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Abstract: Atmospheric water vapour, a major component 
in weather systems serves as the main source for pre-
cipitation, provides latent heat which helps maintain the 
earth’s energy balance and a major parameter in Numer-
ical Weather Prediction (NWP) models. An observational 
technique based on the Global Navigation Satellite Sys-
tem (GNSS) has made it possible to easily retrieve Pre-
cipitable Water (PW) at station’s antenna position with 
very high spatial and temporal variabilities. GNSS tech-
niques are superior to ground-based and balloons sen-
sors in terms of accuracy, ease of use, wider coverage and 
easier assimilation into NWP models. This study sought 
to use prediction models using daily observational data 
from Four (4) International GNSS Service stations in West 
Africa. The best prediction model can be used in cases 
of station outages and to predict PW over data poor re-
gions using computed Zenith Tropospheric Delays (ZTD). 
gLAB software was used to process the stations’ data in 
Precise Point Positioning mode and PW were retrieved us-
ing station’s temperature and pressure values. Computed 
PW were compared against Total Column Water Vapour 
from ERA-Interim Reanalysis data in 2016. Correlation co-
e�cient (R2) values ranging from 0.947 — 0.995 were ob-
tained for the four stations. With computed PW’s, three re-
gression models were tested to �nd the best-�t with PW 
as the dependent variable and ZTD being the indepen-
dent variable. The quadratic model gave the highest R2 

and lowest RMSE values as against the linear and expo-
nential models. Time series forecasts models such as mov-
ing average, autoregressive, exponential smoothing and 
autoregressive integrated moving average were also em-
ployed. The forecasts results were compared against ZTD 
with autoregressive model reporting the highest R2 and 
lowest RMSE amongst the forecast models developed.

Keywords: GNSS, precipitable water, regression model,
time series, zenith tropospheric delays

1 Introduction
Water vapour forms over 99% of the atmospheric moisture
and it is the main source of atmospheric energy that has a
strong e�ect on climate on a longer time scale and drives
the development of weather systems on short time scale
(REMSSTeam, 2018; Guerova, 2003).Water vapour as a pri-
mary greenhousegas trapsmoreheat than theother green-
house gases making its movement and associated latent
heat of vapourization responsible for about 50% of global
atmospheric heat transfer (Ramanathan and Feng, 2009;
Karl and Trenberth, 2003; Raval and Ramanathan, 1989).
These processes in-turn helps to determine the amount of
precipitation a region receives. More water vapour is con-
tained in thewarmer atmosphere and as a greenhouse gas,
it absorbsmore thermal infra-red energy radiated from the
earth. With increases in water vapour contents in the at-
mosphere, most will condense into clouds which are able
to re�ect incoming solar radiation which prevents more
energy which will heat the earth up from reaching its sur-
face (Soden et al., 2002; Held and Soden, 2000; Wang et
al., 1976). Perlman (2016) gives detailed account of the wa-
ter cycle with illustrations, interactive maps and �gures.

Knowledge of atmospheric water vapour contents,
variability and state makes it an essential component of
the earth’s climate system (Wolfe and Gutman, 2000). Wa-
ter vapour amounts and variabilities are key parameters in
weather forecasting and numerical weather models (Kauf-
mann et al., 2003; Johnsen, 2001; Bevis et al., 1996). Con-
ventional methods such as radiosondes, sun photometers
or hygrometer when used to measure atmospheric water
vapour have several limitations. These are coverage limita-
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tions, expensive to deploy andare a�ectedbyweather con-
ditions such as heavy clouds and precipitation (Campos et
al., 2018; Acheampong, 2016).With the advent of GNSS, at-
mospheric water vapour can be determined easily and to
a higher accuracy and it is not limited by area or weather
conditions (Guerova et al., 2016; Li et al., 2015; Bosy et al.,
2010; Duan et al., 1996; Bevis et al., 1992). The objectives of
this study were to determine Precipitable Water (PW) from
GNSS signals over four International GNSS Service (IGS)
stations and to develop a PW prediction model based on
regression and time series models to predict trends. The
study is inspired by events of station outages and/or non-
functioning due tomechanical or receiver �rmware issues.

