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Abstract: The dynamic heat transfer between two half-
spaces separated by a vacuum gap due to the coupling 
of their surface modes is modeled using the theory that 
describes the dynamic energy transfer between two cou-
pled harmonic oscillators, each separately connected to a 
heat bath and with the heat baths maintained at different 
temperatures. The theory is applied for the case when the 
two surfaces are made up of a polar crystal that supports 
surface polaritons that can be excited at room tempera-
ture and the predicted heat transfer is compared to the 
steady-state heat transfer value calculated from the stand-
ard fluctuational electrodynamics theory. It is observed 
that for small time intervals the value of heat flux can be 
significantly higher than that of steady-state value.
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1  �Introduction
The theory of photon-mediated heat transfer between 
macroscopic objects in close proximity to each other 
and separated by a vacuum gap has traditionally been 

treated using the macroscopic Rytov’s fluctuational elec-
trodynamics theory, which assumes local thermodynamic 
equilibrium in the bodies in question [1–4]. This heat 
transfer comprises contributions from both long-range 
radiative modes and near-field evanescent and surface 
modes [4, 5]. When thermally excited, contributions from 
surface modes, which are electromagnetic eigenmodes of 
the surface and are characterized by their field decaying 
exponentially on either side of the interface, dominate the 
heat transfer between the surfaces when the gap is less 
than the thermal wavelength of radiation. This is primar-
ily due to a peak in the density of electromagnetic states 
at such frequencies where these surface modes are reso-
nantly activated as evidenced from the dispersion rela-
tion for these modes [4]. In particular, for this effect to 
be prominent at room temperature, the surfaces should 
be made up of a polar crystal such as silicon carbide or 
silica, which supports surface-phonon polariton modes in 
the infrared wavelength of about 10 μm and can thus be 
thermally excited at these temperatures.

In general, the resonant excitation of surface modes 
plays an important role in several phenomena and appli-
cations, including decreased lifetime of molecules close 
to metal surfaces [6], surface-enhanced Raman spectro-
scopy [7], thermal near-field spectroscopy [8, 9], concept 
of perfect lens [10], and thermal rectification [11]. The 
study of coupling of surface modes across surfaces is 
significant, as it plays an important role not only in heat 
transfer but also in the van der Waals and Casimir forces 
between them [12, 13]. A coupled harmonic oscillator (HO) 
description for the heat transfer between nanoparticles 
due to the coupling of surface modes was arrived at by 
Biehs and Agarwal [14], and estimates for both dynamic 
and steady-state heat transfer values were arrived at. 
Barton [15] has considered the heat flow between two HOs 
using Langevin dynamics and has extended this model 
to planar surfaces but has limited his description to the 
steady-state heat flow. Yu et al. [16] have recently analyzed 
the dynamics of radiative heat exchange between gra-
phene nanostructures using fluctuational electrodynam-
ics principles and have observed thermalization within 
femtosecond timescales. This ultrafast heat exchange due 
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to the time-varying temperatures of the nanostructures 
is a result of the low heat capacity of the graphene nano-
structures and the coupling of the large plasmonic fields. 
A similar analysis for the radiative heat transfer between 
graphene and a hyperbolic material has been carried out 
by Principi et al. [17], where they observed thermalization 
in picosecond timescales. In this paper, we modeled the 
dynamic heat transfer contribution from the coupling of 
surface modes across two dielectric planar surfaces using 
the master equation description of two coupled HOs inter-
acting with their respective heat baths and compared the 
steady-state results to those obtained from fluctuational 
electrodynamics principles available in the literature [2, 
4]. Our work differs from that of Refs. [16, 17] in that we 
are interested in analyzing how the coupling between the 
surface modes and the resultant heat transfer between the 
two surfaces, which are maintained at fixed temperatures, 
relaxes to steady state.

The paper is arranged as follows. In Section 2, the 
results of the dynamics of heat transfer between two 
coupled HOs, each in contact with a heat bath, are sum-
marized. Although the theory has been described in detail 
in Ref. [14], for the sake of completion, the main results 
have been reproduced here with added details. Such a 
system has also been analyzed previously in the context 
of analyzing the dependence of mean interaction energy 
on the temperatures of heat baths [18] and entangle-
ment between two particles [19]. In Section 3, the theory 
of dynamics of heat transfer between two coupled HOs is 
extended to that between two half-spaces by analyzing the 
coupling between two interacting planar surface modes 
using Maxwell’s equations. In Section 4, the numerical 
values for the heat flux derived in Sections 2 and 3 are 
plotted for the particular case of two silicon carbide half-
spaces and compared to calculations from fluctuational 
electrodynamics principles.

