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Abstract: Intracellular delivery of promising therapeutic 
agents as well as nanocarriers presents a unique chal-
lenge. However, with the discovery of the cell-penetrating 
peptides (CPPs), overcoming this obstacle seems more 
plausible. In many cases, CPPs conjugated with therapeu-
tic agent or therapeutic agent loaded-nanoparticles have 
shown promising results via increased cellular uptake. In 
this review, the current status of CPPs for the intracellular 
delivery of not just potential therapeutic small molecules 
but also large molecules like peptides, nucleic acids and 
nanocarriers is discussed. In addition, the design of ‘smart 
stimuli-sensitive nanocarrier’ to overcome the non-target-
specificity of CPPs is also described.
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CPPs: Tools for crossing the cell 
membrane and molecular mechanism
The cell membrane, a fundamental necessity for a cell, 
presents a challenge for intracellular delivery for many 
therapeutic molecules. Most therapeutic molecules, 
whether small or large, more often, have their molecu-
lar target located intracellularly. Although such mole-
cules, like proteins, peptides, nucleic acids and various 
kinds of nanocarriers hold greater promise for improved 
therapeutic effects, their intracellular delivery remains 
challenging.

During the past 20 years, a new family of short 
peptides that readily transport across the biological 
membrane, known as cell-penetrating peptides (CPPs) 
has emerged. This discovery has been regarded as a 

potentially important step in the development of novel 
strategies to increase the intracellular availability of mol-
ecules of high therapeutic interest but low membrane 
permeability, including peptides, proteins and nucleic 
acids.

Classification of CPPs

Based on their origin, CPPs can be divided into three 
classes: protein-derived peptides, model peptides and 
designed peptides (1, 2). Protein-derived peptides such 
as transactivator of transcription (TAT) (3) and penetra-
tin (4), also referred to as protein transduction domains 
(PTDs), are the short stretches of the protein domain that 
are primarily responsible for their translocation ability. 
Model peptides mimic the translocation properties of 
known CPPs such as model amphipathic peptide (MAP) 
(5). Designed CPPs are produced by the fusion of hydro-
philic and hydrophobic domains from different sources. 
These include transportan (a fusion of galanin and mas-
toparan) (6), MPG (the chimeric peptide from the fusion 
sequence of HIV-1 glycoprotein (gp)41 protein and peptide 
from the nuclear localization sequence (NLS) of simian 
vacuolating virus (SV)40 T-antigen) (7). Synthetic pep-
tides such as polyarginines also show potential for trans-
location (8).

Based on the peptide sequences and binding prop-
erties to the lipids, CPPs can also be divided into three 
classes: primary amphiphatic, secondary amphiphatic 
and non-amphiphatic CPPs (9). The primary amphi-
phatic CPPs include transportan (6) or TP10 (10) and 
contain more than 20 amino acids. They have both 
hydrophobic and hydrophilic residues along their 
primary structure (9). Secondary amphiphatic CPPs 
such as penetratin (4), vascular endothelial-cadherin 
(pVEC) (11) and M918 (12) contain smaller number of 
amino acids compared to primary amphiphatic CPPs 
and their amphiphatic property is revealed when 
they form an alpha-helix or beta sheet structure upon 
interaction with a phospholipid membrane. The non-
amphiphatic CPPs are short and contain high amount 
of cationic amino acids such as arginine, for example 
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arginine-9 (R9) (8) and TAT (3, 13). All the CPPs are 
highly positively charged due to the contribution of 
basic residues such as lysine or arginine. MAP has the 
fastest cellular uptake and cargo delivery efficiency, fol-
lowed by transportan, TAT, and penetratin (14).

The successful use of these peptides for intracellular 
delivery of electrostatically or covalently linked cargos, 
including proteins, nucleic acids (15–18), liposomes (19–
21), micelles (22, 23) and other nanoparticles (24–26), has 
led efforts to identify CPPs with greater cell penetrating 
activity. Such efforts have resulted in the identification of 
CPPs with diverse amino acid sequences (Table 1).