2 IGS Stations Used
Four IGS stations were used for this study and each can be
found in Benin, Cote d’Ivoire, Gabon and Senegal. Details
of these stations are shown in Table 1 and visual locations
shown in Fig. 1.

Figure 1: Map of West Africa showing the four IGS Stations used
(GoogleMap, 2018)

3 Methodology
GPS daily observation data for the entire 2016 were used
for model development and data for the months of Febru-
ary, May, August and November in 2017 were used for
validation and testing. The data were obtained from The
Crustal Dynamics Data Information System (CDDIS) of the
National Aeronautics and Space Administration (NASA)

using their �le transfer protocol (FTP) (Noll, 2010). Aside
observational data, navigational �les, IONEX (Schaer et
al., 1998), ANTEX (Rothacher and Schmid, 2010), di�eren-
tial core bias (DCB) (Montenbruck et al., 2014) were down-
loaded and used.

The steps taken to determine Precipitable Water (PW)
andbestmodel for prediction based onZTD fromGNSS sig-
nals are as follows:
(i) GNSS data processing using gLAB software in Precise

Point Positioning (PPP) mode.
(ii) Extraction of ZTD.
(iii) Extraction of Surface Pressure, Temperature and

TCWV.
(iv) Computation of PW.
(v) Prediction models (regression & time series) develop-

ment.
(vi) Model Validation.

(i) GNSS data processing using PPP - GNSS data such
asnavigation, observation,AntennaExchangeFormat
(ANTEX) and precise ephemeris and clock �les were
used in the gLAB software (Hernandez-Pajares et al.,
2010). The parameters set in the software are an el-
evation mask of 5◦ and data decimation of 300 secs.
Simple nominal and Niell mapping function for tro-
pospheric delay modelling, IONEX �les for the iono-
spheric correction and DCB for code observation cor-
rections at same and/or di�erent frequencies (Subi-
rana et al., 2013; Wang et al., 2016). The software out-
put precise receiver coordinates, satellite azimuth &
elevations, signal �ight times, dilution of precisions,
ionospheric corrections, tropospheric delays, etc. Fur-
ther details and statistics on gLAB processed coor-
dinates and IGS antenna position coordinates and
zenith path delay products are given in Acheampong
(2016) and Acheampong et al. (2015).

(ii) Extraction of ZTD - Tropospheric Delays are signi�-
cant error source which a�ects the GNSS signal prop-
agation time. The delay comes in two components
namely; hydrostatic and wet parts. They are also re-
ferred to as Zenith Hydrostatic Delay (ZHD) and Zenith
Wet Delay (ZWD) when delays are mapped onto the
zenith. The slant delays are initially computed with
respect to each satellite and then using appropriate
mapping functions they are mapped unto the zenith
(Misra and Enge, 2012; Seeber, 2003). The total tro-
pospheric delays can be expressed mathematically as
ZTD = ZHD + ZWD.

(iii) Extraction of Surface Pressure, Temperature and
TCWV - Weather data such as Surface Pressure, Tem-
perature and TCWV are needed in the accurate and
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Table 1: IGS Stations used

Site ID Country Latitude Longitude
Ellip.
Height

Receiver Type Antenna

BJCO Benin 06◦23’04.79” 02◦27’00.08” 30.700m Trimble Net R5 TRM59800

YKRO
Cote
d’Ivoire

06◦52’14.01” -05◦14’24.33” 270.000m
Rogue
SNR-800

AOAD/M_T

NKLG Gabon 00◦21’14.06” 09◦40’19.65” 31.496m Trimble Net R9 TRM59800
DAKR. Senegal 14◦43/04.40” -17◦26’22.10” 51.000m TPS Net-G3A TPSCR..G3

precise determinationof PW from tropospheric delays.
Although there aremodels that donot employweather
data in thedeterminationof PW(Subirana et al., 2013),
but this study consideredmodels [shown inEq (1)] that
use weather data for PW determination (Bevis et al.,
1994; Choy et al., 2013; Karabatić and Weber, 2009).

