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Abstract: Combining liposomes with magnetic nanoparti-
clesis an intriguing approach to create multifunctional ves-
icles for medical applications, which range from controlled
drug delivery vehicles to diagnostic imaging enhancers.
Over the past decade, significant effort has been invested
in developing such hybrids — widely known as magnetoli-
posomes — and has led to numerous new concepts. This
review provides an overview on of the current state of the
art in this field. The concept of magnetic fluid hyperther-
mia and stimuli-responsive nanoparticles for drug delivery
is briefly recapitulated. The materials needed for these
hybrids are addressed as well. The three typically followed
approaches to associate magnetic nanoparticles to the
liposomes are described and discussed more in detail. The
final chapters are dedicated to the analytical methods used
to characterize these hybrids and to theoretical considera-
tions relevant for bilayer-embedded nanoparticles.
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Introduction

A nanoparticle (NP) is defined as a material with all
three external dimensions in the nanoscale (ISO/TS:
27687:2008), i.e., below 100 nm. The current choice of
available NPs is colossal and ranges from relatively simple
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single NPs to highly complex surface derivatized NPs or
NP assemblies. All engineered NPs have one common link:
Their chemical, physical and biological properties can
differ considerably from the bulk material properties. For
example, iron oxides - such as maghemite (y-Fe,0,) and
magnetite (Fe,0,) - lose their permanent magnetization
below a certain size, which is typically below 20 nm (1).
At this point, iron oxide NPs possess only one magnetic
domain, and consequently exhibit superparamagnetic
behavior at temperatures above the so-called blocking
temperature (2). Nowadays, magnetic NPs are found in
a rapidly increasing number of applications, including
catalysis (3), sensing (4), and filtration (5). In nanomedi-
cine, superparamagnetic iron oxide NPs (SPIONs) have
gained wide acceptance in diagnosis and are used for
contrast enhancement in magnetic resonance imaging
(MRI) (6), (stem) cell tracking and labeling (7) or magnetic
separation technologies (e.g., rapid DNA sequencing) and
ultrasensitive diagnostic assays (8).

The benefits of magnetic NPs for therapeutic purposes
are indisputable, and magnetic targeting for drug or gene
delivery and magnetic fluid hyperthermia (MFH) are argu-
ably the two most important potential therapeutic applica-
tions. In particular, SPIONs are promising because of their
outstanding magnetic behavior (9), their biocompatibility
(10), and the large amount of information available on
these materials. However, the process of converting basic
research into clinical nanomedicine settings and commer-
cially sustainable products is long and complicated (11),
and the acceptance and integration of nanotechnologies
particularly into nanomedicine are very challenging.

Magnetic fluid hyperthermia -
a brief recapitulation

Magnetic fluid hyperthermia (MFH) was first proposed by
Gilchrist and colleagues (12). In short, it involves the injec-
tion of SPIONSs directly into a specific tissue or organ (e.g.,
lymph nodes) and the subsequent exposure to an alternat-
ing magnetic field (AMF) to heat the region in question up
to 45 to 47°C. Temperatures so far above the physiological
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norm can lead to widespread necrosis, coagulation or —
depending on the temperature — even carbonization (13).
This technique is mostly used as a complementary therapy
to radiation or chemotherapy with the motivation to render
cells of a tumor more sensitive to the principal treatment
(14). The method is fundamentally linked to the nanosize of
the magnetic particles, which — when exposed to an AMF
— dissipate heat through relaxation losses. Typically, the
heating potential of magnetic NPs depends on the material
itself, its concentration and size (distribution) (15). Energy
dissipation occurs either through the physical rotation of
the NP in the fluid (Brownian relaxation) or by the rotation
of the atomic magnetic moments within the particle itself
(Néel relaxation) (16). According to the theoretical model for
the volumetric energy dissipation rate developed by Rosens-
weig (9), the energy dissipation rate (i.e., heating potential)
increases with the applied AMF (i.e., its amplitude and fre-
quency). However, it has been shown that a strong AMF can
lead to non-specific heating due to eddy currents.

