Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter (O) February 9, 2016

Crystal structure of 3′,4′,5-trihydroxy-3,7-dimethoxyflavone, C17H14O7

  • Iván Brito EMAIL logo , Mario Simirgiotis , Gerold Jerz , Miriam Rodríguez Werner , Jorge Bórques , Peter Winterhalter and Alejandro Cárdenas

Abstract

C17H14O7, monoclinic, P21/c (no. 14), a = 11.6670(4) Å, b = 11.3338(4) Å, c = 11.6415(4) Å, β = 110.269(1) Å, V = 1444.05(9) Å3, Z = 4, Rgt(F) = 0.038, wRref(F2) = 0.117, T = 296 K.

CCDC no.:: 1447966

The crystal structure is shown in the figure. Tables 13 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Yellow, block, size 0.26×0.27×0.33 mm
Wavelength:Cu Kα radiation (1.54178 Å)
μ:10.15 cm−1
Diffractometer, scan mode:Bruker AXS D8-Venture,Triumph-IμS-Cu, ω
2θmax:133.34°
N(hkl)measured, N(hkl)unique:13590, 2472
N(param)refined:228
Programs:SHELX [11], Bruker programs [12], OLEX2 [13]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomSitexyzUiso
H(3)4e0.08070.47680.17230.045
H(7)4e0.63170.34800.20550.046
H(9A)4e0.83040.36560.22980.087
H(9B)4e0.91600.27560.19650.087
H(9C)4e0.80240.23010.22600.087
H(10)4e0.43180.40800.37030.049
H(11)4e0.39320.44610.54670.056
H(12)4e0.60900.3124−0.14610.050
H(17A)4e0.04390.2523−0.07600.103
H(17B)4e−0.05500.3122−0.03230.103
H(17C)4e0.06450.26090.06410.103
H(1)4e0.117(2)0.515(2)0.561(2)0.092
H(4)4e−0.043(2)0.548(2)0.288(2)0.077
H(19)4e0.308(2)0.370(2)−0.259(2)0.062
Table 3

Atomic displacement parameters (Å2).

AtomSitexyzU11U22U33U12U13U23
C(4')4e0.2156(2)0.4861(2)0.4667(2)0.037(1)0.064(1)0.028(1)0.0010(8)0.0175(8)−0.0002(8)
C(3')4e0.1222(1)0.4953(2)0.3534(2)0.0292(9)0.054(1)0.032(1)0.0042(7)0.0151(7)0.0013(7)
C(2')4e0.1439(2)0.4708(2)0.2473(2)0.0331(9)0.053(1)0.0264(9)0.0043(7)0.0110(7)0.0015(7)
C(1')4e0.2610(1)0.4368(1)0.2512(2)0.0324(8)0.0414(9)0.0319(9)0.0026(7)0.0148(7)0.0015(7)
C(2)4e0.2901(1)0.4103(1)0.1406(2)0.0301(8)0.0408(9)0.034(1)0.0038(7)0.0153(7)0.0042(7)
C(9)4e0.4616(1)0.3692(1)0.0807(2)0.0368(9)0.0378(9)0.0328(9)0.0040(7)0.0201(7)0.0033(7)
C(8)4e0.5858(1)0.3474(2)0.1223(2)0.0367(9)0.046(1)0.035(1)0.0054(7)0.0162(7)0.0051(7)
C(7)4e0.6393(2)0.3246(1)0.0355(2)0.0356(9)0.0408(9)0.045(1)0.0053(7)0.0213(8)0.0039(7)
C(12)4e0.8332(2)0.2926(2)0.1891(2)0.039(1)0.079(2)0.056(1)0.0147(9)0.0157(9)0.003(1)
C(6')4e0.3534(2)0.4293(2)0.3656(2)0.0304(9)0.062(1)0.033(1)0.0063(8)0.0147(7)0.0025(8)
C(5')4e0.3305(2)0.4527(2)0.4714(2)0.0336(9)0.077(1)0.028(1)0.0044(8)0.0092(7)0.0026(8)
C(6)4e0.5709(2)0.3265(2)−0.0892(2)0.045(1)0.048(1)0.042(1)0.0056(8)0.0274(8)−0.0012(8)
C(5)4e0.4483(2)0.3491(2)−0.1287(2)0.045(1)0.042(1)0.033(1)0.0057(7)0.0190(8)0.0004(7)
C(10)4e0.3889(1)0.3683(1)−0.0425(2)0.0394(9)0.0360(9)0.033(1)0.0057(7)0.0181(7)0.0033(7)
C(4)4e0.2596(1)0.3849(1)−0.0767(2)0.0395(9)0.042(1)0.030(1)0.0079(7)0.0134(8)0.0037(7)
C(3)4e0.2140(1)0.4008(2)0.0226(2)0.0308(9)0.046(1)0.033(1)0.0062(7)0.0142(7)0.0019(7)
C(11)4e0.0310(2)0.3001(2)−0.0135(2)0.043(1)0.095(2)0.069(2)−0.015(1)0.021(1)−0.016(1)
O(1)4e0.1958(1)0.5101(2)0.5731(1)0.0420(7)0.117(1)0.0279(8)0.0095(8)0.0166(6)−0.0048(7)
O(2)4e0.41309(9)0.3956(1)0.1688(1)0.0311(6)0.0530(7)0.0304(6)0.0052(5)0.0158(5)0.0030(5)
O(3)4e0.7600(1)0.3021(1)0.0630(1)0.0357(7)0.0742(9)0.0491(8)0.0113(6)0.0213(6)0.0023(6)
O(4)4e0.0112(1)0.5295(1)0.3583(1)0.0334(7)0.093(1)0.0310(7)0.0155(6)0.0157(5)0.0015(6)
O(7)4e0.0901(1)0.4115(1)−0.0079(1)0.0308(6)0.0709(9)0.0377(7)0.0081(6)0.0129(5)−0.0016(6)
O(6)4e0.1893(1)0.3861(1)−0.1869(1)0.0429(7)0.0790(9)0.0289(7)0.0130(6)0.0129(6)0.0020(6)
O(5)4e0.3846(1)0.3530(1)−0.2498(1)0.0494(8)0.079(1)0.0311(7)0.0159(7)0.0187(6)−0.0007(6)

