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Abstract: Metallic nanoparticles due to their small size
and unique physico-chemical characteristics have found
excellent applications in various branches of industry and
medicine. Therefore, formany years a growing interest has
been observed among the scientific community in the im-
provement of our understanding of the impact of nanopar-
ticles on the living organisms, especially on humans. Con-
sidering the delicate structure of the central nervous sys-
tem it is oneof the organsmost vulnerable to the adverse ef-
fects of metallic nanoparticles. For that reason, it is impor-
tant to identify themodes of exposure and understand the
mechanisms of the effect of nanoparticles on neuronal tis-
sue. In this review, an attempt is undertaken to present cur-
rent knowledge about metallic nanoparticles neurotoxic-
ity based on the selected scientific publications. The route
of entry of nanoparticles is described, as well as their dis-
tribution, penetration through the cell membrane and the
blood-brain barrier. In addition, a study on the neurotox-
icity in vitro and in vivo is presented, as well as some of
the mechanisms that may be responsible for the negative
effects ofmetallic nanoparticles on the central nervous sys-
tem.
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Graphical abstract: This review summarizes the current knowledge
on the toxicity of metallic NPs in the brain and central nervous system
of the higher vertebrates.
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LTP long-term potentiation
NO Nitric oxide
NPs Nanoparticles
ROS Reactive oxygen species
SOD Superoxide dismutase
SPION Supermagnetic iron oxide nanoparticles
TJ Tight junctions

1 Introduction
Nanotechnology is the design, production and application
of structures, materials and devices sized at nanometre
scale. It is assumed that nanoparticles (NPs) are structures
having a critical dimension of less than 100 nm. Because
of their size, greater surface area and volume tomass ratio,
NPs present unique optical, mechanical, chemical, electri-
cal and magnetic properties that makes them more reac-
tive, compared to their bulk counterparts [1–3]. NPs can
stimulate and affect certain cells, inducing and multiply-
ing the desired physiological effects. On the other hand,
NPs, due to their size comparable to biological molecules,
can easily pass through cell membranes, penetrate cellu-
lar organelles and interfere with the normal cell physiol-
ogy, and, as a result, cause damage at the cellular and
sub-cellular level and/or triggering different cell/tissue re-
sponses [4–8].

The progress of nanotechnology has led to the devel-
opment and commercialization of hundreds of products
containing NPs. Nanotechnology offers many opportuni-
ties and benefits formedicine, energy production, environ-
mental protection, the food industry, electronics, science,
computer technology, cosmetics, textiles, agriculture and
the defence industry [1, 3–5, 9–11]. Large scale production
and use of NPs can lead, however, to unintentional human
and the environmental exposure to this potentially haz-
ardous substances [10, 12]. According to theWilson Centre
data, exposure to 45%among the 580 cataloguedNPshave
been classified as potentially dangerous [13]. The poten-
tial risk of exposure to toxic NPs becomes a burning issue
for today’s science, despite their wide use and many ben-
eficial applications [10]. Although to-date no human dis-
ease has been officially attributed directly to NPs, certain
studies that have been conducted suggest that some NPs
may cause adverse biological reactions, leading to toxic ef-
fects [9].

Humans could be exposed to metallic oxide NPs from
different environmental and occupational sources. NPs
can come from natural phenomena, such as volcanic ac-

tivity, or as a result of industrial processes with a lot of
metal fumes, e.g. cutting, grinding, melting, casting and
welding. Another potential source of human exposure to
metallic NPs is its intentional use in commercial products,
such as vectors of drugs, sunscreens, toothpaste, cosmet-
ics, plastic products, textiles, paints, and gasoline compo-
nents [9, 14–17]. Despite their origin, NPs can penetrate
into the body by a number of different routes, including in-
jection, inhalation or ingestion. Then, circling with blood,
they can penetrate and accumulate in different organs and
tissues including central nervous system (CNS) [9, 18, 19].

SomeNPs seem to be very suitable formedical applica-
tions, such as drug delivery vectors or theranostics for ther-
apeutic and diagnostic procedures [20]. Metal oxides are
currently one of the most important tools used in the diag-
nosis of diseases (contrast to MRI, fluorescent dyes), drug
delivery systems (photosensitizers), genes, antimicrobial
substances, aswell as scaffoldingmaterials in tissue recon-
struction [2, 3, 9, 18, 21]. Metallic NPs can resonate in the
magnetic field, thus delivering energy directly to the target
cancer cells [20]. Due to the increasing use of metallic NPs
in medicine, more and more attention is paid to the safety
of using NPs for CNS [22]. Numerous studies indicate in-
ability of blood-brain barrier (BBB) to protect against NPs
translocation to the brain [23]. Compared to other types of
cells, nerve cells are more sensitive to toxins due to their
limited ability to regenerate [24]. Thus, it is important to re-
liably analyze the neurotoxic impact ofmetallic NPs on the
brain. Acquired knowledge can be used to develop safety
guidelines for the potential use of NPs in industry and
medicine, to minimize the negative health effects on the
CNS [25].

The presented review is an attempt to summarize the
current knowledge on the toxicity of metallic NPs in the
brain and CNS of the higher vertebrates.

2 Modes of exposure in vivo and
distribution of internalized NPs

Metallic NPs, due to their small size and specific physico-
chemical properties, can penetrate into living organisms
through various modes of exposure, for example, inhala-
tion or ingestion. In general, smaller NPs show a greater
accumulation in the organs and induce a higher toxicity,
compared to larger NPs [26]. Thus, it is important to fully
understand themechanisms responsible for their distribu-
tion and penetration into the target organs, and the effects
that they might have there [27].
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Several studies support the concept that the CNS may
be a potential target for inhaled NPs [28, 29]. Inhalation
is one of the main route of unintentional human exposure
to metallic NPs. Due to the small size, NPs efficiently bind
to nose mucosa [30] or reach into bronchi and alveoli in
the lung [31, 32]. From the nasal cavity, NPs are further
transported by olfactory epithelium andmigrate along pri-
mary olfactory neurons to the glomeruli of the olfactory
bulb, olfactory nerve or trigeminal, or the blood- cerebral
spinal fluid to the choroid plexus [3, 31]. Transport via the
olfactory nerve, is a direct way of penetration of NPs to
the brain, bypassing the BBB [33]. This has been demon-
strated for several metal NPs, e.g. ultrafine silver NPs (Ag
NPs) [34], CdSe/ZnS quantum dots (CdSe/ZnS QDs) [35],
copper oxide NPs (CuO NPs) [36], ultrafine manganese
dioxide NPs (MnO2 NPs) [37] or titaniumdioxide NPs (TiO2
NPs) [38, 39].

