Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 11, 2018

SIAH1/ZEB1/IL-6 axis is involved in doxorubicin (Dox) resistance of osteosarcoma cells

  • Xiuxin Han , Fengting Liu , Chao Zhang , Zhiwu Ren , Lili Li EMAIL logo and Guowen Wang EMAIL logo
From the journal Biological Chemistry
An erratum for this article can be found here: https://doi.org/10.1515/hsz-2019-0287

Abstract

Osteosarcoma (OS) patients often exhibit pulmonary metastasis, which results in high patient mortality. Our present study established the doxorubicin (Dox) resistant human OS MG-63 and HOS cells and named them MG-63/Dox and HOS/Dox, respectively. The Dox resistant OS cells had greater invasion ability than that of parental cells. The expression of ZEB1, while not FOXM1, Snail, HIF-1α, or Sp1, was significantly increased in Dox resistant OS cells. Silencing of ZEB1 can attenuate the metastasis and increase Dox sensitivity of MG-63/Dox and HOS/Dox cells. The upregulation of ZEB1 can increase of the expression of interlukin-6 (IL-6). Anti-IL-6 inhibited the invasion and increase the Dox sensitivity of MG-63/Dox and HOS/Dox cells. There was no significant difference of ZEB1 mRNA between Dox resistant and control cells. The upregulation of ZEB1 in Dox resistant OS cells can be attributed to the increase of protein half-life. This was confirmed by results that the inhibitor of proteasomal degradation can increase ZEB1 in Dox resistant OS cells. Over expression of SIAH1 can inhibit the expression of ZEB1 and increase the Dox sensitivity of MG-63/Dox and HOS/Dox cells. Collectively, we confirmed that SIAH1 induced ZEB1 is involved in the Dox resistance of OS cells.

Acknowledgements

This research was supported by the National Nature Science Foundation of China (no. 81602363 and no. 81702161).

  1. Conflict of interest statement: The authors declare no conflict of interest.

References

Anderson, M.E. (2016). Update on survival in osteosarcoma. Orthop. Clin. North Am. 47, 283–292.10.1016/j.ocl.2015.08.022Search in Google Scholar PubMed

Arumugam, T., Ramachandran, V., Fournier, K.F., Wang, H., Marquis, L., Abbruzzese, J.L., Gallick, G.E., Logsdon, C.D., McConkey, D.J., and Choi, W. (2009). Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 69, 5820–5828.10.1158/0008-5472.CAN-08-2819Search in Google Scholar PubMed PubMed Central

Brozovic, A. (2017). The relationship between platinum drug resistance and epithelial-mesenchymal transition. Arch. Toxicol. 91, 605–619.10.1007/s00204-016-1912-7Search in Google Scholar PubMed

Cagel, M., Grotz, E., Bernabeu, E., Moretton, M.A., and Chiappetta, D.A. (2017). Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discov. Today 22, 270–281.10.1016/j.drudis.2016.11.005Search in Google Scholar PubMed

Chen, A., Wong, C.S.F., Liu, M.C.P., House, C.M., Sceneay, J., Bowtell, D.D., Thompson, E.W., and Moller, A. (2015). The ubiquitin ligase Siah is a novel regulator of Zeb1 in breast cancer. Oncotarget 6, 862–873.10.18632/oncotarget.2696Search in Google Scholar PubMed PubMed Central

Chipoy, C., Brounais, B., Trichet, V., Battaglia, S., Berreur, M., Oliver, L., Juin, P., Redini, F., Heymann, D., and Blanchard, F. (2007). Sensitization of osteosarcoma cells to apoptosis by oncostatin M depends on STAT5 and p53. Oncogene 26, 6653–6664.10.1038/sj.onc.1210492Search in Google Scholar PubMed

Cortini, M., Avnet, S., and Baldini, N. (2017). Mesenchymal stroma: role in osteosarcoma progression. Cancer Lett. 405, 90–99.10.1016/j.canlet.2017.07.024Search in Google Scholar PubMed

Craft, A.W. (2009). Osteosarcoma: the European Osteosarcoma Intergroup (EOI) perspective. Cancer Treat. Res. 152, 263–274.10.1007/978-1-4419-0284-9_13Search in Google Scholar PubMed

Daw, N.C., Chou, A.J., Jaffe, N., Rao, B.N., Billups, C.A., Rodriguez-Galindo, C., Meyers, P.A., and Huh, W.W. (2015). Recurrent osteosarcoma with a single pulmonary metastasis: a multi-institutional review. Br. J. Cancer 112, 278–282.10.1038/bjc.2014.585Search in Google Scholar PubMed PubMed Central

Duan, Z., Lamendola, D.E., Penson, R.T., Kronish, K.M., and Seiden, M.V. (2002). Overexpression of IL-6 but not IL-8 increases paclitaxel resistance of U-2OS human osteosarcoma cells. Cytokine 17, 234–242.10.1006/cyto.2001.1008Search in Google Scholar PubMed

Gonzalez-Fernandez, Y., Imbuluzqueta, E., Zalacain, M., Mollinedo, F., Patino-Garcia, A., and Blanco-Prieto, M.J. (2017). Doxorubicin and edelfosine lipid nanoparticles are effective acting synergistically against drug-resistant osteosarcoma cancer cells. Cancer Lett. 388, 262–268.10.1016/j.canlet.2016.12.012Search in Google Scholar