Source of material

Plant material of Heliotropium taltalense (Phil.) I. M. Johnst. (aerial parts) were collected in Quebrada de Paposo in April 2011. Voucher herbarium specimens are kept at the Natural Products Laboratory of Universidad de Antofagasta under reference number: Heltal20110406. Extraction and isolation: Dried aerial parts of H. taltalense (1.8 kg) were immersed in ethyl acetate (EtOAc) for 1 min (2 L) in order to obtain an extract from the exudate. The extract was immediately concentrated in vacuo and the resulting dark brown syrup (47 g) was added to 50 g of silicagel 60 G (Merck Darmstadt, Germany) and slurred onto the top of a column containing silica gel 60 H (0.5 kg), partitioned using a medium pressure pump with an isocratic eluent (n-hexane-EtOAc 8:2 v:v), to obtain six partitions (fractions A to F: n-hexane, n-hexane–EtOAc 95:5, n-hexane–EtOAc 90:10, n-hexane–EtOAc 80:20, n-hexane–EtOAc 50:50 and pure EtOAc). Further purification by a combination of chromatography on silicagel 60 H and permeation through Sephadex LH-20 (eluting with methanol-water 7:3) of the fraction 20% hexane-ethyl acetate (fraction D, 15 g) afforded the phytoalexin 2S-sakuranetin [2], Fraction C (10% hexane-ethyl acetate, 5 g) was submitted to successive steps of Sephadex LH-20 permeation (eluting with methanol-water 7:3 v:v) and afforded 39 mg of 7 O-methyl-eriodyctiol, and 10 mg of 3,7-Di-O-methyl-quercetin, for which NMR data are consistent with literature [3, 8, 9]. Recrystallization from ethyl acetate at −20 °C yielded yellow crystals of the title compound (0.051 g). Analysis: m.p. 289–291 °C. ESI-MS/MS (HCT-Ultra ETD II, Bruker Daltonics, Germany) [M—H] : 329.32, [M+H]+: 331.12. 1H NMR (300 MHz, DMSO-d6) δ ppm: 7.65 (1H, d, J = 1.4 Hz, H-2′), 7.55 (1H, dd, J = 1.4, 8.4 Hz, H-6′), 6.97 (1H, d, J = 8.4 Hz, H-5′), 6.77 (1H, d, J = 1.9 Hz, H-8), 6.43 (1H, d, J = 1.9 Hz, H-6), 3.93 (3H, s, OCH3), 3.86 (3H, s, OCH3). 13C NMR (300 MHz, DMSO-d6) δ ppm: 147.92 (C-2), 137.23 (C-3), 177.35 (C-4), 162.54 (C-5), 99.35 (C-6), 165.74 (C-7), 94.4 (C-8), 158.2 (C-9), 104.4 (C-10), 124.13 (C-1′), 116.06 (C-2′), 146.23 (C-3′), 148.75 (C-4′), 116.23 (C-5′), 121.66 (C-6′), 56.92 (7-O—CH3), 56.95 (3-O—CH3).

Experimental details

H atoms were refined with fixed individual displacement parameters, using a riding mode with C—H distances of 0.93 Å (for aromatic rings), 0.96 Å (for CH3), with Uiso(H) values of 1.2Ueq(C) (for CH in aromatic), and 1.5Ueq(C) (for methyl group), O—H distances are 0.87(3); 0.88(3) and 0.88(2) Å.