2  �Heat transfer dynamics between 
two HOs

A surface polariton located at the interface between a half-
space located at z > 0 and vacuum will have field of the 
form exp(ik.r – iωt + ikzz), where the in-plane component 
k = (kx, ky) and the z-component kz of the wavevector are 
related as 2 2 2( / ) ,zk cω+ =k  where c is the velocity of light, 
ω is the frequency of the planar wave in the vacuum gap of 
this system, and k is limited by |k| > ω/c. The surface polar-
iton exists for the (k, ω) pair that satisfies the well-known 

dispersion relation [20] | | ( / ) ( )/( ( ) 1)cω ε ω ε ω= +k  so 
that the frequency ω0 of the surface polariton is charac-
terized by wavevector k. Thus, one can characterize the 
surface excitations in terms of oscillators with frequency 
ω0(k), complex amplitude a(k), and half linewidth γ(k), 
with both ω0(k) and γ(k) determined from the dispersion 
relation.

When two half-spaces are far apart, then each half-
space consists of oscillators with frequencies ω0(k), which 
are in thermal equilibrium at the temperature of the 
half-space. When they are brought close to each other as  
shown in Figure 1, then the surface polariton modes of 
half-space A interact with the surface polariton modes 
of half-space B. However, it should be borne in mind that 
wavevector k is conserved for fields across planar inter-
faces. This implies an effective coupling of the form:

	
† †

I
allowed  values

( )[ ( ) ( ) ( ) ( )]H g a b b a= +∑
k

k k k k k� � (1)

where b(k) is the complex amplitude of the surface polari-
ton on half-space B, g(k) is the coupling constant (rad s−1), 
and we neglect nonresonant contributions to the coupling 
(i.e. we use the rotating wave approximation). Thus, mode 
a(k) couples to mode b(k) only. There are no coupling 
terms of the form a†(k1)b(k2), k1 ≠ k2. Thus, we can con-
sider coupling between two oscillators a(k) and b(k) for a 
fixed k and at the end of calculation sum over all modes. 
Note also that in the nonretarded limit the surface modes 
occur for all values of k. This coupling results in a heat 
flow due to the interaction between the modes, which is a 
dynamical process and can be described using the master 

Figure 1: Coupling between two surface modes, each connected to 
its own heat bath that is analyzed in this work.
The two half-spaces are assumed to be made of the same 
material that is local and dispersive so that the complex dielectric 
function varies only with the frequency ω. Only modes [denoted 
by amplitudes a(k) and b(k)] of the same in-plane wavevector 
component k couple across the vacuum gap d. The coupling 
constant g between the surface modes is derived using Maxwell’s 
equations.
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equation approach. The structure of the weakly coupled 
master equation for two interacting oscillators [with 
amplitudes a(k) and b(k)] is well known [21] and is given 
by

	

† † † †
0 0

† † † †
1 1

† † † † †

[ , ] [ , ] [ , ]

( 1)( 2 ) (
2 ) ( 2 );

S
S S S

S S S S

S S S S S

i a a i b b ig a b b a
t

n a a a a a a n aa
a a aa b b b b b b

ρ
ω ρ ω ρ ρ

γ ρ ρ ρ γ ρ

ρ ρ γ ρ ρ ρ

∂
= − − − +

∂
− + − + −
− + − − + � (2)

Here, ρS is the density matrix for the two oscillator 
system. The operators a, a†, b, and b† satisfy Boson algebra 
with the symbol [..] denoting the commutation operator, 
and for brevity, we drop the argument k. We have assumed 
that the two half-spaces have identical dielectric pro
perties. Half-space A is at temperature T so that n1 is the 
excitation of mode a, i.e. n1 = 1/[exp(ħω0/(kBT) – 1)], where 
kB is the Boltzmann constant. Half-space B is at zero tem-
perature. We also take g < < ω0, which is later shown to 
be a valid assumption for the system under considera-
tion. Higher-order terms in the master equation would 
be necessary when this assumption is not satisfied [22]. 
This master equation approach is valid only for oscillators 
where γ/ω0 < < 1 and can be used to describe dynamics for 
time scales t > > 1/ω0 [23].

