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Abstract: Soil organic matter (SOM) content is one of the
most important indicators of soil quality and hence the
productive capacity of soils. Northeast China (NEC) is the
most important region in grain production in China. In
this study, we assessed the spatiotemporal change of crop-
land SOM content in NEC using sampling data of 2005 and
survey data of 1985. We also analysed the driving forces
behind the SOM content change. Our results showed that
SOM content decreased in 39% of all the cropland in NEC,
while increase in SOM content was only detected on 16%
of the cropland. SOM remained unchanged in nearly half
(i.e. 45%) of the cropland. Our results also revealed that
cropping intensity and fertilizer application were the two
most important factors driving SOM change. Overall, re-
sults from this research provided novel details of the spa-
tiotemporal patterns of cropland SOM content change in
NEC which was not revealed in earlier assessments. The
datasets presented here can be used not only as baselines
for the calibration of process-based carbon budget mod-
els, but also to identify regional soil quality hotspots and
to guide spatial-explicit soil management practices.
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1 Introduction
Soil is a vital non-renewable natural resource which plays
many essential roles in terrestrial ecosystems. The produc-
tive capacity of soils in particular, underlies the founda-
tion of the well-being of humanity on Earth. Soil organic
matter (SOM) content is one of the most important indica-
tors of soil quality and hence the productive capacity of
soils [1–3]. Therefore assessment of SOM content change
in space and time is of great importance for food security
decision-making both globally and in populous countries
like China [4–8].
Northeast China (NEC) is one of the most important re-
gions in grain production in China. In 2009, it produced
15% of the country’s total grain output on 17%of the coun-
try’s cropland, resulting in a much higher regional level
of per capita grain of 620 kg than the national average
level of 370 kg. However, soil fertility in NEC has been ob-
served declining after long-time cultivation of agricultural
crops [9, 10]. Assessments suggested that the magnitude
of this decline could be as high as 30-40% and 60% after
20 and 100 years of agricultural land use respectively [11],
posing risks to the stable supply of food either for the re-
gion or for the country as a whole. Moreover, crop pro-
duction has been increasingly intensified in NEC since the
1980s alongside the general warming trend observed in
the region. The cropping intensity, or the ratio between
sown area and cropland area, increased from 66% in 1985
to 87% in 2005 [12] at an average rate of 1% yr−1, casting
uncertainties on current SOM levels in regional cropland.
During the past decade, research efforts have increasingly
focused on improving our knowledge about soil C en-
hancement and its potential to offset atmospheric CO2
concentrations and safeguard national food security in
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China. The majority of the research employed processed-
based C budget models to characterize historical patterns
and predict future trends, such as DNDC [13], RothC [14]
and Agro-C [15]. However, empirical studies revealing spa-
tial changes of soil C since the 2nd National Soil Survey
(NSS-2), which was conducted in the 1980s, are still lack-
ing, especially at regional scale. The objectives of this pa-
per are therefore to (1) assess the spatiotemporal change
of SOM content in NEC using data from NSS-2 in 1985
and from the grid sampling of SOM in 2005 under the
Cropland Fertility Monitoring Network (CFMN) program in
China [16]; (2) characterize spatial and temporal patterns
in SOM content change at the regional scale; and (3) reveal
major factors driving SOM change in Northeast China over
space and time.

2 Methods

2.1 SOM sampling and interpolation

NEC occupies a land mass of 788,000 km2 and consists
of three provinces: Heilongjiang, Jilin and Liaoning. Crop-
land is accounted for 21% of the land mass or 16.4 mil-
lion ha. In 2005, a regular grid of 20×20 km was estab-
lished on cropland in NEC with a total of 750 composite
sampling sites (Figure 1). At each site, three to five points
were randomly selected within a radius of 100 m where
the topsoil (0-20 cm) was sampled. These samples were
pooled for laboratory analysis. Organic carbon content
was determined using the Walkley-Black wet combustion
method [17], the samemethod as in 1985 for NSS-2. The soil
organic carbon (SOC) content was measured directly by
chemical oxidation with a mixture of dichromate and sul-
phuric acid solutions. Heat was applied at 170◦C to accel-
erate the reaction. A correction factor of 1.1 was adopted to
compensate the incomplete oxidation. The obtained SOC
content was then converted to SOM content by using the
inverse of the van Bemmelen index of 0.58 [18, 19]. The
SOM measurements were statistically analysed to reject
outliers and tested for normal distribution. Values that lie
more than 1.5 times of the inter-quartile range from thefirst
or the third quartile were considered as outliers [20] and
rejected. Normality was achieved by logarithmic transfor-
mation of the outlier-free SOM data, and confirmed by the
Shapiro-Wilk test [21]. This statistically processed point
dataset of SOM observations in 2005 was finally interpo-
lated into a continuous surface of 1 km spatial resolution
using ordinary kriging [19, 22].