In recent years, significant effort was dedicated to
optimize the magnetic materials (15). This development
is, however, related to the applied magnetic field, and
many reports (17, 18) have investigated the effects of AMF
on healthy tissues in order to elucidate the maximum
magnetic field strength at a given frequency applicable
to humans (15). Currently, magnetic field conditions are
chosen to be compliant with what has been approved in
Europe for MFH. For example, for treatment of glioblas-
toma multiforme (MagForce, Berlin, Germany) magnetic
field frequencies in the order of 100-200 kHz at around
20 mT are typically chosen. In addition to the parameters
related to the magnetic field, i.e., alternating field ampli-
tude and frequency, the surrounding medium, type of
magnetic material, and particle crystallinity play a crucial
role. As demonstrated theoretically and experimentally
by Hergt and colleagues (19), adequate mean particle size
and narrow particle size distribution are extremely impor-
tant requirements for efficient heating. Moreover, in order
to successfully annihilate cancer cells, it is imperative
that sufficient heat is locally administered to account for
the losses to the surrounding tissue. This point has been
addressed by theoreticians and experimentalists with
controversial results (20, 21).

Nanomaterials for drug delivery

The ability to directly deliver drugs to relevant cell types,
and possibly to specific intracellular organelles, is essen-
tial (22) for optimally exploiting the potential of any drug
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delivery vehicle. To achieve this, many nanomaterials have
been highlighted as favorable modalities, and the majority
of the currently available formulations comprise “soft” NPs
(e.g., organic polymers and liposomes) (23). Liposomes are
artificial vesicles consisting of a phospholipid bilayer and
have been promoted for many years as future drug delivery
vehicles. The contributions of numerous researchers over
five decades have led to significant advances in the field,
and liposomes are perhaps the first nanocarriers which
have succeeded in translating from bench to bedside (24),
Doxil/Caelix being the most prominent example.

Historically, classical or first-generation drug deliv-
ery nanocarriers comprise a container, (e.g., a liposome)
and an active principle (i.e., the drug molecule). Second-
generation nanocarriers were developed to target their
therapeutic site via antibodies and other biomolecules.
Third-generation nanocarriers are designed to fulfill more
complex functions, such as time-controlled deployment
of active vesicles across different biological barriers and
different subcellular targets.

In analogy to liposome development, inorganic NPs are
nowadays promoted as potential drug delivery vehicles, but
despite important progress, many of the presently investi-
gated delivery systems are far from meeting the required
needs. Further careful design is thus imperative (25). In this
category, biocompatible SPIONs (10) are conceived as ben-
eficial, alternative targeting tools compared to other NPs,
as they are easily synthesized and surface-functionalized
(26). Due to their advantageous magnetic properties (9),
SPIONs can be used for magnetic targeting, which relies
on the delivery of magnetic NPs to the desired target area
through the application of a magnetic field gradient (27).
Following successful targeting, the SPIONs remain within
the desired region for optimal therapeutic treatment. Then
they are subsequently released and excreted. Recently, such
a concept was aptly portrayed by Kumar and colleagues
(28), who demonstrated that magnetic NPs - injected in the
tail of mice — were successfully directed to the heart and
kidneys via an external magnetic field.

Stimuli-responsive nanoparticles

Stimuli-responsive NPs are becoming more and more
prominent in the medical sciences and increasingly
encouraging in the development of next-generation
disease therapies (29, 30). To name some auspicious
examples, applications may include diagnostic imaging,
targeted drug release, hyperthermia treatment or a com-
bination of them. In general, multifunctional materials,
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which aim at providing both treatment options and diag-
nostic potential are particularly sought after to comple-
ment the emerging field of theranostics.

In regard to targeted drug delivery, stimuli-responsive
NPs are visionary concepts to deliver and release a drug
exactly where it is needed. However, the release needs to
be modulated, as passive diffusion out of the carrier alone
is usually slow. Drug release by an external stimulus
(e.g., a magnetic field, infrared light, pH etc.) is an ideal
approach, as it enables a spatial and temporal control
over the drug release. As triggers, SPIONs are again ideal
candidates due to their size- and material-dependent
physicochemical properties, which in turn bestow them
with superlative conditions to confer any nanocarrier the
ability to fulfill additional tasks.

One of the most intriguing stimuli-responsive NP-
based drug carriers is arguably the magnetoliposome, i.e.,
a combination of a liposomal drug carrier and magnetic
NPs. First described by De Cuyper and Joniau in 1988 (31),
magnetoliposomes have become remarkable hybrids due
to the multivalent properties of both the carriers and the
triggers. Liposomes may be designed to be thermosensi-
tive, i.e., to undergo a phase transition from an imperme-
able gel state to a permeable liquid-crystalline state when
a defined temperature barrier is reached (32). As men-
tioned before, magnetic NPs exhibit remarkable heating
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effects when exposed to an AMF (9). In regard to magne-
toliposomes, this inherent property is pivotal: If generated
close to the main release barrier (i.e., the phospholipid
membrane), the resulting thermal energy may be used to
alter the membrane and render it permeable to an encap-
sulated drug.