On the other hand, inhaledmetal NPs can also get into
the alveoli epithelial cells and further to blood and lymph
circulation, finally accumulating in potentially sensitive
target sites, such as the brain, bone marrow, lymph nodes,
spleen or heart [18, 40, 41]. The process was observed for
aluminum oxide NPs (Al2O3 NPs) [12, 40] or lead NPs (Pb
NPs) [42]. Also, it is postulated that small metal NPs are
uptaken inside the alveoli by macrophages and dissolved
in the phagosomes. It was shown that ions were released
even from the oxidized form of NPs, which are not nor-
mally soluble. Released ions can easily penetrate BBB [14].

A digestive rout is also important way of penetration
of NPs into the body. It is postulated that NPs are absorbed
by epithelial cells in the digestive system, fromwhere they
can further penetrate into bloodstream and secondary or-
gans. NPs are mainly absorbed by M cells found in Peyer’s
patches through the transcytosis mechanism. It was also
shown that extracellular transport through tight junctions
(TJ) of epithelial cells might be involved; however, this ap-
plies only to very small NPs (d=0.5-6 nm) [43]. Loeschner
et al. have shown that the digestive route constituted an
important source of exposure to Ag NPs. They observed
in rats after 28 days of dietary exposure to Ag NPs (14±4
nm) that Ag NPs were uptaken by the M cells and entero-
cytes [44]. The amount of NPs uptaken via digestive rout
correlate with the size and charge of NPs. Twenty four
hours after administration of different size gold NPs (Au
NPs) (1.4-200 nm) with negative/positive charge, the high-
est accumulation in secondary organs (lung, spleen, heart)
was for the smallest (1.4 nm), negatively charged NPs. In
contrast, the highest accumulation in the brain was ob-
served for NPs with a diameter of 18 nm [43].

Several studies, such as those on rats exposed to TiO2
NPs [45–47] or porcine exposed to TiO2 NPs or zinc oxide

NPs (ZnO NPs) [48], demonstrated the inability of NPs to
penetrate into thedermis or into the live layers of skin. This
may be due to the ability of metallic NPs to form larger
aggregates, as well as having a surface charge which pre-
vents penetration to the stratum corneum (SC) and the
deeper layers of the skin. Thus, it is believed that the in-
organic NPs are not able to penetrate intact healthy skin.
This is very important in the context of application ofmany
metallic NPs, as a component of certain ointments and
creams commonly used by people.

The CNS of vertebrates is isolated from the rest of body
byBBB.Normal functioningof BBB is critical for homeosta-
sis. BBB is responsible for the active exchange of nutrients
and metabolites between the blood and brain, prevention
of the xenobiotics penetration to the brain, and restrict-
ing immune cell infiltration [4]. Selective permeability is
a result of the complex structure and biochemical proper-
ties of the brain capillary endothelial cells (BCEC), such as
leakproof TJ connections and minimal endocytotic activ-
ity to prevent penetration of harmful substances from the
blood directly to the brain [49, 50].

Nonetheless, Chen et al., showed that exposure of
mice to aluminum NPs (Al NPs) caused disturbances in
the normal functioning of TJ, which was associated with
increased permeability of the BBB and further damage
to brain tissue [4]. Moreover, high level of expression of
transferrin receptor in BCEC cells may facilitate transcy-
tosis across the BBB [51]. In line, Au NPs were capable
of penetrating through the BBB and accumulating in the
brain, after intravenous administration [52] or intraperi-
toneal administration in mice [20]. Further, the ability to
penetrate the BBB and accumulation in the brain was
demonstrated for many metallic NPs, such as Al NPs [53],
Ag NPs [54], CuO NPs [55], manganese NPs (Mn NPs) [14]
and TiO2 NPs [56]. In the brain, NPs are able to enter
neurons and move along axons or dendrites to other con-
nected neurons [57]. Transneuronal transport may occur
through the synaptic connections, endocytosis or passive
diffusion [58].

3 Cellular uptake
Metallic NPs can enter to the cell via interaction with
components of its membrane. The main mechanism of
their cellular uptake is endocytosis. During endocytosis,
the absorption of NPs occurs through membrane invagi-
nations, then their budding and pinching off to form en-
docytic vesicles, transported to specialized intracellular
compartments [9, 59–61]. Endocytosis is classified into sev-
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eral types depending onmolecules involved in the process.
The two main classes of endocytosis are phagocytosis and
pinocytosis. In addition pinocytosis can be further divided
into four subclasses depending on the size of vesicles and
proteins involed for their formation. On this basis, pinocy-
tosis is differentiated into clathrin-mediated endocytosis,
caveolae-dependent endocytosis, clathrin/caveolae inde-
pendent endocytosis and macropinocytosis [62]. In con-
trast to phagocytosis, which takes place primarily in spe-
cialized phagocytes, pinocytosis are more prevalent and
occurs in many kinds of cells. Interestingly, metallic NPs
uptake in neurons and glial cells, alsomainly based on the
endocytosis process, includes all its types, even phagocy-
tosis [61, 63, 64]. Research on astrocyte-rich primary cul-
tures indicated endocytosis as the uptake mechanism of
Ag NPs [65]. Comparable, the ZnO NPs were absorbed by
neuronal cells line PC12 through endocytosis, which was
required for interneuron translocation of these NPs [66].
The ironNPs (FeNPs) coatedwith dimercaptosuccinic acid
were also efficiently taken into astrocytes. Transmission
electron microscopy showed their congregations in intra-
cellular vesicles. Due to the negative charge, as indicated
by their zeta potential, themechanism of passive diffusion
was excluded [67].

