrations of
interferences, negligible changes were sensed in the
sensing outputs, demonstrating the excellent selectivity
of the present platform upon AA determination.

4 Conclusions

The functionalized MeGO/PANI nanocomposite demon-
strated an excellent sensing activity over AA redox
reaction. The linear sensing range and the detection limit
of the sensing platform were dramatically more than
most cases. Electroanalytical and biosensing results
illustrated that the combination of MeGO as a 2D

nanostructure and PANI as a familiar conducting
polymer played a significant role in bioelectrochemical
sensing applications. AA was scrutinized as a bioanalyte
for verifying the declaration. The time-dependent am-
perometric output of the MeGO/PANI nanocomposite
was noteworthy in an extensive linear range. It is
concluded that the present sensor is a talented candidate
for quick and careful sensing of AA.
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