From this, and the relating expectation value of an 
operator 〈G〉 to the density matrix ρS using the standard 
relation ∂〈G〉/∂t = Tr(∂ρS/∂tG), we obtain the rate of change 
of the excitation of surface polariton in B to be:

	
† † † †( ) 2b b ig b a a b b b

t
γ

∂ 〈 〉 = − 〈 〉 − 〈 〉 − 〈 〉
∂ � (3)

The first term on the right-hand side represents the 
change in the excitation of surface polariton in B due to 
the flow of thermal excitation from the surface polariton 
in A to that in B due to the temperature gradient. This 
enables us to identify the heat transferred (W) to surface 
polariton in B as

	
† †

0( ) ( )P t ig b a a bω〈 〉 = − 〈 〉 − 〈 〉� � (4)

To find 〈P〉(t), we follow the procedure used to obtain 
Eq. (3) to get the dynamic matrix equation:

	 = +x x a� A � (5)

with x = (〈a†a〉, 〈b†b〉, i(〈b†a〉 − 〈a†b〉))T, a = (2γn1, 0, 0)T and

2 0
0 2
2 2 2

g
g

g g

γ

γ

γ

 −
 = − − 
 − − 

A

The value for i(〈b†a〉 − 〈a†b〉) in Eq. (4) from which 
all time-dependent and steady-state characteristics of 
the heat transfer can be obtained is got by solving the 
dynamic matrix equation in Eq. (5) with the initial con-
ditions: 〈a†a〉 |t=0 = n1; 〈b†b〉 |t=0 = 0; i〈b†a − a†b〉 |t=0 = 0, i.e. 
we consider the interaction to switch on at time t = 0 and 
analyze the dynamical evolution of the system. We thus 
get the expression for heat transfer from Eq. (4) as

	

2
2 20 1
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2
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( )

sin 2
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t
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gn e gt

γ γ

γ

ω γ
γ

γ
ω

− −

−

〈 〉 = − −
+

+

�
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3  �Heat transfer between two 
half-spaces

In this section, we discuss how the different parameters 
in the master equation can be obtained from the nature of 
surface polaritons for a system of two dielectric half-spaces 
separated by a vacuum gap and subsequently calculate the 
heat transfer for this system. Consider first a system of two 
coupled oscillators with natural frequency ω0, half linewidth 
γ, coupling constant 2

0,ξω  and displacements x1(ω), x2(ω), 
where 1/2 1/2( ) ( ) ,i tx e x t dtωω = ∫  which are related as

	

2 2 2
1 0 1 1 0 2

2 2 2
2 0 2 2 0 1

( ) ( ) 2 ( ) ( )
( ) ( ) 2 ( ) ( )

x x i x x
x x i x x

ω ω ω ω ωγ ω ξω ω

ω ω ω ω ωγ ω ξω ω

= − +
= − + � (7)

The eigenfrequencies for such a system are given by

	
2 2
0(1 ) ;iω ω ξ γ γ± = ± − − � (8)

To find the equivalent coupling constant ξ between 
surface modes, we find the eigenmodes of the configura-
tion of two flat surfaces separated by a vacuum gap using 
Maxwell’s equations and compare the expression to that 
of Eq. (8) for two coupled HOs. Consider two half-spaces 
separated by a gap of width d occupying the regions 
z < −d/2 and z > d/2 as shown in Figure 1. From the disper-
sion relation for surface polaritons ω(k) and close to the 
surface polariton frequency, the surface mode is seen to 
acquire an electrostatic character with |k| → ∞  [20]. In this 
electrostatic limit, satisfying the continuity of perpendic-
ular component of displacement field gives the condition 
for surface modes as

	

| | | |

| | | |

(1 )/(1 )
( )

(1 )/(1 )

d d

d d

e e
e e

ε ω±

 − +=  + −

k k

k k � (9)
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where ε(ω) is the dielectric function of the half-space. 
Taking the Lorentz model for the dielectric function:

	