Clathrin-mediated endocytosis leads to the formation
of clathrin-coated vesicles and it is the main mechanism
for nutrients and membrane components cellular uptake.
In contrast, another mechanism, the caveolae-dependent
endocytosis, is equally important andparticipates inmany
biological processes, among others transcytosis, signal-
ing and nutrients regulation and depends on the integral
membrane protein – caveolin. Clathrin/caveolae indepen-
dent endocytosis goes through other pathways, without
the involvement of these proteins. The unique pinocyto-
sis process of forming membrane extension or ru�es as a
result of cytoskeleton reorganization is macropinocytosis.
As a consequence of these membrane changes the large
amount of extracellular fluid with dissolved molecules is
collected, regardless of the presence of any specific re-
ceptors [68, 69]. Luther et al. showed that Fe NPs were
successfully taken up by microglial cells chiefly through
macropinocytosis and clathrin-mediated endocytosis, in
the course of which absorbed particles were directed into
the lysosomal compartment [70]. A predominance of endo-
cytosis was also observed in another study on neural stem
cells incubated with Ag NPs [71]. Likewise, the uptake of
TiO2 NPs by glial cells was based on the mechanism of
endocytosis. However, chemical immobilization of the cy-
toskeleton significantly reduced the entry of TiO2 NPs into
the cells, suggestingmacropinocytosis as themain process
of their uptake [72].

In addition to various types of pinocytosis, metallic
NPsmay enter to the interior of the cell through the phago-
cytosis mechanism. Typically, the opsonization of NPs by
immunoglobulins or other blood proteins precedes this
process and enables recognition by the appropriate cells.
This initiates a signaling cascade that allows engulfing
and internalization ofNPs to form so-called "phagosomes"
[61]. Valentini et al. observed a characteristic phenotype
of activated microglia cells caused by the presence of TiO2
NPs. Their morphological changes, such as the larger size
and formation of membrane protrusions typical of phago-
cytosis, indicated the uptake of TiO2 NPs through this pro-
cess [73].

Some studies indicated that various types of endocy-
tosis might act simultaneously for the metallic NPs uptake
by neuron- and glia-like cells. TiO2 NPs were mainly taken
by astrocyte-like ALT cells and BV-2microglia via disparate
types of endocytosis: clathrin-mediated endocytosis and
caveolae-dependent endocytosis in ALT cells, phagocyto-
sis and clathrin-mediated endocytosis in BV-2 cells [74]. An
analogous research of the absorption of Ag NPs showed
less uptake by neuroblastoma N2a cells, as compared to
ALT and BV-2 cells. In ALT cells prevailed phagocytosis
and clathrin/caveolae independent endocytosis, while in
BV-2 Ag NPs were taken mainly by micropinocytosis and
clathrin-mediated endocytosis [75].

4 Toxicity of NPs

4.1 Toxicity in vitro

Numerous reports indicate detrimental effects of metallic
NPs on neural cells in culture. In a triple coculture BBB
model consisting of microvascular endothelial cells, astro-
cytes and pericytes exposed to Ag NPs, Xu et al. observed
a severe shrinkage of mitochondria, endoplasmic reticu-
lum expansion and vacuolations in astrocytes. An anal-
ysis of gene expression showed changes in 23 genes as-
sociated with metabolic and biosynthetic processes, cell
death and response to stimuli. Another research on pri-
mary rat cortical cells showed that Ag NPs disrupted de-
velopment and functioning of the nervous system. Ag NPs
were toxic to nerve cells by causing abnormalities in forma-
tion of cytoskeleton, pre- and post-synaptic proteins, and
functioningof themitochondria, leading to cells death [76].
In line, Coccini et al. observed toxic effects after short-
term (4-48 h, 1-100 µg/ml) or long-term exposure (up to
10 days, 0.5-50 µg/ml), even at low doses (0.5 µg/ml) [77].
Size dependent toxicity of Ag NPs was also observed for
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organotypic mouse midbrain cells [78]. The mechanisms
involved in Ag NPs-induced toxicity of primary cultures
of rat cerebellar granule cells (CGCs) include activation
of N-methyl-D-aspartate receptor, destabilization of mito-
chondrial function, production of free radicals [79], ox-
idative stress leading to caspase activation and apopto-
sis [80]. Apoptosis was also reported as a main cause to
Ag NPs-induced death of N2A cells growing in co-culture
with ALT and BV-2 cells. However, this was not a direct
effect, because the NPs were effectively uptaken only by
ALT and BV-2 cells. N2A cells death followed the release
of toxic compounds, nitric oxide (NO) from BV-2 and hy-
drogen peroxide (H2O2) from ALT. These results suggested
that the key factor in Ag NPs neurotoxicity may be the in-
duction of reactive oxygen and nitrogen species by astro-
cytes and microglia [75]. The assessment of the effects of
Ag NPs on human and rat embryonic neural stem cells
(NSCs) led to similar conclusions. Apoptosis and necrosis
of NSCs occurred as a result of increased mitochondrial
production of reactive oxygen species (ROS) [81]. Huang
et al. examined the effect of Ag NPs on the expression
of genes involved in inflammation and neurodegenerative
disorder on brain mouse neural cells. The study showed
a significant increase in interleukin-1 beta (IL-1β) secre-
tion, and increased expression of C-X-C motif chemokine
13, macrophage receptor with collagenous structure and
glutathione synthetase (GSS). Furthermore, exposure to
Ag NPs, formation of amyloid-β (Aβ) plaques responsible
for Alzheimer’s disease [82].

Studies performed on astrocytes exposed to CuO NPs
showed a significant decrease in viability, reduced lactate
dehydrogenase activity and increased permeability of the
cell membrane. Generation of ROS was point as a main
cause of the CuO NPs toxicity [83]. ROS generation was
also proposed as a main cause of time- and concentration-
depended increase of apoptosis in CuO NPs treated HT-22
mouse hippocampal neuronal cells [84]. Impaired viabil-
ity was also observed for cultured primary rat astrocytes
exposed to CuO NPs. Moreover, Cu2+ ions released from
CuO NPs induced nerve cells glycolytic flux, and synthesis
of glutathione and metallothioneins [85]. CuO NPs and Ag
NPs significantly increased release of prostaglandin E2, tu-
mor necrosis factor (TNF), IL-1β in cells, while the Au NPs
did not cause such an effect [86].