Figure 1: SOM sampling sites in Northeast China in 2005. A sam-
pling site is represented by a black dot on map. The underlying
digital terrain is extracted from the USGS 30 arc-second global ele-
vation dataset [52].

The soil map of NEC at the scale of 1:4 million was ob-
tained from the National Soil Survey Office [23] based on
soil survey conducted in NEC in 1985 as part of the NSS-
2. In total, 314,813 samples were taken from the top soil
in NEC at an average sampling density of 1 sample per
67 ha of cropland [23]. Vector-format soil maps were pro-
duced from these samples at the scale of 1:10,000 in the
county level, and upscaled to 1:1 million at the provincial
level and finally to 1:4 million at the national level. The
SOMattribute associatedwith this 1985 soilmapwas given
in value ranges or classes (Table 1) derived from multiple
samples within a single soil mapping unit. It was a com-
mon practice to report SOM classes in NSS-2, as stipulated
by the National SOM Grading System of China [23, 24].
Although the soil map in 1985 was produced based on a
dense sampling scheme, these samples were not georefer-
enced due to technological limitations. Consequently, a re-
visit to the exact 1985-sampling localities in 2005 was un-
feasible. In order to compare the SOMmaps in 1985 and in
2005, therefore, the SOM attribute was extracted from the
vector soil map in 1985 and converted to a gridmap at 1 km
spatial resolution using the centre-point value assignment
method implementedwith theSpatialAnalyst extensionof
the ArcGIS 9 software package.
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Table 1: Cropland area change per SOM class in Northeast China, 1985-2005.

SOM SOM 1985 2005 Area Percentage
class range million percent million percent change change

(w/w %) ha ha million ha
I < 0.6 0.27 0.9 0.51 1.8 0.25 0.9
II 0.6–1.0 1.32 4.7 2.03 7.2 0.71 2.5
III 1.0–2.0 5.11 18.0 7.95 28.1 2.85 10.1
IV 2.0–3.0 4.22 14.9 3.92 13.8 -0.30 -1.1
V 3.0–4.0 6.79 24.0 3.99 14.1 -2.80 -9.9
VI 4.0–8.0 9.66 34.1 9.90 35.0 0.24 0.9
VII > 8.0 0.93 3.3 0.00 0.0 -0.93 -3.3
I–III < 2 6.70 23.7 10.50 37.1 3.80 13.4
V–VII > 3 17.39 61.4 13.89 49.1 -3.50 -12.4

2.2 Geostatistical model estimation and
validation

Ordinary kriging (OK) was employed to model the spatial
variability of measured SOM samples and to predict SOM
values at unsampled locations. The prediction is based on
the following model:

Z (S) = µ + ε (S) , (1)

where µ is the location-irrelevant trend termand ε(S) is the
spatially correlated stochastic error term. The SOM con-
tent, Z, at an unsampled location S0, Ẑ(S0), is estimated
as the weighted average of n neighboring samples of S0:

Ẑ (S0) =
n∑
i=1

{λi · Z (Si)}, (2)

where λi is the kriging weight assigned to sampling site Si.
The weighting factor λi is estimated by using the semivari-
ances γ derived from neighboring samples:

γ (h) = 1
2[Z (Si) − Z (Si + h)]