2 2

2 2( ) 1 L T

T i
ω ω

ε ω ε
ω ω ωΓ∞

 −
= + − − 

� (10)

and solving for ω in Eq. (9) in the low-loss limit Γ → 0, and 
with some algebra, we obtain the eigenfrequencies of the 
coupled surface modes to be of the form:

	

2
2

0 ( , )(1 ( , ))
4 2

d d iΓ Γ
ω ω ξ± = ± − −′ ′k k � (11)

where

| | 2 2 2 2 2

0 2 2 2| |
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∞ ∞

−
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k

k k
k � (12)

and

	

2 2

2 2 2 2 2

( )
( , ) ;

( ) cosh(| | ) ( ) sinh(| | )
L T

L T L T

d
d d

ε ω ω
ξ

ε ω ω ε ω ω
∞

∞ ∞

−
=′

+ + +
k

k k

� (13)

In the limit of large gaps |k|d → ∞, 0 0( , ) ,dω ω≈′ k  
where ω0 is the surface polariton frequency for a single 

half-space given by 2 2
0 ( )/( 1)L Tω ε ω ω ε∞ ∞= + +  and the cou-

pling parameter ξ′(k, d) ≈ 0. For the case when ε∞ = 1, these 

expressions reduce to the simple forms: 2 2
0 ( )/2L Tω ω ω= +′  

and | | 2 2 2 2( , ) ( )/( )d
L T L Td eξ ω ω ω ω−= − +′ kk  [15]. This method 

of finding the eigenmodes of the surface modes in the 
electrostatic limit is well known and has been previously 
employed, for example, in the context of deriving the van 
der Waals force [12] and the steady-state van der Waals 
heat transfer [15]. By comparing Eqs. (11) and (8), we can 
relate the parameters of the HO model with those of the 
surface modes:

	 0 0( , ); ( , ); /2d dω ω ξ ξ γ Γ→ → →′ ′k k � (14)

We can thus use the results from Section 2 to find 
the heat transfer between the two flat surfaces due to the 
coupling between the surface modes. As noted earlier, we 
add the contributions from all the HO modes (labeled by 
k), observing that heat transfer does not result in change 
in momentum and that only surface modes of the same 
in-plane wave-vector component interact across the two 
half-spaces. The heat flux between two half-spaces P(t, d)  
(W m−2) is then given by

	
2

2
1( , )  

4
P t d P d

π
= 〈 〉∫ k� (15)

where 〈P〉(t, k, d) is the rate of heat transfer (W) between 
two HOs obtained from Eq. (4). The relation between g in 
Eq. (4) and ξ in Eq. (8) can be derived by comparing the 
interaction Hamiltonians in the quantum mechanical 
picture and the classical model. In the classical picture, 
the potential energy of the Hamiltonian of the coupled HO 
system is given by

2 2 2 2 2
PE 0 1 0 2 0 1 2

1 1
2 2

H x x x xω ω ω ξ= + +

where the interaction term is given from 2
I 0 1 2 .H x xω ξ=   

The equivalent quantum mechanical model can be 
obtained by substituting the displacements x1 and x2 
in terms of the commutator operators a, a†, b, and b† 
using the standard relations †

1 0( ) /(2 ),x a a ω= + �  and 
†

2 0( ) /(2 ).x b b ω= + �  Including only terms resulting in 
photon exchange, we get

† †
I 0

ˆ ( ) .
2

H a b abω ξ= + �

Comparing to the interaction Hamiltonian in the 
quantum mechanical picture from Eq. (1) (for a particular 
k value) gives us g = ω0ξ/2. Substituting for the values of ω0 
and ξ from Eq. (14) gives

	
0( , ) ( , )

( , )
2

d d
g d

ω ξ′ ′
=

k k
k � (16)

4  �Results

Consider first the steady-state expectation value of the 
heat exchanged due to the coupling of two oscillators in 
contact with heat baths as given by Eq. (4) in the long time 
limit. This can be easily shown to reduce to

	

2
1

0 2 2t

g n
P

g
γ

ω
γ→∞〈 〉 =

+
� � (17)
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The corresponding steady-state expectation value 
of the heat flux between the two half-spaces due to the 
coupling of surface modes is obtained from employing 
Eq. (17) in Eq. (15), making the substitutions as denoted in 
Eqs. (14) and (16). Taking |k|d = x, the resulting expression 
for the steady-state heat flux between two half-surfaces 
reduces to