Mechanism of uptake of CPPs

Despite of multiple studies to elucidate the mechanism 
by which CPPs enter the cells (27–31), the mechanism 
of uptake of CPPs is still not completely clear. Different 
uptake mechanisms are involved in different systems, 
and in some cases, the mechanism is cell type- or cargo 
type-specific. This difficulty in elucidating these mecha-
nisms may be due to the fact that in many cases CPPs can 
interact with multiple cell surface molecules. Therefore, 
CPPs can be taken up by cells via multiple pathways 
(28, 32, 33). There is evidence of both energy-depend-
ent vesicular mechanisms, referred to as endocytosis, 
or direct processes involving translocation through 
the lipid bilayer by CPPs (34, 35). Also, all three major 
types of endocytosis (i.e., clathrin-mediated, caveolin-
mediated and macropinocytosis) (36–40) appear to 
be involved for different CPPs or CPP-attached cargo 
(Figure 1).

Direct translocation via energy independent path-
ways may involve different mechanisms such as inverted 
micelle formation (41), the carpet-like model (42), pore 
formation (42) and membrane thinning model (43). The 
interaction of the positively charged CPP with negatively 
charged cellular membrane components such as heparan 
sulfate and the phospholipid bilayer constitutes the 
first step in all these mechanisms. These internalization 

Table 1 Examples of CPPs.

CPP Amino acid sequence Total charges References

Polyarginines (R9) RRRRRRRRR +9 (8)
TAT47–60 GRKKRRQRRRPPQ +8 (3)
M918 MVTVLFRRLRIRRACGPPRVRV +7 (12)
Penetratin (Antennapedia, pAntp) RQIKIWFQNRRMKWKK +7 (4)
TP10 AGYLLGKINLKALAALAKKIL +4 (10)

CPP uptake mechanism

Direct translocation
• Inverted micelle • Clathrin-mediated
• Carpet • Caveolae-mediated
• Pore formation • Macropinocytosis

Cell membrane

• Membrane thinning

Endocytosis

Figure 1 Scheme of different suggested pathways of CPP uptake 
mechanisms.

mechanisms are highly dependent on the peptide con-
centration, peptide sequence and lipid composition in 
each model membrane study. It has been reported that 
the direct translocation mechanism is most likely to occur 
at high CPP concentrations and for primary amphiphatic 
CPPs such as transportan analogues and MPG (28, 44, 45).  
The inverted micelle model was suggested for direct 
translocation of penetratin (46). Since this mechanism 
was shown to involve interaction between hydrophobic 
residues such as tryptophan and the hydrophobic part 
of the membrane, this mechanism is not probable for 
the highly cationic CPPs such as TAT. For pore formation 
mechanism certain threshold concentration of peptide 
is required, which is different for different peptides. The 
carpet-like model and membrane thinning model also 
involves interactions between negatively charged phos-
pholipid and cationic CPPs that leads to a carpeting and 
thinning of the membrane, respectively. This is followed 
by translocation of the CPP, only when CPP concentration 
is above a threshold concentration.

From the recent studies, it can be concluded 
that three types of endocytic uptake mechanisms are 
involved: clathrin-mediated (30), lipid raft-mediated 
through the formation of caveolae (39) and macropinocy-
tosis (36, 47, 48). The peptides reported in Table 1 can be 
also divided based on hydrophobicity such as hydrophilic 
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or arginine-rich CPPs (TAT and R9), intermediate hydro-
phobic CPPs (Penetratin, Pen-Arg, M918, pVEC) and 
hydrophobic (TP10). Since these peptides have different 
number of arginine residues and positive charges, they 
could use different cellular uptake mechanisms. Guter-
stam et  al. suggested direct translocation mechanism 
for arginine-rich CPPs such as R9 and TAT in presence of 
high pyrenebutyrate concentration (50 μM). At lower pyr-
enebutyrate concentration, translocation of R9-attached 
oligonucleotide occurred by macropinocytosis (49). 
Macropinocytosis was demonstrated to be implicated in 
the internalization of polyarginines (50), and to a much 
less extent of penetratin. Inhibition of macropinocyto-
sis also led to a decrease in the uptake for TAT, suggest-
ing macropinocytosis as a route of entry (29, 47). Dowdy 
et  al. also confirmed macropinocytosis as the route for 
TAT uptake (51). In contrast some other study has shown 
involvement of an energy- and temperature-independent 
pathways for arginine-rich CPPs (52). Different types of 
endocytic uptake mechanisms are also reported for argi-
nine-rich CPPs alone or conjugated to cargo (37, 39, 47, 53, 
54). Thus, type of cell lines and nature of cargo may affect 
their uptake mechanism.