PW =
ZTD − 2.2767* P

105
0.997337

0.00461 (k2 + k3
Tm )

, (1)

P is the pressure in Pascal, k2 and k3 are empirical coef-
�cients representing the constants of the deviation of the
atmospheric constituents from an ideal gaswhich is based
on laboratory estimates.Tm is themean temperature at the
observation site in Kelvins derived from the surface tem-
perature, Ts, as expressed in Eq. (2). Following Chen and
Yao (2015), these coe�cients were employed to compute
Tm they, day of year (doy), the average (a0), annual varia-
tion coe�cients (a1, b1) semiannual variation coe�cients
(a2, b2) diurnal variation coe�cients (a3, b3), lapse rate of
6.5 K/km (δ) and station height (H).

Tm = a0 + a1 cos
(

doy
365.252π

)
+ b1sin

(
doy

365.252π
)

+ a2 cos
(

doy
365.254π

)
+ b2 sin

(
doy

365.254π
)

+ a3 cos
(

Ts
365.252π

)
+ b3 sin

(
Ts

365.252π
)
+ δH (2)

Weather variables for the observation days were extracted
from European Centre for Medium-range Weather Fore-
casts (ECMWF) ERA-Interim datasets on a six-hour interval
(0, 6, 12 & 18 hours) for each day (Dee et al., 2011; Berris-
ford et al., 2009). In order to retrieve the weather data, day
and time of observation, longitudes and latitudes of the
grid nodes are needed. Table 2 shows the grid points used
in the retrieval of weather data fromERA-Interim using the
link http://apps.ecmwf.int/datasets/.
(iv) Computation of PW — Tropospheric delay is the

bending and slowing down of GNSS signals in the
troposphere. It is computed as slant delays during
processing and using appropriate mapping functions,

they are mapped unto the zenith for easier compu-
tations of PW. The software outputs the total tropo-
spheric delays along the zenith direction as ZTD. The
quantum of the delay ZTD is nearly proportional to
the atmospheric water vapour (Foelsche and Kirchen-
gast, 2001; Bevis et al., 1992). PWwere computedusing
Eq. (1).

(v) Prediction model development — The focus of this
study is to developmodels to predict PWbased on pro-
cessed ZTD and retrieved TCWV. Following Voyant et
al. (2012); Montgomery et al. (2012) and Danforth et al.
(2007), linear models considered were quadratic (y =
ax2 + bx +c), linear (y = a+ bx) and exponential se-
quences (y = abx). The variables used in the regression
models are y being the dependent variable, x as the in-
dependent variable, a is the y-intercept, b is the slope
of the line and c is the squared vertical distance be-
tween each point (x, y). The time series models were
developed based on processed ZTD for predictions in
case of station outages ormalfunctioning. Themodels
considered were exponential smoothing, autoregres-
sive, moving averages and autoregressive integrated
moving averages and they are shown in Eqs (3) — (6).
The variables are γ t the forecast value, βi is a constant,
γ t−i is the time-lagged series value, µ is the mean, ϕ is
the slope coe�cient and α being the smoothing con-
stant which varies from 0 to 1 (Shumway and Sto�er,
2011; Cryer and Chan, 2008).

(a) Autoregression (AR) - is a stochastic process in which
weighted sumof past values are used as abasis for pre-
dicting future values. AR models are represented by
Eq. (3);

γ t = β0 + β1γ t−1 + β2γ t−2 + . . . + βiγ t−i (3)

(b) Moving Average (MA) - �ts a linear regression of
present data to predict future values. MA models are

http://apps.ecmwf.int/datasets/
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Table 2: The grid points used in scaling down the ERA-Interim model for weather data retrieval

Site ID Top Left Top Right Bottom Left Bottom Right
Lat (◦) Lon (◦) Lat (◦) Lon (◦) Lat (◦) Lon (◦) Lat (◦) Lon (◦)

BJCO 7 1 7 3 5 1 5 3
DAKR 15 -18 15 -16 13 -18 13 -16
NKLG 1 8 1 10 -1 8 -1 10
YKRO 7 -6 7 -4 5 -6 5 -4
** Lat = Latitude & Lon = Longitude

represented by Eq. (4);