Combining these two independent systems yields a
versatile nanoplatform, which may provide combined drug
delivery and hyperthermia treatment at a specific target
site under co-instantaneous tracking via MRI (Figure 1).

In short, this covers practically the entire scope
of application, which is desirable for third-generation
nanocarriers. Although still far away from direct clinical
application, there has been significant progress in the
development and understanding over the past decade,
ranging from general biophysical investigations to trig-
gered release demonstrations. Nevertheless, a basic
understanding of all materials involved still remains the
prerequisite stage to fulfill before moving to the next step.

This review aims at presenting the most recent devel-
opments in the field, the most common materials used
and the hybrids in general. Moreover, recent biophysical
findings by the authors will be commented on to provide
a general overview on what is possible, what has been
done and - last but not least — what is still possible in the
future.

Magnetic field

.
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Figure1 Schematic representation of a SPION-liposome hybrid drug delivery system specifically designed for the triggered release of an

encapsulated hydrophilic drug.
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SPION-liposome hybrids -
obtaining the materials

The centerpiece of the magnetoliposome is unmistak-
ably the type of NP used. SPIONs are the most evident
candidate. To obtain them, there are numerous estab-
lished wet-chemical methods including microemulsions
or hydrothermal syntheses (2) in addition to gas phase
methods such as thermal decomposition in hot-wall
reactors or flame synthesis (33). While the wet-chemical
bottom up approaches typically better control particle
characteristics such as size or shape, flame syntheses
allow for continuous and therefore large-scale produc-
tion of magnetic NPs. The most dominant and widely used
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technique in the biomedical field is the co-precipitation
method of aqueous Fe?/Fe’* salt solutions by the addi-
tion of a base under inert atmosphere (34). This approach
yields magnetite NPs, which are easily oxidized to magh-
emite (Figure 2A). Adjusting particle size and size distri-
bution is extremely challenging with this process, and
the control of pH, ionic strength and seed concentration
is crucial. Since the blocking temperature depends on the
size (distribution) of the NPs, large polydispersity (i.e., a
broad particle size distribution) results in a wide range
of blocking temperatures and consequently suboptimal
magnetic behavior for many applications (34). Nonethe-
less, this method is arguably the most popular source of
SPIONSs for magnetoliposomes, as large quantities can be
synthesized at once.
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Figure 2 Transmission electron micrographs of SPIONs obtained by co-precipitation (A) or by thermal decomposition (B). Figure 2C illus-
trates possible SPION surface functionalizations to render them hydrophilic, using e.g. carboxylates (I) or tetramethyl-ammonium hydroxide

(I1) or hydrophobic using fatty acids (lll) or dopamine derivatives (1V).
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To obtain much more monodisperse SPIONs, synthe-
sis by thermal decomposition (35) has become the leading
approach. In short, an organometallic precursor (e.g., iron
oleate (36), iron acetylacetonate, iron carbonyls) is ther-
mally decomposed in a high boiling point solvent (e.g.,
octyl ether, hexadecene, eicosane). This approach yields
highly crystalline NPs with narrow size distributions
(Figure 2B) (35). Furthermore, the size can be tuned by the
choice of solvent, the reaction time and the reactant ratios.
The produced SPIONS are stabilized by a surface-attached
oleate molecule and dispersed in an organic solvent. Con-
sequently, additional steps might be required to transfer
the SPIONSs to an aqueous environment. This phase trans-
fer relies on NP surface derivatization strategies replac-
ing the originally grafted hydrophobic molecule with
hydrophilic compounds, or direct functionalization of the
surface-grafted hydrophobic molecules themselves (37).
Surface chemistry not only determines the colloidal stabil-
ity of the NPs, but also their association to the liposome,
i.e., whether they will be embedded in the hydrophobic
bilayer or within the hydrophilic lumen. An arsenal of
molecules and surface chemistry strategies are available,
and several candidates were used to date. A selection is
highlighted in Figure 2C.