2, (3)

where h is the distance between two neighboring sam-
ples. A set of n point observations yield 0.5n(n − 1) sam-
ple pairs. Amathematicalmodel (e.g., spherical, exponen-
tial or Gaussian model) is then fitted to the semivariance-
distance plot, which is called a variogram, tominimize the
variance of errors and the parameters of this variogram
model are used to assign weights in OK interpolation.
The goodness of a fitted variogram model was evalu-
ated using the leave-one-out cross validation (LOOCV)
method [19] based on the following threemeasurements of
errors: the root-mean-squared error (RMSE), the mean ab-
solute error (MAE) and themean absolute percentage error

(MAPE):

RMSE =

√√√√ 1
N

N∑
i=1

(
Ẑ (Si) − Z (Si)

)2
, (4)

MAE = 1
N

N∑
i=i

∣∣∣Ẑ (Si) − Z (Si)∣∣∣, (5)

MAPE = 1
N

N∑
i=i


∣∣∣Ẑ (Si) − Z (Si)∣∣∣

Z (Si)
· 100

, (6)

where Z(Si) and Ẑ(Si) are measured and predicted SOM
levels, respectively, at location Si, and N is the number of
validation sites.

2.3 Detection of SOM content change

To compare with the SOM classes in 1985, the kriging-
interpolated SOM content values in 2005 were grouped
into SOM classes as given in Table 1. The map of cropland
SOM content change between 1985 and 2005 was obtained
by deducting the SOMcontentmap in 1985 from themap in
2005. A SOM content change was only detected when the
SOM content in 2005 was one class higher or lower than
the SOM content in 1985.

2.4 Factor analyses

Single- and multi-factor regression analyses were em-
ployed to reveal the cause-effect relationships between
SOMcontent change and cropmanagement practices. Two
indicators, namely cropping intensity and fertilizer appli-
cation, were used to represent crop management prac-
tices. Cropping intensity was characterized by the total
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sown area of all agricultural crops per grid cell. The grid
dataset of crop areas in 1985 and 2005 was obtained from
the Chinese Academy of Agricultural Sciences [25]. The
datasetwasproducedusingaplausible spatial disaggrega-
tion method, cross-entropy, on the basis of multiple data
sources including crop area and yield census, satellite im-
agery of crop distribution and irrigation, crop suitability
map, etc. [25]. The grid dataset of the application rate of
mineral fertilizers andmanures in crop production in circa
2000 was obtained from the Center for International Earth
Science Information Network [26]. The R statistical soft-
ware package [27]was used to conduct the regression anal-
ysis.

3 Results

3.1 Sampling results

The results of the laboratory analysis showed that the SOM
content of the soil samples taken from cropland in NEC in
2005 was averaged at 2.7%, with a standard deviation of
1.9% (Table 2). This corresponds to a SOC content level of
1.46±0.98%.

3.2 Kriging interpolation and validation

Three types of variographicmodels were fitted to the semi-
variogram calculated from the SOM sampling dataset in
2005. These included the spherical, exponential andGaus-
sianmodels (Table 3). The predictionperformance of each
fitted semivariogram model (Figure 2) was tested using
the LOOCV method [19] and given in Table 3. The results
showed that the obtained exponentialmodel had the high-
est performance in predicting SOM contents at unsampled
locations.

3.3 Cropland SOM contents in 1985 and
2005

The spatial distribution of cropland SOM content in terms
of SOM classes [23], based on NSS-2 in 1985 and CFMN
in 2005, is given in Figures 3a and 3b. These two maps
showed that cropland in the northeastern NEC had con-
siderably higher SOM content, indicated by the dominant
greenish colours, than in the southwestern NEC where the
dominant colours were brownish. This downward gradi-
ent of SOM along the northeastern-southwestern axis was
largely persisted during the 1985-2005 period, supporting

earlier findings either at regional scale in NEC [28] or at
national scale [5, 29]. Area statistics (Table 1) showed that
ClassVI (i.e. SOMcontent ranging at 4-8%) covered anarea
of 9.66 million ha or 34.1% of all the cropland in NEC in
1985. In 2005, Class VI still took the largest area share of
35.0%, a small increase of 0.9% since 1985. However, the
biggest increase in cropland area was attributed to Class
III which expanded from 5.11 million ha in 1985 to 7.95 mil-
lion ha in 2005 by a margin of 10.1%. To the contrary, area
of Class V was observed to decrease substantially by 9.9%,
from 6.79 million ha in 1985 down to 3.99 million ha in
2005 (Table 1). Overall, cropland with SOM < 2% including
Classes I through III occupied an area of 10.50 million ha
in 2005, a 13.4% increase since 1985 (see the expansion of
reddish/brownish-colour regions marked by annotations
A and B on maps in Figure 3). Area statistics also showed
that cropland of SOM classes IV, V and VII occupied an
area of 11.94 million ha or 42.2% in 1985; but in 2005 the
area collectively taken by these three classes shrank to a
mere of 7.91 million ha or 27.9%.