Rivet et al. studied the effect of the coating substance
on the toxicity of encapsulated supermagnetic iron oxide
NPs (SPION, Fe3O4 NPs). In vitro studies on cortex neu-
ronal cells indicated that the toxicity of SPION depended
on the coating substance. The polydimethyloamine coat-
ing resulted in cell death at all tested concentrations due
the rapid and complete disruption of the cell membrane,

whereas aminosilane coating affected cell metabolic activ-
ity at higher concentrations, leaving the cell membrane
intact. Coating with dextran, even at high concentrations,
didnot affect the viability of the cells [87]. Toxicity of Fe3O4
NPs on brain cells was also studied by De Simone et al.
They developed two types of CNS spheroids from SH-SY5Y
neuron-like cells and human D384 astrocytes. After short-
term (24 or 48 h, 1-100 µg/ml) and long-term (30 days,0.1-
25µg/ml) exposure of 3D-spheroids to Fe3O4 NPs a cyto-
toxic effect was observed, more pronounced for neurons
compared to astrocytes [23]. Other studies have shown that
Fe3O4 NPs induced oxidative stress and activation of c-
Alb tyrosine kinase, which was associated with neurotox-
icity. In addition, Fe3O4 NPs caused alterations in the α-
synuclein expression associated with neuronal damage,
occurring among others in Parkinson’s and Alzheimer’s
diseases [88].

In a study conducted by Wang et al., it was shown
that Mn NPs, Ag NPs, and Cu NPs caused dopamine (DA)
depletion by alteration of the expression of dopaminer-
gic system-related genes, associated with induction of ox-
idative stress in PC12 cells treated for 24 h [89]. In line, a
concentration-dependent decrease in the synthesis of DA
by PC12 cells exposed to Mn NPs [57]. Unlike most metal-
lic NPs, cerium dioxide NPs (CeO2 NPs) were not cytotoxic
in neuronal cells and had antioxidant activity, inhibiting
ROS production. Despite this results, disruption of redox
balance inhibited neural stem cell differentiation [90]. De-
crease in viability and increase of apoptosis were observed
in primary cortical neurons after incubation with gallium
trioxide NPsmodified with chromium ions and hyaluronic
acid (HA/Ga2O3:Cr3+ NPs). The toxicity was explained
by activation of calpain and disruption autophagy signal-
ing [91]. Also no toxicity was observed for 145 nm tungsten
carbide particles (WC) in any of the cell lines tested includ-
ing oligodendrocytes, rat primary neurons, rat primary as-
troglial cells, however, doping WC NPs with cobalt (WC –
Co) resulted in an increase in the toxicity. The plausible ex-
planation of the enhanced toxicitywas increasedoxidative
stress and DNA damage [92].

Valdiglesias et al. compared the effects of two types
of TiO2 NPs differing in crystal structure on the viability
of nerve cell SH-SY5Y. The results indicate that a differ-
ent structure of the NPs did not significantly impact on
cells, as no decrease in cell viability was observed in nei-
ther case. Besides the NPs were efficiently taken-up by the
cells, resulting in dose-dependent changes in cell cycle
and genotoxicity, however not associated with formation
of double-stranded breaks [93]. In contrast, low doses of
TiO2NPs caused cytotoxic effects in SH-SY5Yandglial cells
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D384, evidenced both after acute and prolonged expo-
sure, and manifested as alterations of mitochondrial func-
tion and cell membrane damage [94]. In line, apoptosis
associated with mitochondria-mediated and endoplasmic
reticulum-mediated signalingwas reported in primary cul-
tured hippocampal neurons exposed to TiO2 NPs for 24
hours [95]. While Wu et al. observed that TiO2 NPs may di-
rectly interfere with rat PC12 neuronal function and cause
damagemediated by activation of p53 and/or JNKpathway
[96]. An alternative or supplementary mechanism of neu-
rotoxicity was proposed by Xue et al. They observed a sig-
nificant cytotoxicity of PC12 cells when the cells were in-
cubated with supernatant from microglia culture exposed
to TiO2 NPs and proposed that NPs-induced neurotoxicity
corresponded to release of NO and pro-inflammatory fac-
tors, such as tumor necrosis factor alfa (TNFα) by the acti-
vated microglia cells [3].

Significant neurotoxicity was also observed in the rat
and human neuronal cells in culture treatedwith ZnONPs,
however in this case toxicity was attributed rather to the
action of Zn2+ than to NPs per se. ZnO NPs were uptaken
via endocytosis, but lowpH 5.5 in endosomes facilitated re-
lease of Zn2+ ions that penetrated to cytosol and disturbed
divalent ions homeostasis, resulting in cell death [66].

The presented in vitro studies on the neurotoxicity of
various metallic NPs confirmed induction of diverse ad-
verse effects in CNS-derived cells. The vast majority of re-
ports suggested that increased mitochondrial production
of ROS and increased oxidative stress is a main mecha-
nism of cytotoxicity of metallic NPs. This resulted in dis-
ruption of structure and function of other cell organelles,
changes in gens expression, ionic imbalance and activa-
tion of apoptotic pathways. The effects of in vitro exposure
to metallic NPs are summarized in Table 1.

4.2 In vivo toxicity in mammals

Neurotoxicity of metallic NPs has been confirmed in many
mammalian studies. Chen et al. observed that Al NPs ac-
cumulated in the mouse brain endothelial cells, causing
damage to the neurovascular system. Systemic administra-
tionofAlNPs resulted in elevatedautophagy-relatedgenes
expression and autophagic activity in the brain, decreased
tight-junction protein expression and increased BBB per-
meability [4].