For intermediately hydrophobic peptides such as 
pVEC, M918 and penetratin different cellular entry path-
ways are reported. It has been shown that pVEC is able 
to translocate into different cell lines (11). The involve-
ment of clathrin dependent endocytotic pathway is also 
suggested (55). M918 is able to deliver various cargo mole-
cules into different cell lines. The presence of endocytotic 
pathways (especially macropinocytosis) was confirmed 
as the uptake mechanism. However, glycoaminoglycans 
on the cell membrane are not involved in cellular uptake 
mechanism (12). For penetratin, endocytosis was sug-
gested as the uptake mechanism both in the absence or 
presence of the cargo molecules. However, different types 
of endocytotic pathways for penetratin and its cargo con-
jugates have been reported (28).

For hydrophobic CPP like TP10 alone and with cargo 
attached, different cellular uptake and translocation 
mechanisms have been demonstrated. However, the cel-
lular uptake is suggested to occur mainly via the endocy-
totic pathway (56).

CPPs and endosomal escape

After endocytosis, the entrapment in the endosomal 
compartment is the major challenge for CPPs and their 
cargoes. They could be digested by lysosomal hydrolysis 
before reaching a target. Increasing hydrophobicity of 

the complex is one way used to overcome the endoso-
mal membrane barrier (57). A variety of methods such as 
those using fusogenic lipids (58–61), membrane disrup-
tive peptides (47, 54, 62, 63) and polymers (64, 65), and 
lysomotropic agents (47, 66, 67) have been reported to 
enhance the endosomal escape of CPP-attached cargoes. 
Recently, a new CPP called PepFect6 (PF6), which has 
four chloroquine-analogs (trifluoromethylquinoline, 
QN) covalently, attached to the peptide via a succinylated 
lysine-tree is reported (68). This modification dramati-
cally increased the efficiency compared to its parent 
peptide stearyl-TP10 in the delivery of siRNA, due to the 
CPP’s increased ability to escape the endosomal com-
partment. Later, PF14 was designed with stearyl-TP10 as 
a backbone but with the lysine residues replaced with 
the non-coded amino-acid ornithine to improve complex 
formation with oligonucleotides (69). This peptide was 
more resistant to protease degradation. This was further 
modified by designing a peptide combining the trans-
fection efficiency of PF14 with an moieties to facilitate 
endosomal escape (70).

After the endosomal escape, intracellular trafficking 
of the cargo may be influenced by the presence or absence 
of the carrier. If both the carrier and the cargo remain 
attached then the high positive charge on carrier such as 
TAT and R8, may direct the CPP-conjugate to the nucleus 
where the positively charged carrier is likely to interact 
with the negatively charged DNA. To avoid this possibil-
ity, some CPP conjugates have been designed so that the 
cargo is released from the CPP after reaching the cytosol 
by using a reducible disulfide bond between the CPP and 
cargo (71).

Since the discovery over 20  years ago of CPPs, CPP-
conjugated cargoes have found applications in a variety of 
disease areas such as cancer, cardiology, stroke and pain. 
The relative lack of both toxicity and cell specificity has 
enabled the use of CPP technology in various preclinical 
models (72).

Delivery of therapeutics using CPPs
CPPs have shown great potential and can be used for 
range of therapeutic applications (as can be seen in 
Figure 2), both in vitro and in vivo. CPPs have delivered 
various cargoes to challenging target areas such as brain, 
eye, heart, immune system, intestinal wall and skin. 
More detailed information on current status of delivery 
of various therapeutics and nanocarrier-based systems 
using CPPs is given below.
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Delivery of small molecules

Conjugation with CPPs can enhance the intracellular 
delivery of small molecules. Doxorubicin (DOX) is one 
of the most commonly used drugs to treat various types 
of cancers. Dox-CPPs were found to induce apoptosis in 
MDA-MB-231 breast cancer cells at much lower doses than 
free drug (73). The cells treated with free DOX usually over 
express the anti-apoptotic protein Bcl-2. However, this 
protein was inefficient in preventing DOX-CPP-induced 
apoptosis. In another study, coupling of DOX to penetratin 
helped DOX to bypass the P-glycoprotein (Pgp)-dependent 
drug efflux from the brain and thus enhanced the uptake 
across the blood-brain barrier in an in situ brain perfusion 
model (74). Methotrexate, an anticancer agent, demon-
strated a five-fold increase in cytotoxicity with a breast 
cancer cell line after conjugation with the CPP, YTA2 (75). 
Recently, Zhang et al. reported a new analogue of trans-
portan 10 (TP10) known as TP10–5 (TK), a CPP with a 
remarkable capacity for membrane translocation (76). 
However, low levels of specificity and high toxicity limited 
its successful use for drug delivery applications. Further 
modification of TK by replacement of all lysines with his-
tidines resulted in development of a new type of acid-acti-
vated CPP (TH) with more cellular uptake at acidic pH 6.0 

compared to a typical physiological pH. After attachment 
of camptothecin (CPT) to TH, this conjugate exhibited 
increased cytotoxicity to cancer cells in a pH-dependent 
manner compared with free CPT and TK-CPT.