3.4 SOM content change between 1985 and
2005

The SOM content change between 1985 and 2005 in terms
of changes in SOM classes from 1985 to 2005 is shown in
Figure 3c. Spatial statistics revealed that cropland with
decreasing SOM classes was accounted for 11.05 million
ha or 39% of total cropland area in NEC (e.g. annotations
A and B in Figure 3c). In contrast, the area of cropland
whose SOM classeswere increased during the same period
was much smaller. An increase in SOM content was iden-
tified only on 4.43 million ha or 15.7% of all the cropland
in NEC (e.g. annotation C in Figure 3c). Spatial statistics
also revealed that SOM in nearly half (i.e., 45.31%) of the
cropland in NEC remained unchanged during the last 20
years. Cropland with decreasing SOM was mainly located
in southwestern Heilongjiang, the bulk of Jilin and eastern
Liaoning province. Large areas in Heilongjiang province,
especially in the Three-River Plain in the northeast of the
province, had stable or improved SOM levels.

3.5 Attribution of SOM content change

Results of the single- and multi-factor regression analyses
(Table 4) showed that the SOM class change between 1985
and 2005 (Figure 3c) was closely related to cropping in-
tensity change (Figure 4a) and to the application of min-
eral fertilizers and manures (Figure 4b) during the same
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Table 2: Descriptive statistics of the SOM sampling dataset in 2005, %.

Data Variation Quartiles
set Min Max Mean Standard deviation Q1 Median Q3
N = 750 0.1 9.62 2.7 1.9 1.0 2.3 3.95

Table 3: Semivariogram models fitted to the SOM sampling data in Northeast China in 2005 and their prediction performances. The predic-
tion performance is measured both by the coeflcients of a linear trend in the form of y = a + bx fitted to the predicted versus measured
data, and by the prediction error resulting from the cross validation of the models.

Model Model fitting Cross validation
type Range Sill Nugget Lag a b R2 RMSE MAE MAPE

(m) (m) (%)
Spherical 371280 0.2664 0.2492 44618 0.65 0.80 0.64 1.04 0.78 52.31
Exponential442821 0.3368 0.1992 44618 0.45 0.85 0.73 1.03 0.78 51.27
Gaussian 319339 0.2268 0.2903 44618 0.70 0.78 0.62 1.08 0.81 54.45

Figure 2: Semivariogram fitted with an exponential model (a) and cross validation of the obtained variogram model (b) for the interpolation
of SOM content in 2005. The obtained linear regression equation in (b) is y = 0.85x + 0.45 (R2 = 0.73).

Figure 3: Cropland SOM content in 1985 (a), 2005 (b) and SOM change in terms of content classes between 1985 and 2005 in Northeast
China (c). Value 1 in (c) means SOM has increased by one content class from 1985 to 2005, while value -1 means decrease by one class.
Dashed ovals annotated by A and B indicate regions where SOM content decreased, while dashed oval C indicates where SOM content
increased during the period.
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Table 4: Single- and multi-factor regression models in the form of Y = a+bX1+cX2 where Y is SOM class change (dimensionless) from 1985
to 2005, X1 is percent change of cropping intensity (%) from 1985 to 2005 and X2 is the application rate of fertilizers and manures (kg/ha)
in circa 2000.