The ability to cross BBB was further confirmed for Au
NPs that were found in the brain of intraperitoneally ad-
ministeredmice, however, the concentration of gold in the
brain was the lowest of all examined organs. Interestingly,
no obvious toxicity to the CNS nor changes in behaviour

of mice were observed [20]. In contrast, acute exposure of
male Wistar rats to Au NPs resulted in a reduction of thio-
barbituric acid reactive substances and carbonyl protein
levels in the rats brain. In addition, suppression of cata-
lase activity and inhibition of energy metabolism in hip-
pocampus, striatum and cerebral cortex was observed. In-
terestingly, long-term exposure to Au NPs resulted only in
inhibition of catalase in the brain and suppressed energy
metabolism in cerebral cortex [97].

Also prolonged exposure of rats to citrate-stabilized
Ag NPs caused a severe synaptic degeneration, mainly in
the hippocampal region of brain, whichmay consequently
lead to an impairment of normal nerve function and cogni-
tive processes [98]. In line, Ag NPs given intragastrically
to adult female rats induced a slight shrinking of the hip-
pocampus, neuron shrinkage and swelling of astrocytes
after 7-day exposure. The study also showed a significant
increase of interleukin-4 (IL-4) in blood. Researchers sug-
gested that neurodegeneration after exposure to Ag NPs
occurred through inflammatory effects [99]. Neurotoxicity
and impaired BBB functions were also observed after in-
traperitoneal administration attributed to the change of
level of trace element in serum and brain, reduction of an-
tioxidant enzyme activity, apoptosis and induction of in-
flammatory processes and down regulated tight junction
proteins expression [100]. Similarly, chronic, intragastri-
cally exposure of rats to lowdoses of AgNPs resulted in the
presence of silver in various parts of the brain, including
the hippocampus and impairment of hippocampal depen-
dent memory and cognitive coordination processes [101].
In contrast Dąbrowska-Bouta et al. showed in their stud-
ies on male Wistar rats that Ag NPs administered in low
concentration did not cause visible neurotoxicity in behav-
ioral tests; however, more accurate studies showed abnor-
malities in the myelin sheaths and an altered expression
of myelin proteins [102].

Study conducted byAn et al.have shown that CuONPs
accumulated in the brain when administered via intraperi-
toneal injection to adult male Wistar rats, and had a toxic
effect on thehippocampus, inducing learningandmemory
deficits. The results suggested neuronal damage, induced
by an imbalance of redox homeostasis that led to the
impairment of hippocampal long-term potentiation (LTP)
and poor performance of animals in behaviour tests [55].
Similarly, Liu et al. examined the effect of CuO NPs after
nasal instillation into mice. They observed that NPs were
taken directly to the brain by the olfactory bulb, and that
exposure to CuO NPs resulted in severer lesions in the
mouse brain, which could be due to the induction of ox-
idative stress in nerve cells [36]. In line, Bai et al. observed
nerve damage to astrocyte cells and abnormal neurotrans-
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mitter levels in murine after intranasally instillation of Cu
NPs [103]. It was also shown that in male Wistar rats CuO
NPs impaired glutamate transmission presynaptically and
postsynaptically that might result in diminished LTP and
other cognitive deficits [25].

In yet other studies, rats were exposed orally to ca-
dium oxide NPs (CdO NPs) by intratracheal instillation
alone, or in sequential combination with CdCl2 solution.
A 3-weeks oral administration, plus 1 week delivery to the
trachea, resulted in significant loss in weight of the rats
and decreased open field motility. In addition, the length-
ening of latency evoked potentials of sensors, and the con-
duction velocity of the tail nerve was decreased [16]. Sim-
ilar electrophysiological effects were observed after 4-12
weeks of oral or intratracheal exposure to cadmium [17,
104]. Translocation from the lungs to the secondary organs,
such as the brain,was also reported for lead oxideNP (PbO
NPs) after acute or subchronic PbO NPs inhalation by fe-
male mice. Inhaled PbO NPs caused mild pathological al-
terations in the hippocampus area [105].

In line, intranasal administration of Fe2O3 NPs caused
damage to the olfactory bulb, hippocampus and striatum,
likely due to elevated levels of ROS and NO causing neu-
rons degeneration that occurred primarily in the CA3 area
of hippocampus. In addition, excessive microglial cell re-
cruitment, proliferation and activation, especially in the
olfactory bulb, was observed and proposed as an addi-
tional cause of brain injury [32]. Interestingly, no induction
of DNA damage was also observed in female Wistar rats
exposed to Fe2O3 NPs or Fe2O3 bulk material, suggesting
that Fe2O3 NPs did not have genotoxic potential [9]. Neu-
rotoxic were also Fe3O4 NPs when administered directly
into the dorsal striatum or hippocampus of mice. Fe3O4
NPs administration reduced TH+ fiber in both dorsal stria-
tum and hippocampus and causedmotor memory deficits,
attributed to activation of MAPK and JNK signalling path-
ways [22].

In line, MnO2 NPs instilled into the trachea of adult
male rats penetrated to the brain causing damage to nerve
tissue. In addition, in the open field activity, the percent-
age of ambulation and rearing decreased, while local ac-
tivity increased. The latency of the evoked potentials was
lengthened, while the conduction velocity of the tail nerve
decreased [41]. Also intratracheal exposure ofmice toMnO
NPs caused an increase in evoked potential latency and
change in cortical electrical activity to the higher frequen-
cies. Co-exposure with Fe3O4 NPs also resulted in increase
in evoked potential latency [106]. Detrimental health ef-
fects were also observed for nickel oxide NPs (NiO NPs)
and Mn3O4 NPs administered intraperitoneally to rats.
Mn3O4 NPs were more harmful in the most nonspecific

toxicity symptoms, and caused more nerve damage in the
caudate nucleus and hippocampus, as compared to NiO
NPs [107].