γ t =
γ t−1 + β2γ t−2 + . . . + βiγ t−i

i (4)

(c) Autoregressive Integrated Moving Average (ARIMA) –
merges linear regression in moving averages. ARIMA
models are represented by Eq. (5);

γ t = µ + γ t−1 +∅(γ t−2 + . . . + γ t−i) (5)

(d) Exponential Smoothing (ES) - unlike moving averages
in which past observations are weighted equally, ex-
ponential smoothing assigns decreasing weights over
time. ES models are represented by Eq. (6);

γ t = αβt−1 + (1 − α)γ t−1 (6)

(vi) Model Validation - After the coe�cients and con-
stants were computed using the models presented in
sub-section V, the models were validated using data
from the four stations in the months of February, May,
August and November of 2017. Validation was done
comparing computed-PW as against derived-PW us-
ing ZTD as an independent variable in the models.
Correlation coe�cient (R2) and Root Mean Square Er-
ror (RMSE) were computed and the threshold of these
statistics were used to select the best model for PW
prediction.

4 Results
In order to select the best model for prediction, PW for the
year 2016 were computed using Eqs. (1) & (2) and com-
pared against TCWVretrieved from the numerical predic-
tionmodel.R2 anddescriptive statisticswere computed for
and can be found in Table 3 as well as graphs represent-
ing the relationship between computed PW and TCWV in
Figs. 2 & 3.

With the results showing higher correlation between
the two datasets, the computed PW and their correspond-

Table 3: R2 and descriptive statistics of TCWV and computed PW for
2016

IGS
Station R2

Computed
PW

TCWV

BJCO 0.982
Mean 51.7980 51.6110
Std Err 0.5216 0.4986
95% C.I. 1.0534 0.9811

DAKR 0.947
Mean 39.2478 38.4470
Std Err 0.7005 0.7239
95% C.I. 1.3957 1.4242

NKLG 0.995
Mean 53.1204 52.1317
Std Err 0.3064 0.2950
95% C.I. 0.6103 0.5804

YKRO 0.970
Mean 36.1260 37.8520
Std Err 0.5614 0.5723
95% C.I. 1.1079 1.1268

ing ZTDs were used to determine constants and coe�-
cients for the regression and time series models. The val-
ueswere used in predicted PWderivation based on Eqs. (3)
— (6). After the predicted PWwere derived, theywere com-
pared with computed PW and results are shown in Ta-
bles 4 & 5.

Figure 2:Correlation plots of computedPW for the four IGSStations in
West Africa against TCWV retrieved from ERA-Interim reanalysis data
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Figure 3: Precipitable Water and Total Column Water Vapour plots
against Day of Year for the four IGS Stations in West Africa

Table 4: R2 and RMSE between computed PW and predicted PW using
regression models

Model BJCO DAKR
R2 RMSE R2 RMSE

Linear 0.7861 0.4660 0.9985 0.3530
Exponential 0.7859 0.4480 0.9985 0.3510
Quaratic 0.7602 0.4470 0.9987 0.2310

NKLG YKRO
Linear 0.9878 0.5960 0.9620 0.4960
Exponential 0.9872 0.5240 0.9610 0.5060
Quaratic 0.9893 0.4890 0.9890 0.4490

5 Discussion
For the period of this study, which was the year 2016, PW
were computed for four IGS stations (BJCO,
DAKR, NKLG and YKRO). The computed PW were com-
pared against its corresponding TCWV in terms of R2, de-
scriptive statistics and graphs were generated as shown in
Table 3 and Figs. 2 & 3.

It canbe seen that all the stationshaveR2 values closer
to 1 showing a stronger linear relationshipbetween the two
datasets. IGS stationNKLGhad the biggestR2 of 0.995with
DAKR being the smallest with R2 of 0.947.