Predictor Model obtained R2

Cropping intensity change (X1) Y = −0.04X1 0.82***
Fertilizer and manure† (X2) Y = −4.51 + 0.11X2 0.89***
X1 and X2 Y = −2.63 + −0.02X1 + 0.07X2 0.93***
† Source: Center for International Earth Science Information Network [26]

period. Linear relationships were successfully established
taking SOM class change as the response variable and
cropping intensity change (Figure 4c, R2 = 0.82) or fer-
tilizer application (Figure 4d, R2 = 0.89) as the explaina-
tory variable. Results also showed that variations in crop-
ping intensity change and in fertilizer application simulta-
neously could explain 93% of the variations in SOM class
change (Table 4). This suggested that both cropping inten-
sity change and fertilizer application were significant pre-
dictors of SOM change over time.
The cause-effect relationship characterized in this paper
is in accordance with earlier findings that proper appli-
cation of mineral fertilizers in combination with manures
tends to increase the SOM content [30] and that long-term
crop cultivation tends to decrease the SOM content [10]. A
fundamental difference is that earlier findingsweremostly
based on controlled experiments, while this finding was
established using much larger datasets in space and time.
It was not only more robust, but also extended the validity
of earlier findings to larger tempospatial scales.

4 Discussion

4.1 Comparison with previous assessments

Comprehensive analyses of spatial change of cropland
SOM content in NEC are relatively rare, compared to other
regions of the country [18]. Using NSS-2 data from 11 coun-
ties in NEC, Yu et al. [29] reported a decrease in topsoil OC
stock between 1980 and 2000, contrasting the general up-
ward trend in SOC for China as a whole based on the same
data. At national scale, a similar trend was also observed
by Yan et al. [18], who compared soil profile data from the
periods of 1979-1982 and 2007-2008 and found that SOC
slightly increased from 1.20% in 1980s to 1.27% in 2000s
for the top layer of Chinese cropland, despite increasing in-
tensity in crop production. However, at the regional scale
in NEC, most studies showed a general downward trend in
cropland SOM content during the past 20 years. For exam-

ple, Cheng et al. [31] reported that SOC content declined
slightly from 1.70% in 1988 to 1.67% in 2007 according to
data from long-termmonitoring and experimental stations
in NEC. More importantly, this downward trend in crop-
land SOM content was confirmed by meta-analyses. Using
frequency change as an indicator, Pan et al. [32] found that
SOC decreased on 49.2% of cropland area in NEC between
1985 and 2006 based on 62 observations published. Sim-
ilarly, a decrease in SOC content between 1993 and 2006
was found in 74.4% of all the soil samples published in 132
references in NEC [10].
The results obtained in this paper are consistentwith these
earlier assessments for the detection of a downward trend
in cropland SOM in NEC during the past 20 years. But our
assessment on the extent of this downward trend in terms
of cropland area differs from previous studies [10, 32].
Firstly,we adopted a systematic sampling strategy and col-
lected 750 samples on cropland of NEC, resulting in a con-
siderably fair spatial coverage (Figure 1). The previous as-
sessments, such as those by Huang and Sun [10] or Pan
et al. [32], used much more limited data in a somewhat
compromised spatial coverage of cropland in NEC. Sec-
ondly, we used SOM classes (Table 1) to detect the tem-
poral SOM content change between 1985 and 2005. This
approach may be less “sensitive” than using the absolute
difference to represent SOM content change as adopted by
e.g. Pan et al. [32]. However, it is more robust to use class
changes because the results can be more easily verified
in field surveys. Moreover, management decisions made
based on SOM class changes are more relevant to fertility
levels in field and thusmore reliable to implement in prac-
tice. This is because the adoption of the SOM class change
approach is in effect the adoption of a higher threshold
in SOM change detection, which consequently lowers the
likelihood of false identification of carbon hotspots in soil
management.
Overall, the cropland SOM class maps (e.g. Figure 3) re-
sulting from this research provide fairly detailed spatial
information, which was absent from earlier assessments,
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Figure 4: Percent change of cropping intensity between 1985 and 2005 (a) and application rate of mineral fertilizers and manures in circa
2000 (b), and their relationships to SOM class change (c and d), respectively, in Northeast China. The red, solid line in (c) and (d) is the
linear trend fitted between the x−axis and y−axis variables; R2 = 0.82 for (c) and 0.89 for (d). Spatial resolution of maps in (a) and (b) is 40
km. Dashed ovals annotated by A, B and C have the same meaning as in Figure 3.

and can be used to assist eco-environmental and agro-
economic decision-making at regional scale.