Goossens, S., Vandamme, N., Van Vlierberghe, P., and Berx, G. (2017). EMT transcription factors in cancer development re-evaluated: beyond EMT and MET. Biochim. Biophys. Acta 1868, 584–591.10.1016/j.bbcan.2017.06.006Search in Google Scholar

Grignani, G., Palmerini, E., Ferraresi, V., D’Ambrosio, L., Bertulli, R., Asaftei, S.D., Tamburini, A., Pignochino, Y., Sangiolo, D., Marchesi, E., et al. (2015). Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 16, 98–107.10.1016/S1470-2045(14)71136-2Search in Google Scholar

Hattinger, C.M., Fanelli, M., Tavanti, E., Vella, S., Ferrari, S., Picci, P., and Serra, M. (2015). Advances in emerging drugs for osteosarcoma. Expert Opin. Emerg. Drugs 20, 495–514.10.1517/14728214.2015.1051965Search in Google Scholar PubMed

Katsura, A., Tamura, Y., Hokari, S., Harada, M., Morikawa, M., Sakurai, T., Takahashi, K., Mizutani, A., Nishida, J., Yokoyama, Y., et al. (2017). ZEB1-regulated inflammatory phenotype in breast cancer cells. Mol. Oncol. 11, 1241–1262.10.1002/1878-0261.12098Search in Google Scholar PubMed PubMed Central

Luetke, A., Meyers, P.A., Lewis, I., and Juergens, H. (2014). Osteosarcoma treatment – where do we stand? A state of the art review. Cancer Treat. Rev. 40, 523–532.10.1016/j.ctrv.2013.11.006Search in Google Scholar PubMed

Ren, J., Chen, Y., Song, H., Chen, L., and Wang, R. (2013). Inhibition of ZEB1 reverses EMT and chemoresistance in docetaxel-resistant human lung adenocarcinoma cell line. J. Cell Biochem. 114, 1395–1403.10.1002/jcb.24481Search in Google Scholar PubMed

Saxena, M., Stephens, M.A., Pathak, H., and Rangarajan, A. (2011). Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis. 2, e179.10.1038/cddis.2011.61Search in Google Scholar PubMed PubMed Central

Serra, M., Scotlandi, K., Manara, M.C., Maurici, D., Lollini, P.L., De Giovanni, C., Toffoli, G., and Baldini, N. (1993). Establishment and characterization of multidrug-resistant human osteosarcoma cell lines. Anticancer Res. 13, 323–329.Search in Google Scholar

Siebzehnrubl, F.A., Silver, D.J., Tugertimur, B., Deleyrolle, L.P., Siebzehnrubl, D., Sarkisian, M.R., Devers, K.G., Yachnis, A.T., Kupper, M.D., Neal, D., et al. (2013). The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol. Med. 5, 1196–1212.10.1002/emmm.201302827Search in Google Scholar PubMed PubMed Central

Sun, Y., He, N., Dong, Y., and Jiang, C. (2016). MiR-24-BIM-Smac/DIABLO axis controls the sensitivity to doxorubicin treatment in osteosarcoma. Sci. Rep. 6, 34238.10.1038/srep34238Search in Google Scholar PubMed PubMed Central

Xu, M., Zhu, C., Zhao, X., Chen, C., Zhang, H., Yuan, H., Deng, R., Dou, J., Wang, Y., Huang, J., et al. (2015). Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors. Oncotarget 6, 979–994.10.18632/oncotarget.2825Search in Google Scholar PubMed PubMed Central

Xu, R., Liu, S., Chen, H., and Lao, L. (2016). MicroRNA-30a downregulation contributes to chemoresistance of osteosarcoma cells through activating Beclin-1-mediated autophagy. Oncol. Rep. 35, 1757–1763.10.3892/or.2015.4497Search in Google Scholar PubMed

Zhang, P., Wei, Y., Wang, L., Debeb, B.G., Yuan, Y., Zhang, J., Yuan, J., Wang, M., Chen, D., Sun, Y., et al. (2014). ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat. Cell Biol. 16, 864–875.10.1038/ncb3013Search in Google Scholar PubMed PubMed Central

Zhang, P., Sun, Y., and Ma, L. (2015a). ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle 14, 481–487.10.1080/15384101.2015.1006048Search in Google Scholar PubMed PubMed Central

Zhang, Z., Zhang, Y., Lv, J., and Wang, J. (2015b). The survivin suppressant YM155 reverses doxorubicin resistance in osteosarcoma. Int. J. Clin. Exp. Med. 8, 18032–18040.Search in Google Scholar

Zhang, S., Hong, Z., Chai, Y., Liu, Z., Du, Y., Li, Q., and Liu, Q. (2017). CSN5 promotes renal cell carcinoma metastasis and EMT by inhibiting ZEB1 degradation. Biochem. Biophys. Res. Commun. 488, 101–108.10.1016/j.bbrc.2017.05.016Search in Google Scholar PubMed

Received: 2018-06-22
Accepted: 2018-09-18
Published Online: 2018-10-11
Published in Print: 2019-04-24

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2018-0292/html
Scroll to top button