Despite the neurotoxicitymanifested in exposed adult
animals, several experiments showed that exposure to
metallic NPs might be detrimental also for the future gen-
erations. Intragastrically exposure to TiO2 NPs of preg-
nant rats resulted in significant inhibition of cell prolif-
eration in the hippocampus of the offspring and signif-
icantly impaired their learning skills and memory [108].
A similar study by Hong et al. demonstrated that expo-
sure to TiO2 NPs of mice during pregnancy or lactation
had detrimental effects on developing CNS in offspring.
TiO2 NPs were shown to negatively affect the learning and
memory processes. Researchers suggested that this might
be the result of down regulation of Rac 1 and Cdc42 pro-
tein expression, and upregulation of Rho A protein expres-
sion, and increased ratio of RhoA/Rac 1 proteins [24]. This
was further confirmed for intraperitoneally administered
TiO2 NPs. The brains of foetuses from treated mice had
changes in anatomical structure linked with perivascular
edema [109].

On the other end, Amara et al. showed that acute
intravenous injection of ZnO NPs to adult rats caused
no changes in neurotransmitter contents (norepinephrine,
epinephrine, DA and serotonin), nor deterioration in loco-
motor activity and spatial working memory [110]. No tox-
icity was also observed when ZnO NP were administered
intraperitoneally [111]. Similarly, Shim et al. studied the
effects of 28-day oral exposure of ZnO NPs on BBB tight-
ness in rats. In line, no damage to BBB or the brain, nor
behavioural changeswere observed after 28-day oral expo-
sure of ZnONPs [112]. In turn, de Souza et al. demonstrated
that environmentally relevant concentration of ZnO NPs
cause behavioral changes ofmale Swissmice [113]. Also Ai-
jie et al. reported injury in cerebral cortex and hippocam-
pus and impaired learning and memory of rats adminis-
tered with NPs ZnO and TiO2. Interestingly, in this experi-
mental set up theNPswere administered to tongue ofmale
Wistar rats. The experiment confirmed that NPs can enter
the CNS through the taste nerve pathway [114].

As demonstrated bymany in vivo studies,metallic NPs
are harmful to the rodents’ CNS.NPs easily translocate and
accumulate in different regions of the brain, in particu-
lar in hippocampus striatum and cerebral cortex. Damage
caused by metallic NPs may result in motor deficits, and
impairment of learning and memory. The effects of in vivo
exposure to metallic NPs are summarized in Table 2.
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4.3 Toxicity in non-mammalian vertebrates

In water reservoirs metallic NPs are mainly present in a
dispersed form or in the form of emulsion. Thus, it is be-
lieved that they may be more toxic in water, compared to
the bulk counterparts, as they easier dissolved and release
themetal ions [115]. Although dissolution ofmetallic oxide
NPs is more difficult, as it must be accompanied by disrup-
tion of covalent bonding, it could be facilitated by humic
acids and other chemical substances present in the water.

Studies on carp (Cyprinus carpio) showed that expo-
sure to ZnONPs or TiO2 NPs induced a significant increase
in lipid peroxidation, oxidative stress and adecrease in the
activity of antioxidant enzymes in the brain [116, 117]. Sim-
ilar study conducted on zebrafish (Danio rerio) revealed
that subchronic exposure to lowdoses of TiO2 NPs resulted
in brain injury, reduction of spatial recognition memory,
thus impairing behavioural response [118]. Hu et al. re-
ported that exposure to 1 and 10 µg/ml of TiO2 NPs pro-
duced a loss of dopaminergic neurons on the level 50-
70%, and induced Parkinson’s disease-like symptoms ze-
bra fish larvae. This was confirmed in in vitro studies
on PC12 cells [119]. On the contrary, Johnston et al. ob-
served that TiO2 NPs hardly penetrated into the brain of
zebrafish [120].

Effective uptake of metallic NPs from water was also
noted for ZnO NPs and Ag NPs in two different fish mod-
els: Nile tilapia (Oreochromis niloticus) and redbelly tilapia
(Tilapia zillii). Exposure to high concentration of ZnO NPs
(2000 µg/l) and Ag NPs (4 mg/l) resulted in a destruc-
tive effect on the brain antioxidant system, while the low
concentration (500 µg/l) of ZnO NPs and (2 mg/l) of Ag
NPs produced completely opposite effect, supporting the
antioxidant activity [121, 122]. In the study on zebrafish,
ZnO NPs impaired development of the nervous and vascu-
lar system [123]. Waterborn exposure to Ag NPs resulted
in the presence of NPs in the brain of medaka (Oryzias
latipes) [124]. Whereas studies conducted on fathead min-
now females (Pimephales promelas), revealed that Ag NPs
interacts directly in the form of intact NPs and indirectly,
by releasing ions from the surface of NPs, each with dif-
ferent pathways of neurotoxicity [125]. Also Klingelfus et
al. described neurotoxic effects of Ag NPs on neotropical
fish (Hoplias intermedius) [126]. A Ag NPs caused hyperex-
citability in developing zebrafish was reported far below
concentrations found in some aquatic environment [127].

Similarly to Ag NPs, Cu NPs suspended in water, dis-
solve slowly and release copper ions that might accumu-
late initially in the gills reflecting entry gate, and then
in the other internal organs [128]. CuO NPs and ions re-
leased from the NPs penetrated into the brain and thus