For NPs encapsulated in the lumen or grafted to the
surface, citrate (38, 39) and oleate (overcoated by a hydro-
philic ligand, (40) e.g., a second lipid layer) stabilized
SPIONSs are the most frequently used candidates. For NPs
embedded in the lipid bilayer, SPIONs coated with oleic
acid (41-43) are the favored choice. Another alternative
was presented by Amstad and colleagues (44) by introduc-
ing SPIONS stabilized with palmityl-nitroDOPA (Figure 2C,
IV) into the lipid membrane, arguing that such particles
were less prone to aggregation than standard oleic acid-
coated SPIONs and that they embed themselves more will-
ingly in between the bilayer.

In all, choosing the synthetic approach and surface
coating of the NP is the first step to develop SPION-lipo-
some hybrids, and should not be taken lightly. Other
factors such as overall NP geometry are of equal impor-
tance and might contribute in yielding more basic infor-
mation on lipid-nanoparticle interactions in general.

On the other hand, the choice of lipids determines
the phase transition temperature, which is typically set
only a few degrees above body temperature (e.g., around
42°C). Changing the composition of the liposome bilayer,
e.g., by including cholesterol, is known to reduce the
leakage of drug molecules from the liposomes by “tight-
ening” the bilayer (45). As a long blood circulation time is
generally desirable for any vesicle intended for medical
usage, adding a small percentage of Polyethylene glycol
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(PEG)-derivatized lipids in the membrane is an option
to obtain this property. PEG chains reduce the overall
uptake efficiency by macrophages, and liposomes with
this attribute are termed “stealth” (45). In all, the avail-
able selection — counting both natural and synthetic
phospholipids - is immense and way beyond the scope
of this review.

Magnetoliposomes and the state of
the art

The NP surface properties determine where the particles
will spatially be located within the liposome. Over the past
years, numerous variations of magnetoliposomes have
been presented, and a selection is highlighted in Table 1.
Principally, research is concentrated on controlling the
release of an encapsulated drug. However, their utility as
MRI contrast agents has been presented on several occa-
sions (39, 52, 55). Other applications, such as cell sorting
and gene delivery, have also been addressed (64).

Three different approaches are possible to associate
the SPIONs to the liposomes (Figure 3). The two strate-
gies which are increasingly becoming seminal are either
to encapsulate the magnetic NPs directly within the lipo-
some lumen (38, 48, 49), the other to embed them in
between the lipid bilayer (41, 43, 44). Although pursued
with other inorganic NPs [e.g., gold (65)], directly conju-
gating SPIONSs to the liposome surface has only margin-
ally been done (42).

Depending on the final application, the spatial location
of the SPIONSs within the hybrid is a determining factor: for
MRI tracking, NPs encapsulated in the lumen are preferred.
However, when using such hybrids as drug carriers, embed-
ding the SPIONSs directly in between the lipid bilayer seems
more beneficial, as SPIONs in the liposome lumen might
impair or affect any co-encapsulated drug even before
the membrane actually becomes permeable. Moreover,
the energy, which is required to permeate the membrane,
should be delivered directly where it is needed.

Characterizing the vesicles -
options and caveats

Visualizing and characterizing magnetoliposomes is argu-
ably the most important step in developing such hybrids
and is indispensable in detecting the exact NP locations
or whether the condition applies to all specimens in the
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Figure 3 SPION-liposome hybrids. SPIONs acting as triggers to release a cargo (e.g., drug molecules) can be located in the lipid bilayer,
the lumen, or can be grafted to the surface of the liposome (from left to right).

solution. Structural and architectural details, such as the
SPION distribution or arrangement within the hybrids, are
also relevant in studying the interactions of NPs and mem-
branes in general. However, the challenge lies in providing
convincing data, which is both qualitative and quantitative,
while assuring that the hybrids are in their native state.

For giant magnetoliposomes, light and fluores-
cence microscopy offer the most straightforward options
to directly observe and characterized the hybrids (38).
Nappini and colleagues (66, 67) highlighted the utility
of these methodologies by presenting giant unilamellar
vesicles visualized by confocal laser scanning micros-
copy, in which both vesicles and NPs were fluorescently
labeled. With this approach, NP presence and distribu-
tion as well as dye release was elegantly shown. Another
useful approach was presented by Beaune and colleagues
(38): The elastic properties of the magnetoliposomes were
investigated by studying the deformation of the vesicles
under the effect of an applied magnetic field.