With the computed PW and TCWV, regression mod-
els namely; linear, exponential and quadratic were devel-
oped. After the development of the model, data validation
was done using monthly data for February, May, August
and November of 2017. PW for those periods were com-

Table 5: R2and RMSE for the computed PW and predicted PW from
time series models

IGS Station Model R2 RMSE

BJCO

MA -0.2540 0.0441
ES 0.5412 0.0250
ARIMA 0.2471 0.0226
AR 0.9800 0.0049

DAKR

MA -0.5550 0.0450
ES 0.3561 0.0310
ARIMA -0.7040 0.0346
AR 0.9701 0.0045

NKLG

MA -0.7901 0.0276
ES 0.0892 0.0390
ARIMA 0.0570 0.0472
AR 0.9841 0.0025

YKRO

MA 0.1635 0.0332
ES 0.2630 0.0334
ARIMA 0.3201 0.0980
AR 0.9300 0.0060

puted and compared with predicted PW for all models.
R2 and RMSE were computed for all stations as shown
in Table 4. From Table 4, it is seen that quadratic regres-
sion model had the highest R2 and lowest RMSE for all
IGS stations making it the best regression model. These
�ndings relate perfectly with works done to study the de-
termination of post seismic decays from selected GNSS
and SLR co-located sites by Sapota et al. (2014). In the
study, the positional changes in XYZ directions for each
IGS station was analyzed over a 10-year period employ-
ing exponential and logarithm models for predictions. R2

and RMSE were computed for station movements by com-
paring station XYZ shifts against model results, the expo-
nential models were preferred because it had the highest
R2 and lowest RMSE for each coordinate position. Similar
study carried out by Alshawaf et al. (2017) on estimation
of decadal variations in atmospheric water vapour using
ground-based GNSS at selected IGS sites in Germany. In
the study, PWwere computed fromGNSS signals and com-
pared against TCWV obtained from ERA-Interim’s data, re-
sultant correlation coe�cients of 0.996 for GNSS against
ERA-Interim and 0.987 for GNSS against meteorological
data fall in line with similar values of R2 obtained for this
study. Again, Aon et al. (2017) conducted a study on mod-
elingGPS Ionospheric scintillationusingnonlinear regres-
sion techniques in Malaysia to monitor ionospheric scin-
tillations during the 24th solar maximum from September
2013 to August 2014. They developed mathematical mod-
els based on �rst, second and third order polynomial and
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concluded that the second order polynomial was the best
choice of model because it had the lowest RMSE amongst
the other polynomial series.

Timeseries forecast models namely; Autoregression,
Moving Average, Exponential Smoothing and Autoregres-
sion Integrated Moving Average were developed based on
January 2016 data and compared with data for January
2017. The resulting R2 and RMSE are shown in Table 5.
FromTable 5Autoregressionhad thehighestR2 and lowest
RMSE amongst all the models for each IGS station making
it the best time series model amongst the rest.

5.1 Conclusion

In the determination of PW from tropospheric delays, pa-
rameters such as ZTD, temperature, pressure, some labo-
ratory estimates and constants are needed. ZTD was ob-
tained from GNSS data processing using gLAB. Tempera-
ture, pressure and TCWVwere obtained fromECMWFERA-
Interim datasets. Data for the years 2016 and 2017 from
four IGS stations in West Africa were used. PW were com-
puted using equations stated in Section §3. The computed
PWwere compared against TCWV and higher correlations
between the two datasets were recorded. After the compu-
tation of PW, prediction models were developed based on
regression models using ZTD and its corresponding com-
puted PWas training data. Data from themonths of Febru-
ary, May, August and November of 2017 were used to val-
idate the models. R2 and RMSE for the computed PW and
predicted PW for each IGS station were computed for with
the quadratic model recording the highest R2 and low-
est RMSE amongst the regression models. Similar statis-
tics were undertaken for the four time series models con-
sidered and the Autoregression model reported the low-
est RMSE andhighestR2. The best-�tting regressionmodel
was the quadratic and reported an uncertainty of 0.404 in
its PW predictions. On the time series models, autoregres-
sion can con�dently predict PWwith uncertainties around
0.031. For further studies we hope to use ground-based
sensors and surface variables to augment NWP model.
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