may be toxic to the CNS [129]. A dramatic decrease in
cholinesterase activity was observed in the brains of ju-
venile carp exposed to CuO NPs, corresponding to a
significant increase of copper concentration in the ma-
jor organs of the fish, including the brain. Interestingly,
cholinesterase activity returned to the control level after
10 days, most likely due to the adaptative capabilities of
the fish. However, this was attributed rather to the action
of the copper ions released from NPs in the fish body than
to the NPs effects per se, as no CuO NPs were found in the
brain tissue. A study by Zhao et al. included the effect of
CuO NPs exposure on juvenile carp. Copper has a number
of important characteristics in the brain of fish, including
antioxidant functions in melatonin, by the modulation of
the excitability of nerve cells and biological rhythms [115,
130]. Further, the NPs inhibited enzyme cholinesterase ac-
tivity was important for the proper functioning of the neu-
rotransmitter acetylcholine. The research Zhao et al. sug-
gest that this is a consequence of the release of Cu2+ ions
from CuO NPs inside the body of the carp. Thus it can be
concluded that the CuO NPs have neurotoxic properties
for carp. The study also showed that CuO NPs were more
toxic than its copper molecular counterparts [130]. Sun et
al. observed a disturbance of embryonic zebrafish devel-
opment as a result of exposure to CuO NPs manifested
by the delay of retinal neurodifferentiation [131]. Similarly,
the study conducted by Al-Bairuty et al., where they com-
pared the toxicity of CuO NPs and CuSO4 NPs on rainbow
trout (Oncorhynchus mykiss), showed in the brain, mild
changes in neuronal cell bodies in telencephalon, and
some changes in the thickness of the midbrain and va-
sodilation in a the ventral surface of the cerebellum. Fur-
thermore, similar toxicity was observed for Cu NPs and
their molecular equivalent. However, the Cu NPs caused
more damage to the brain, compared to equivalent concen-
trations of CuSO4. Al-Bairuty postulated that brain dam-
age occurred indirectly as a result of gill damage and sys-
temic hypoxia in the body of rainbow trout. The etiology
of CuO NPs in the brain pathology requires further study,
but it can be assumed that oxidative stress and disruption
of osmotic and metal homeostasis may contribute to the
pathology of the CNS [132]. Moreover, recent studies have
shown that exposure of juvenile rainbow trout on Cu NPs
resulted in a significant increase in the ratio of oxidized
to reduced glutathione in brains of fish, which may indi-
cate the induction of oxidative stress [133]. Also, studies on
freshwater fishMozambique tilapia (Oreochromismossam-
bicus) exposed to Al2O3 NPs revealed extensive histologi-
cal changes in various organs, including severe necrosis of
nerve tissue [134].
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Although quoted studies were done only on fishes, the
toxic effect ofmetallic NPs on non-mammalian vertebrates
is clearly noticeable. Water favors a more efficient penetra-
tion of NPs into organisms enhancing their adverse effects.
In larvae, metallic NPs interfere with development of em-
bryonic brain leading to decreased vitality. Their destruc-
tive effects on nervous system of adult animals are mani-
fested by oxidative stress, acetylcholinesterase activity dis-
turbances, and changes in cellular signalling. The effects
of in vivo exposure to metallic NPs are summarized in Ta-
ble 2.

4.4 Other responses

TheNPs also affect biochemical properties of the brain and
iono-regulatory processes. Kumari et al. studied female al-
binoWistar rats after a 28-days repeated oral dose of 30nm
Fe2O3 NPs. They observed inhibition of Na+-K+, Mg2+ and
Ca2+-ATP monophosphatase (ATPase) in rat brain; it was
also shown that smaller Fe2O3NPs were more toxic [135].
In line, acute oral exposure of female Wistar rats to 30 nm
Fe2O3 NPs resulted in more than 50% inhibition of total
Na+-K+, Mg2+ and Ca2+-ATPases activity in the brain [136].
Similarly, intragastric administration of TiO2 NPs for 60
days resulted in disturbance of brain trace elements home-
ostasis and inhibited the activity of Na+/K+- ATPase, Ca2+ -
ATPase, Ca2+/Mg2+ - ATPase [137]. Also, a 14 days exposure
of rainbow trout to TiO2 NPs resulted in dose-dependent
changes in the brain concentration of Cu and Zn ions and
decreased in the activity of Na+/K+ - ATPase [138]. Lower-
ing of Na+/K+ - ATPase activity in the brain was also ob-
served in juvenile rainbow trout after waterborne expo-
sure to Cu NPs [115]. NPs-dependent decrease in activity
of AChE and increased protein oxidative damage in brain
was also observed in juvenile fish Prochilodus lineatus ex-
posured to TiO2 NPs and ZnO NPs [139]. In line Xia et al.
showed that 1 mg/l of TiO2 NPs in water increased the
level of AChE activity in gills (after day 5) and in digestive
gland (after day 12) in the scallop (Chlamys farreri) [140].
In turn, de Oliveira et al. observed inhibition of AChE ac-
tivity and a reduction in the exploratory performance in
adult zebrafish exposed to SPION coatedwith cross-linked
aminated dextran [141]. On contrary, Boyle et al. reported
no accumulation of NPs neither decrease in the activity of
Na+/K+ - ATPase and AChE in brain of trout exposed to
TiO2 NPs for 14 days, despite a significant increase in the
total glutathionepool [142]. Similarly, in a study conducted
by Ramsden et al., after 14 days of aqueous exposure of ze-
brafish to TiO2 NPs, no changes were observed in Na+/K+ -
ATPase activity in the brain [143].

Presented studies indicate that different types of
metallic NPs have the ability to change the biochemical
processes taking place in individual nerve cells, thus dis-
turbing the proper functioning of the entire nervous sys-
tem.

5 The role of oxidative stress in
NPs-induced toxicity and DNA
damage

Although molecular mechanism underlying the neurotox-
icity of NPs are still obscured, generation of intracellular
ROS seems to be a main cause of the toxicity. Oxidative
stress is caused by an imbalance between oxidants and an-
tioxidants in the cell. Also is considered a major cause of
damage to DNA, lipids and protein.

Induction of oxidative stress by various NPs, both in
vitro and in vivo, is well documented, thus is was also ex-
pected in the context of their effects on the brain. Indeed,
Ag NPs and TiO2 NPs stimulated the activation of glial
cells to release proinflammatory cytokines and to gener-
ate ROS and the production of NO, causing neurological in-
flammation [144, 145]. A decrease in antioxidant enzymes
activity in neurons was also observed after exposure of
rats to Ag NPs thus the level of ROS in brain tissue has
increased [146]. Also exposure to Fe NPs reduced superox-
ide dismutase activity and an increased lipid oxidation in
medaka (Oryzias latipes) embryos, however in adult ani-
mals oxidative stress was observed only at the beginning
of treatment. After a certain time of exposure oxidants-
antioxidants balance returned to the normal level [147]. A
dose dependent, intrasynaptosomal formation of ROSwas
also reported for 7nm ironparticles coated ferritin [21]. Tox-
icity of ZnO NPs was also associated with their ability to
produce ROS. Melatonin treatment, which has usually a
protective effect against oxidative stress caused by exter-
nal factors, was ineffective for these NPs [148].