When working with much smaller hybrids, the physi-
cal constraints of light come into play, and alternative
methods are needed. There are several techniques avail-
able ranging beyond microscopy for investigating at the
nanoscale and particularly small vesicles (i.e., <200 nm).
As an example, scattering techniques — such as dynamic
light scattering (DLS) or small angle X-ray and neutron
scattering (SAXS and SANS) — can be used to elaborate the
size of the vesicles, which in turn provides critical infor-
mation on sample homogeneity. As an example, Amstad
and colleagues (44) have successfully employed SANS to
characterize both the sample homogeneity and the change
in membrane thickness when loaded with SPIONs. None-
theless, complementary visualization by microscopy to
investigate morphology or appearance of the sample is
unavoidable.

Transmission electron microscopy (TEM) is still the
method of choice and has been widely used in this context
(42, 46). However, conventional TEM techniques require
a high vacuum environment, which is — particularly in
the case of liposomes — highly destructive for any water-
rich sample. Although samples can be preserved, e.g., by
chemical fixation, there are still countless artifacts which
are created by either the fixation procedure itself and/
or sample drying. Moreover, this step inevitably leads to
a randomized location of the unassociated NPs over the
TEM grid. Consequently, correct and objective interpreta-
tion and discrimination between liposome associated and
non-associated NPs is very challenging (Figure 4).

Although straightforward, this method is not ideal to
reliably characterize such specimens. On the other hand,
samples can be visualized in their native state by cryo
TEM. Unlike conventional TEM, the vesicles are preserved
in a layer of vitreous ice, keeping them safe from drying
effects or the vacuum during visualization. Cryo TEM has
been used to characterize liposomes for quite some time
and has been applied on several occasions in the context
of NP-liposome hybrids (41, 44). Unfortunately, the reso-
lution was often not high enough to distinctly resolve
the bilayer, a task rendered even more challenging by
the variety of optical effects which may occur (68). Chen
and colleagues (41) proved the presence of NPs by subse-
quent energy-dispersive X-ray spectroscopy (EDX) Electron
microscopy in general needs to be interpreted extremely
carefully: Merely a two-dimensional projection of the
sample is provided by this methodology and leaves the
three-dimensional aspects — such as the spatial location of
the NPs in regard to the lipid bilayer — subject to specula-
tion. Deducing architectural features by relying solely on
single projections is therefore not feasible. This query can
be countered by cryo-electron tomography, which finally
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Figure 4 Cryo TEM images of SPIONs and liposomes at tilt angles of -30° (A, C) and +30° (B, D). A: Although particles at —30° seem to be
associated with the liposome membrane, the tilt image at 30° (B) challenges this interpretation: it is the loss of the third dimension during
the projection which leads to this misinterpretation. (C) Again, a cluster of particles seemingly interacts with the liposome membrane in
the —30° tilt angle image. This interpretation is maintained, independent of the tilt angle (D). © 2013 IEEE. Reprinted, with permission, from

IEEE Transactions on Magnetics, Vol. 49, No. 1, January 2013.

yields information on the structural and architectural
aspects of the vesicles. Briefly, images of the sample are
successively taken at various stage tilt angles. The collected
data may then be used to reconstruct and render the three-
dimensional appearance of the sample. Such data has
been recently presented by the authors, with resolutions
high enough to visualize the bilayer splitting around the
inclusive SPIONs, along with three-dimensional render-
ings highlighting the NP locations and arrangements (43).
Nonetheless, the investigation of small sample volumes is
not sufficient for statistical relevance, which presents — in
addition to the complexity of these techniques-the main
limitations of cryo TEM and cryo-electron tomography.

Given the fact of the pros and cons of the aforemen-
tioned methodologies, a well-balanced combination of
various techniques - i.e., scattering and spatial visuali-
zation by microscopy — is necessary to provide the infor-
mation needed on both a statistical and qualitative level.
In turn, these assessments are vital for any subsequent
upscaling and industrial perspective.

Membrane energetics — inclusion
limits between the bilayer

The incorporation of NPs into the lipid bilayer, and in par-
ticular the question of the maximum size of the NPs that
can be embedded, has puzzled scientists for quite some
time. No fully rigorous model is available in the litera-
ture to effectively quantify the energy needed to deform
a lipid bilayer and accommodate a NP. In turn, biophysi-
cal aspects and properties of lipid bilayers also come into
play.