4.2 Spatial change of cropland SOM

Cropland SOM in NEC is observed to decrease along a NE-
SW gradient (Figure 3), providing regional evidence to an
already observed pattern at the national scale. While the
SOM content in NEC is estimated to be the highest among
regions in China, surface SOM contents in croplands of the
North China Plain [33], the Loess Plateau [34], the South-
west Highlands [35], etc. are found decreasing gradually
from the northeast to the southwest of China. The ma-
jor driving forces for this NE-SW gradient are, among oth-
ers, climate [36], land use change [37] and soil manage-
ment [38].
Firstly, temperature is a key factor controlling the rate of
decomposition of organic materials in soil [39]. Overall,
the SOM mineralization rate on the Southwest Highlands
is two timeshigher than inNECbecause of the difference in
annual temperatures. The annual temperature varies from
10◦C to 21◦C in the southwest, but in the northeast the tem-
perature varies at a much lower range, i.e. from -2◦C to
10◦C. It has been observed in experiments that the min-

eralization rate doubled for an increase in mean annual
temperature by8-9◦C [40]. TheobservedSOMgradient cor-
relates well with the temperature gradient along the NE-
SW axis in China. On the other hand, surface temperature
in China has risen 0.8◦C in the twentieth century, being
consistent with the general global trend [41]. The warming
has been observed stronger in NEC and weaker in south-
west China. The average annual temperature in NEC has
risen 1.0◦C in the past 50 years. However, the magnitude
of this temperature change is obviously less influential on
SOMmineralization rate compared to the temperature dif-
ference between northeast and southwest China. Evidence
from Belgium, which is in a similar climate zone, also sug-
gested that climate trends have little effect on observed
SOC change [42].
Secondly, dynamic changes have occurred to cropland in
NEC since the early 1980s. Fertile cropland has been lost to
other uses such as infrastructure and urbanization. Large
areas of cropland expansion have been observed too. NEC
is one of the few regions in China that still have a net
gain in cropland area [43]. According to She et al. [44] NEC
gained 3 million ha of cropland during 1993-2003, either
by converting natural grassland and forestland into crop-
land (Figure 3, annotation C or northernNEC in general) or
by re-cultivatingmarginal landswhichwere previously set
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aside (Figure 3, annotation B or southeastern Jilin). Mean-
while, some 670,000 ha of cropland was lost during the
same period. This loss was mainly caused by rapid urban-
ization during the past few decades. It has been observed
that urbanization in NEC followed a reverse NE-SW pat-
tern [45], [Figure 14], meaning that a higher urbanization
rate in the southwestern part of NEC took more cropland
out of agricultural use than in northeast NECwhere the ur-
banization rate was lower.
Thirdly, management plays an important role in main-
taining SOM levels in agro-ecosystems [42]. Although soil-
use duration and intensity have a strong impact on SOM
content [37, 46], proper management can substantially
improve cropland SOM content under intensive farming.
Long-term experiments conducted in Gongzhuling [30] in
Jilin province and Hailun [28] in Heilongjiang province
show that the dual goal of optimal crop yield and higher
SOM content can be simultaneously met by fine-tuned
application of mineral fertilizers, farmyard manures and
crop residues according to nutrient requirements. At the
end of the experiments, surface SOM contents were found
20-50% higher under soybean-maize rotation in Jilin and
maize mono-cropping in Heilongjiang respectively. This
suggests that in addition to climate and land conversion,
soil and crop management is another important driver re-
sponsible for SOM content variability across NEC.

4.3 Temporal change of cropland SOM
content

As observed earlier, cropland SOM tends to increase in
northern NEC and decrease in southern NEC during the
1985-2005 period (Figure 3c). In the main part of the Hei-
longjiang province, for example, SOM content either in-
creased by 1-2 classes or remained unchanged in 2005,
compared to 1985. However, different processes are found
behind this largely optimistic temporal change of SOM
content in the province. In central Heilongjiang province,
for example, changes in cropping intensity were hardly
observed (Figure 4a); continuous fertilization at near-
optimal rates [28] maintained at least a stable SOM level
during 1985-2005. Taking the Three-River Plain in north-
eastern Heilongjiang province (Figure 3c, annotation C) as
another example, a 50% decrease in cropping intensity
(Figure 4a) and a relatively low fertilizer application rate
of 30-40 kg/ha (Figure 4b) were simultaneously observed.
The collective effects of these two factors (Table 4) may
lead to an increase of SOM by one content class, which is
lower than the observed increase of 1-2 classes (Figure 3c).
The uncharacterized, residual magnitude of increase in