In line, CuONPs induced damage to hippocampal neu-
rons and increasedmalonaldehyde level inWistar ratswas
ascribed to increased ROS production and reduced activity
of SOD and glutathione peroxidase (GSH-Px) [55]. Oxida-
tive stress and decreased activity of antioxidant enzymes
in thebrainwaspointedas amain causeofAuNPs-induces
increase in 8-hydroxydeoxyguanosine and heat shock pro-
tein 70 level and caspase-3 activity,whichmight lead to cell
death. In addition, the study showed a significant increase
in the cerebral levels of IFN-𝛾 in the treated animals [27].
Oxidative stress was also attributed to adverse effects in
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brain tissue, such as increased inflammatory cytokines,
DNA fragmentation and stimulation of apoptosis, in rats
exposed orally for 7 days to ZnO NPs [149]. Chen et al.
observed in human brain microvascular endothelial cells
that oxidative stress, manifested as decreased mitochon-
drial potential and decreased the expression of TJ proteins,
is also induced by Al NPs [18]. Also various forms of Al2O3
NPs induced ROS formation, protein oxidation, lipid per-
oxidation, glutathione reduction and mitochondrial dys-
function [150]. In line, oxidative stress was point as amain
cause of genotoxicity observed for tungsten oxide NPs
(WO3 NPs) [151], chromium oxide NPs (Cr2O3 NPs) [152]
and MnO2 NPs [153]. Oxidative stress arising after treating
neural stem cells with Fe3O4 NPs caused by an imbalance
in the ROS formation and antioxidant cell-defence system,
resulted indepleted intracellular glutathione levels, hyper-
polarization of mitochondrial membrane, disturbed cell-
membrane potential and DNA damages [154].

Hardas et al. studied pro-oxidant effect of 5 nm CeO2
NPs administered peripherally to the Sprague Dawley rats.
After 30 days of exposure to the CeO2 NPs, they observed
elevated levels of protein carbonyls and Hsp70 protein in
the hippocampus and cerebellum,while nitrotyrosine and
inducible nitric oxide synthase (NOS) levels were elevated
in the cortex. Whereas GSH-Px and catalase activity were
decreased in the hippocampus, glutathione reductase de-
creased levels occurred in the cortex, andGSH-Pxand cata-
lase levelswere decreased in the cerebellum. TheGSH: glu-
tathione disulfide ratio, an index of cellular redox status,
was decreased in the hippocampus and cerebellum. This
suggests that the CeO2 NPs have a pro-oxidant potential in
the rat brain [5]. On the other hand, Hardas et al. showed
previously that 5 nmCeO2 NPs administered intravenously
to rats did not cause a significant increase in ROS, and
oxidative stress was observed [31]. In turn, Hussain et al.
observed an up to 10-fold increase of ROS in PC12 cells
exposed to 40 nm Mn NPs that might be responsible for
depleted level of DA and its metabolites, dihydroxypheny-
lacetic acid and homovanillic acid [57].

Significant increase in the ROS formation, oxidative
stress and decreased activity of antioxidant enzymes was
observed in the brain of mice treated with TiO2 NPs, ZnO
NPs or Al2O3 NPs [155].

Many reports suggest that neurotoxicity of metallic
NPs is associated with induction of oxidative stress in the
brain by disturbing the delicate redox balance in both neu-
rons and glial cells. This mechanism is connected with
genotoxicity and activation of the apoptotic pathway.

Figure 1:Mechanism of action of metallic nanoparticles in the cen-
tral nervous system.

6 Summary
During the past decade, a dynamic development of
nanotechnology has been observed. Products containing
metallic NPs in their composition can be found every-
where in a wide range of commercial products commonly
available to virtually everyone. In addition, NPs have ex-
cellent applications in medicine, in medicaments and di-
agnostics. NPs, due to their small sizes, have remarkable
properties which determine their widespread use and im-
mense bioavailability in the environment.

However, the metallic NPs, in addition to their many
advantages, unfortunately also have drawbacks. Figure 1
summarizes the present stage of knowledge about toxic-
ity of metallic NPs in CNS reviewed in this work. Studies
have shown a greater toxicity and reactivity of metallic
NPs compared to their bulk counterparts. There are sev-
eral main routes of exposure to metallic NPs, of which per-
haps the most dangerous in the context of neurotoxicity
NPs are those suspended in the air. It was found that NPs
easily penetrate the human body, as well as rodents and
aquatic organisms. In addition, researchers have observed
that some of them rapidly spread throughout the body and
accumulate in various organs. Numerous studies confirm
that NPs can penetrate into the brain by means of a fixed
route (olfactory bulb - olfactory nerve-brain), thus bypass-
ing the BBB. On the other hand, some NPs which enter the
body can pass through the BBB, and circulate in the blood
vessels in the form of ions released from the surface of the
NPs, as well as through damage to the integrity of the BBB
which increases its permeability. Of course, it is a serious
consequences to bring on the influx of unauthorized sub-
stances into the brain, and violation of the delicate home-
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ostasis of the microenvironment. The brain, due to its sen-
sitive structure, is particularly vulnerable to the adverse
properties of metallic NPs. Numerous studies performed
both in vitro and in vivo show thatNPs are toxic to neuronal
cells. It has also beendemonstrated thatNPs canpenetrate
into the cells, mainly through the mechanism of endocy-
tosis, although there are other possibilities, such as trans-
port facilitated by somemembrane receptors. The primary
mechanism to induce neurotoxicity can be attributed to
the generation of free radicals and induction of oxidative
stress, which is known to damage the cell elements (pro-
teins, lipids, nucleic acids). In particular, oxidative dam-
age to DNA is dangerous due to its nature andmediation of
mutation in cancer formation. Althoughmetallic NPs have
not yet been directly linked to the etiology of any neurode-
generative diseases, more and more studies are being con-
ducted which provide new evidence in support of this the-
sis.

It is therefore important both for public health and for
the environment to continue monitoring of metallic NPs
and their effects in the context of the safety use of metallic
NPs in medicine, especially in the CNS.
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