To date, only a simplified approach has been proposed
by Wi and colleagues (69). Although the variational prob-
lem-based on the Helfrich model (70) used to determine
how the lipid membrane needs to deform to accommo-
date a NP and minimize the deformation energy — was not
solved (71), they instead made some clever assumptions on
the geometrical configurations of the membrane. This step
drastically reduces the complexity of the problem. Their
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Figure 5 The energetics behind cluster-sized inclusions in between a phospholipid membrane. (A) The inclusion energy of an inclusion
with a double spherical cap geometry, as a function of the spherical cap radius for both 100 and 1000 nanoparticles. Both radius and
energy are normalized by the corresponding values for a spherical inclusion. (B) Energy of an inclusion with an asymmetric spherical cap
geometry, with one radius equal to the liposome radius (taken equal to 50 nm) as a function of the number of nanoparticles in the inclu-
sion. The energy of a corresponding spherical inclusion is additionally shown for comparison (blue), along with that of a spherical cluster
covered by a lipid monolayer (black dashed line). (C) Radii of the asymmetric spherical cap inclusion as a function of the number of particles
in the inclusion, as compared to the spherical inclusion radius. (D) Shape of a typical asymmetric inclusion with minimal energy. (E) Cryo
TEM images showing the membrane deformation with increasing number of embedded SPIONSs, scale bar=50 nm. Reprinted with permis-
sion from ACS Nano, Vol. 8, No. 4, 2014, Pages 3451-3460. Copyright 2014 American Chemical Society.

work has important consequences, as it allowed them
to conclude that only spherical inclusions with a radius
smaller than 3.5-4 nanometers can be incorporated into
a lipid membrane. Larger spherical NPs are preferentially

expelled by the lipid membrane and stabilized by a lipid
monolayer. While these findings confirm some experimen-
tal observations made with quantum dots and SPIONs, they
cannot explain the results recently obtained by the authors
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of this review (43). In fact, inclusions with a diamond-like
shape made of hundreds of SPIONs could be incorporated
into the lipid membrane (Figure 5E). In order to explain
these findings, the aforementioned theory was extended to
inclusions with a non-spherical shape. In order to keep the
simplicity of the original model, the model was restricted
to spherical caps. This modified theory adds an addi-
tional degree of freedom, i.e., the radius of the spherical
cap. For a given inclusion volume, the calculations show
that an increase in the spherical cap radius — compared
to a spherical inclusion — leads to a lower deformation by
decreasing the bending energy of the membrane. However,
a minimum is reached for a sufficiently large cap radius,
as any further increase is penalized by the inclusion area
becoming too large. These results, shown in Figure 5,
demonstrate that NP clusters which can be organized into
non-spherical assemblies are viable options to incorporate
large quantities of SPIONs into a liposome membrane.

The importance of these results for hyperthermia
applications is significant. In fact, the dependence of
the heating rate of SPIONs exposed to an AMF is strongly
dependent on the particle size, and seems to have an
optimum for NPs with a diameter of about 20 nm (9). This
approach offers the possibility to incorporate sufficiently
large NPs to obtain optimal heating rate.

On the other hand, this also leads to new and currently
unresolved problems. For example, one open question is
whether a larger cluster of NPs remains superparamag-
netic. Losing superparamagnetism is detrimental for the
colloidal stability of the liposomes, as it would cause them
to exhibit dipolar interactions. Furthermore, the heating
power generated by NP clusters has not been systemati-
cally investigated to date. While there are studies showing
the beneficial effect of clustering on the usage of SPIONs in
MRI (72), the impact on the heating rate is a virtually unex-
plored area. However, this query is only a single example:
A long list of questions needs to be addressed in the future,
starting by which composition, particles size, size distribu-
tion is required to optimize hyperthermia performance of
the magnetoliposomes. Finding answers to these intriguing
questions will require a fundamental change in magne-
toliposome design, and further combining the previously
mentioned experimental characterization to modeling tech-
niques might be highly beneficial for future developments.

Conclusions and perspectives

Today, liposomes are clinically established, yet there
is still potential to improve them. Although significant
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effort has been invested in the development of magne-
toliposomes, we still are only scratching on the tip of the
iceberg — especially on a materials level — and the trans-
lation into the clinics is still being awaited. The efficacy
of smart drug delivery systems, however, implies that the
hybrids are thoroughly characterized by emerging and
complementary techniques, which is — in our opinion -
arguably one of the principal drawbacks in developing
them. The complexity of these systems is highlighted by
the multidisciplinary expertise needed, which includes
organic and inorganic chemistry, bio- and magnetophys-
ics, pharmacology and biology. Nonetheless, the last
decade has yielded interesting new concepts. Some of
them have been tested in laboratory settings, and further
advancement will hopefully bring these hybrids a step
closer to direct clinical application in the future.
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