Discussion

H. taltalense (Phil.) Johnst. (Heliotropiaceae) is an endemic species growing in Paposo valley that produces a resinous exudate that covers its foliar surface and stems [1]. The flavonoids S-sakuranetin, naringenin, 3-O-methylgalangin and 7-O-methyl-eriodictiol were the main phenolic constituents reported so far from the exudate [2, 3] which showed important DPPH scavenging activity [3]. Furthermore, several methoxy-flavone derivatives such as quercetin O-methyl ether derivatives showed interesting biological activities such as antioxidant [4], antibacterial [5], antihypercholesterolemic [6] and anti-inflammatory activities [7]. We report in this paper the structure of 3′,4′,5-trihydroxy-3,7-dimethoxyflavone (3,7-di-O-methylquercetin) a further methyl flavonol isolated from this plant, which is a di-O-methyl derivative of quercetin, a common flavonoid present in many fruits and vegetables. The molecule is not planar, with a dihedral angle between the endocyclic atoms of the pirone ring system and the substituted phenyl ring of only 7.7(3)°. The bond lengths and angles are in the expected ranges. The molecular conformation and the crystal packing is stabilized by an intermolecular O—H⋯O hydrogen bond, and a weak π−π stacking interaction between phenyl rings with centroid-centroid distance of 3.480 Å (Cg—Cgi: C5/C6/C7/C8/C9/C10) [symmetry code (i) 1−x, 1−y, −z] respectively. In the crystal, molecules are linked by strong intramolecular O—H⋯Oii [symmetry code (ii) −x, 1−y, −z] hydrogen bonds with set graph-motif R22(18) [10].


Corresponding author: Iván Brito, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, e-mail:

Acknowledgements:

M.S. and J.B. thanks FONDECYT (Chile) (Grant 1140178) for financial support. I.B. thank to CONICYT, FONDEQUIP program/single crystal diffractometer/EQM130021.

References

1. Squeo, F. A.; Cavieres, L. A.; Arancio, G.; Novoa, J. E.; Matthei, O.; Marticorena, C.; Rodriguez, R.; Arroyo, M. T. K.; Munoz, M.: Biodiversidad de la flora vascular en la Región de Antofagasta, Chile. Rev. Chil. Hist. Nat. 71 (1998) 571–591.Search in Google Scholar

2. Brito, I.; Borquez, J.; Simirgiotis, M.; Cardenas, A.; Lopez-Rodriguez, M.: 4′,5-Dihydroxy-7-methoxyflavanone dihydrate. Acta Crystallogr. E68 (2012) o32–o3.10.1107/S1600536811051221Search in Google Scholar PubMed PubMed Central

3. Modak, B.; Rojas, M.; Torres, R.: Chemical Analysis of the Resinous Exudate Isolated from Heliotropium taltalense and Evaluation of the Antioxidant Activity of the Phenolics Components and the Resin in Homogeneous and Heterogeneous Systems. Molecules 14 (2009) 1980–1989.10.3390/molecules14061980Search in Google Scholar

4. Tseng, H.-L.; Li, C.-J.; Huang, L.-H.; Chen, C.-Y.; Tsai, C.-H.; Lin, C.-N.; Hsu, H.-Y.: Quercetin 3-O-methyl ether protects FL83B cells from copper induced oxidative stress through the PI3K/Akt and MAPK/Erk pathway. Toxicol. Appl. Pharmacol. 264 (2012) 104–113.10.1016/j.taap.2012.07.022Search in Google Scholar

5. Omosa, L. K.; Amugune, B.; Ndunda, B.; Milugo, T. K.; Heydenreich, M.; Yenesew, A.; Midiwo, J. O.: Antimicrobial flavonoids and diterpenoids from Dodonaea angustifolia. S. Afr. J. Bot. 91 (2014) 58–62.10.1016/j.sajb.2013.11.012Search in Google Scholar

6. Abd-Alla, H. I.; Albalawy, M. A.; Aly, H. F.; Shalaby, N. M. M.; Shaker, K. H.: Z. Naturforsch., C: Flavone composition and antihypercholesterolemic and antihyperglycemic activities of Chrysanthemum coronarium L. Biosci. 69 (2014) 199–208.10.5560/znc.2013-0115Search in Google Scholar PubMed

7. Madhukar, M.; Sawraj, S.; Sharma, P. D.: Design, synthesis and evaluation of mutual prodrug of 4-biphenylacetic acid and quercetin tetramethyl ether (BPA-QTME) as gastrosparing NSAID. Eur. J. Med. Chem. 45 (2010) 2591–2596.10.1016/j.ejmech.2010.02.047Search in Google Scholar

8. Yoo, H.; Kim, S. H.; Lee, J.; Kim, H. J.; Seo, S. H.; Chung, B. Y.; Jin, C.; Lee, Y. S.: Synthesis and antioxidant activity of 3-methoxyflavones. Bull. Korean Chem. Soc. 26 (2005) 2057–2060.10.1002/chin.200616142Search in Google Scholar

9. Agrawal, P. K.: Carbon-13 NMR of flavonoids; Elsevier: Michigan, 1989.10.1016/B978-0-444-87449-8.50011-0Search in Google Scholar

10. Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N.-L.: Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. Engl. 34 (1995) 1555–1573.10.1002/anie.199515551Search in Google Scholar

11. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

12. Bruker. APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA (2007.Search in Google Scholar

13. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.: OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 42 (2009) 339–341.10.1107/S0021889808042726Search in Google Scholar

Received: 2015-12-7
Accepted: 2016-1-18
Published Online: 2016-2-9
Published in Print: 2016-3-1

©2016 Iván Brito et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2015-0054/html
Scroll to top button