SOM content can be explained by the conversion of grass-
land or forestland to cropland [43], a phenomenon which
is usual in this region but rare in other regions.
A general pattern on cropland SOM content change be-
tween 1985 and 2005 is that cropland with lower-than-
average SOM levels was gaining area from cropland with
higher SOM levels, meaning that cropland SOM content
tends to decrease when the initial SOM content is high. As
shown in Table 1, the area of cropland with SOM > 3% de-
creased by a margin of 3.5 million ha or 12.4% from 1985
to 2005, while the area of cropland with SOM < 2% in-
creased by 3.8 million ha. This finding of a negative re-
lationship between the spatial extent of temporal change
and the magnitude of initial SOM content supports earlier
findings of the dependence of relative annual change in
SOM content on the baseline SOM value using monitoring
data from China [18, 32] or inventory data from the UK [47].
This characterized temporal pattern of SOM content
change in NEC has important implications on carbon
management in practice. Firstly, attention is needed on
the regions with high SOM values, because these re-
gions are highly vulnerable to carbon losses. Management
measures should therefore be tailored to specific natu-
ral and socio-economic conditions of these regions. Sec-
ondly, investments in soil management in SOM-poor re-
gionswillmore likely generate higher returns than in other
regions [24]. Ideally, soil management in these regions
should be guided through extension programs for small-
holder farmers as in NEC. Thirdly, although the concept of
soil management is not new, the importance of it has not
been fully recognized in agricultural practice in the past
two decades in NEC [38], as evidenced by the general de-
clining trend in cropland SOM and by the spatial extent of
cropland with decreasing SOM classes (Figure 3).

4.4 Uncertainties

Major sources of uncertainty in this paper include the ras-
terization of polygon-based soil map, kriging interpola-
tion of SOM samples and scaling of the grid datasets. Al-
though the errors associated with the vector-to-raster or
raster-to-vector conversion methodologies were well doc-
umented [48], much less has been known on how these er-
rors propagate to the assessment results or whether these
errors are large enough to impact the assessment results.
High-resolution soil datasets are useful to decrease uncer-
tainties, but such datasets are either not always available
or too expensive to collect. In trying to search for an op-
timal resolution, Yu et al. [49] recently evaluated the ef-
fect of varying raster grid sizes on the estimated SOC stock
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in the Taihu Lake region in China, using vector-converted
soil maps. Such efforts deserve more attention. Attention
should also be given to researches on error quantification,
propagation, uncertainty control [2, 50], and so forth.
Cause-effect analyses used coarse grid datasets at a reso-
lution of 40 km to attribute SOM changes to cropping in-
tensity and/or fertilization in NEC between 1985 and 2005.
Although such census-based, spatially disaggregated grid
maps are the best available datasets, they may not be suf-
ficiently detailed to isolate the effects of individual factors
by statistical analyses [51]. Further research is needed, not
only to fine-tune the spatial disaggregation method itself
but also to validate its resultmaps against denser samples.

5 Conclusions
Based on systematic sampling of cropland soils in NEC in
2005 and the SecondNational Soil Survey in 1985, an over-
all decrease in cropland SOM was detected in NEC for the
last 20 years. Although this downward trend ismostly con-
sistent with earlier findings, the spatial extent ( 40% in
area terms) of it is substantially smaller than in previous
assessments ( 50-70% of cropland). We suggest that previ-
ous assessments overestimated the area extent of the de-
clining trend of cropland SOM due to limited spatial cov-
erage of soil data used. We also find that SOM-rich crop-
lands tend to lose carbon when SOM is higher than 2%.
Moreover, our results reveal that cropping intensity and
fertilizer application are two most important factors driv-
ing SOM change in NEC. These findings indicate that bet-
ter soil management strategies need to be urgently estab-
lished through research so that the dual goal of optimal
crop yield and higher SOM content can be met.
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