	
0

3 2
0

st 2 2 2 2 ( )/( )0
0

( ) ( ) 1( )
4 ( ) ( ) 1Bx k T

x x
P d xdx

d x x e ω

ω ξΓ

π Γ ω ξ

∞

′

′ ′
=

+ ′ ′ −∫ �

� � (18)

To demonstrate the dynamics of heat transfer, we 
take the particular case of two SiC half-spaces separated 
by a vacuum gap. We use the following parameters for SiC 
[24]: ε∞ = 6.7, ωL = 969 cm−1; ωT = 793 cm−1 and Γ = 4.76 cm−1 
from which we obtain the surface polariton frequency for 
a single half-space ω0 ≈ 948  cm−1. The master equation 
approach can thus be used to describe dynamic evolution 
of the system for time scales t > > 30 fs. We choose SiC as 
the material of our half-spaces as the surface polariton 
frequency falls in the infrared frequency spectrum at 
which it can be excited thermally at room temperature 
(as evidenced from the peak of blackbody spectrum at 

300 K). In Figure 2A, we plot the heat flux from Eq. (15) as 
a function of the nondimensional time tΓ at 300 K and for 
vacuum gap d = 5 and 100 nm. The values of heat transfer 
from Eq. (15) can be compared to the well-known expres-
sion for the steady-state heat transfer derived using 
fluctuation-dissipation theorem, PFE, which in the limit  
|k|d → 0 reads [2]

	

2

FE 12 2 2 2 20 0

(Im ( ))  ( )   ( , )
|( ( ) 1) ( ( ) 1) |

x

x
xe dxP d d n T

d e
ε ω

ω ω ω
π ε ω ε ω

−∞ ∞

−=
+ − −∫ ∫�

� (19)

As seen in Figure 2A, the heat transfer rate from  
Eq. (15) conforms to the value predicted from Eq. (19) for 
time intervals tΓ  5 (see Appendix for analytical proof), 
and for smaller time intervals tΓ ≈ 0.1, the heat flux is 
observed to reach as high as ≈1.7 times the steady-state 
value. The heat transfer contribution as a function of in-
plane wavevector component |k|  at different time inter-
vals tΓ = 0.5, 2, and 6 are also shown in Figure 2B–D, 
respectively, and compared to the steady-state distribu-
tion obtained from using Eq. (17) in Eq. (15). In Figure 2B 
and C, a transient oscillatory behavior in the heat flux 
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Figure 2: A comparison of the results of dynamical calculation with those of the steady state calculated from fluctuational electrodynamics.
(A) Plot of heat flux at room temperature from Eq. (15) (indicated as “HO”) as a function of nondimensional time tΓ between two SiC half-
spaces for gaps d = 5 and 100 nm. The calculation of steady-state heat flux from fluctuational electrodynamics principles (indicated as “FE”) 
from Eq. (19) is also shown. (B–D) Contribution of heat flux as a function of the wavevector component |k|  (W m−1) for time instants tΓ = 0.5, 
2, and 6, respectively, for gap d = 5 nm and compared with the wavevector contribution to the steady-state heat flux.
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contribution is observed, which is indicative of the pres-
ence of a strong coupling between the surface polaritons 
and can be confirmed from the plot in Figure 3, where 
values of the ratio g(k, d)/γ > 1 indicate strong coupling 

regime. However, the total heat flux P in Figure 2A is posi-
tive for all time scales due to the positive bias along the 
temperature gradient.

An approximate value of the nondimensional cou-
pling parameter ξ = 2g/ω0, relevant for heat transfer 
between two SiC half-spaces, can be gauged from the 
plot of the steady-state value of the integrand in Eq. (15) 
as a function of x = |k|d shown in Figure 4. The peak 
value at |k|d ≈ 2  suggests, from Eqs. (13) and (14), that 
the values of ξ relevant for the coupling of two surface 
modes across two SiC half-spaces is approximately 
≈10−2. In addition, the value of γ/ω0 ≈ 0.006 validates our 
assumption of weak interaction of the oscillators with 
the heat bath and the subsequent use of the present form 
of the master equation to model the dynamic effects in 
heat transfer [22].

For large wavevectors |k| > 1/d, the coupling between 
the oscillators drops rapidly as seen in Figure 3 so that 
the change in thermal excitation will be negligible at 
such large wavevectors. This is also observed in Figure 5A 
and  B, where a plot of 〈a†a〉/n1 and 〈b†b〉/n1 shows neg-
ligible change in the occupation numbers from the 
initial state at these large wavevectors when steady 
state is reached. In addition, in Figure 6, the occupation 
numbers for the two HOs are plotted as a function of time. 
It is observed that both oscillators attain the same steady-
state occupation number within a time interval ≈10tΓ, 
with the temperature difference between the heat reser-
voirs providing the gradient for continued heat exchange 
in the steady state.

To conclude, we have shown that the theory of 
dynamics of coupled HOs connected to heat baths can 
be used to quantify the contribution of surface modes 
to the dynamic near-field heat transfer between two 
half-spaces separated by a vacuum gap. For two SiC 
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half-spaces, it is observed that steady state is reached 
for time scales tΓ5 (which corresponds to t ≈ 50 ps), 
and for smaller time scales, heat flux can be as high as 
1.7 times the steady-state value. Experimental verifica-
tion of these results would require not just the ability 
to measure heat transfer between macroscopic objects 
for small spacings but also fast response time with pico-
second resolution. Recent experimental advancements 
show that it is possible to measure heat transfer values 
for gaps as low as 0.2–7 nm between an STM tip and a flat 
substrate [25] and sub-100 nm for that between flat sur-
faces [26]. These measurement techniques would have 
to be combined with ultrafast thermometry methods 
(such as transient thermoreflectance technique [27]) 
to be able to measure the dynamic values of near-field 
heat transfer between macroscopic objects. As, with 
advancement in nanotechnology near-field heat trans-
fer between objects has increasing significance, the heat 
transfer between components of a magnetic storage 
device, which are spaced a few nanometers apart is a 
case in point [28], we hope that our results, along with 
the other recent articles [16, 17], will pave the way for 
experimental verification of dynamic near-field heat 
transfer between objects. Although the description here 
has been provided for planar surfaces, the possibility of 
extension of this theory to other macroscopic surfaces 
such as microspheres and STM tips used in near-field 
heat transfer measurements [25, 29–31] can also be 
explored.
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Appendix
Here, we show the equivalence of the expression of 
steady-state heat transfer arrived using the coupled HO 
method as given in Eq. (18) to that derived from fluctua-
tional electrodynamics principles in Eq. (19). This has 
been shown numerically in Figure 2 for the Lorentzian 
form of the dielectric function given in Eq. (10). However, 
the complicated expressions for the natural frequency 
ω′( |k|d) and the coupling constant ξ′(|k|d), as given in 
Eqs. (12) and (13) respectively, preclude us from showing 
the analytical equivalence of these two expressions for 
the general form of the dielectric function. For simplicity, 
we consider the particular case of ε∞ = 1 and ωT = 0, where 
the expressions for ω′( |k|d) and ξ′(|k|d) reduce to the 
simple forms: (| | ) / 2Ldω ω=′ k  and ξ′(|k|d) = e−|k|d. Such 
a form of dielectric function is valid for some materials 
such as gold (for which the corresponding parameters 
are ε∞ = 1, ωT = 0, ωL = 1.71  ×  1016 s−1, Γ = 1.22 × 1014 s−1) 
[32]. We also assume that the temperature T of the half-
space to be such that kBT > > ħω0. In these limits, Eq. (19) 
reduces to
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Figure 6: The time evolution of the excitation in the surface polariton mode for a fixed momentum parallel to the surface.
Plot of (A) 〈a†a〉/n1 and (B) 〈b†b〉/n1 as a function of time tΓ for the modes with wavevector component |k|d = 0.625.
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and 
4 4 4 2 2 4 2 2 2

4 2 2 4
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As the rational function M(ω)/N(ω) (which is an even func-
tion in ω) has no poles on the real axis, the integral over 
ω can be carried out in the complex plane using Cauchy’s 
residue theorem. Eq. (20) then reduces to
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By making the substitutions (| | ) / 2,Ldω ω=′ k  
ξ′(|k|d) = e−|k|d and x = 2 |k|d in Eq. (18), the expression for 
PFE(d) in Eq. (21) can be shown to match that for Pst(d) in 
Eq. (18). A similar derivation for showing this equivalence 
can be found in Ref. [15].
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