The conjugation of CPPs to small molecule cytotoxic 
drugs has also been used to alter the in vivo distribution 
and to improve the efficacy profile of the parent molecule. 
When DOX was attached via a non-cleavable linker to 
several CPPs derived from heparin-binding proteins or 
anti-DNA antibodies (named as ‘Vetocell’ peptides) (77), 
one of such conjugate (DTS-101, see Table 2) exhibited 
increased antitumor efficacy and reduced systemic cyto-
toxicity compared to the parent drug. In another study, 
a conjugation of Vetocell with an active metabolite of 
irinotecan showed greater efficacy and higher plasma 
levels than the parent molecule (78).

Delivery of proteins and peptides

The nature of the cell membrane restricts cellular drug 
uptake to small ( < 600 Da) and to hydrophobic molecules. 
This offers several challenges for intracellular delivery 
of proteins and peptides which have short in vivo half-
lives and poor bioavailability. Thus, methods that enable 

Cargos Carriers

Peptides

Plasmid DNA
Antisense oligonuecleotides

Association with CPPs

Extra-cellular space

Intra-cellular space

Increased cell uptake

Liposomes

siRNA

Micelles

Small molecules

Carbon nanotubes Dendrimers

Figure 2 Potential targets for intracellular delivery using CPPs.
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their efficient intracellular delivery and successful in vivo 
application are needed.

CPPs and protein delivery

The use of CPPs greatly facilitates the intracellular deliv-
ery of a wide range of proteins (79–82). The best example 
of a biologically active protein delivered by a CPP is the 
TAT- β-galactosidase (gal) fusion protein. Delivery across 
the blood-brain barrier is usually restricted to very small 
( < 6 amino acids) highly lipophilic peptides, but after 
fusion with TAT, this CPP carried 480  kDa β-gal across 
the blood-brain barrier after intraperitoneal injection (83). 
The peptide-mediated cytoplasmic delivery of macromol-
ecules had not been achieved until these studies.

CPPs also have potential in the treatment of stroke. 
Cerebral ischemia is usually the result of a blood flow 
blockage in the brain. Death of the neuronal cells after 
cerebral ischemia is associated with apoptosis. The apo-
ptosis is mediated by the release of pro-apoptotic pro-
teins and anti-apoptotic proteins such as Bcl-xL that 
counteract the pro-apoptotic process. However, failure 
to deliver these anti-apoptotic proteins to cells has been 
a challenge. Cao et  al. used the anti-apoptotic protein 
Bcl-xL conjugated to TATp for neuroprotection in a murine 
middle cerebral artery occlusion (MCAO) study (84). 
The hemagglutinin (HA)-tagged compound known as 
PTD-HA-Bcl-xL was administered intraperitoneally up to 
45 min after the start of reperfusion. The infarct size was 
significantly reduced in a dose-dependent manner meas-
ured 3 days after the start of reperfusion. PTD-HA-Bcl-xL 
also decreased ischemia-induced caspase-3 activation 
in ischemic neurons. This indicated that the effect was 

mediated partly by a reduction in the cellular apoptosis 
response following ischemia.

Cyclosporine A (CsA) is an immune suppressant and 
anti-inflammatory agent used for a number of indications. 
However, the topical application of this drug is limited 
since it cannot readily penetrate the epidermis. When 
conjugated to a polyarginine CPP by a pH-sensitive linker 
(7-mer, called R7-CsA), it resulted in enhanced penetration 
into the dermis of mouse and human skin and human 
skin grafted onto mice (85). The conjugate was taken up 
by dermal T-lymphocytes and reduced the secretion of 
the pro-inflammatory cytokine, interleukin (IL)-2 and sig-
nificantly reduced cutaneous inflammation in this mouse 
model of contact dermatitis.

Use of TAT has also enabled the delivery of antibodies 
for radiotherapeutic application (86). Morris et al. devel-
oped a new technique for protein delivery based on the 
peptide, Pep-1 (87). Pep-1 aided delivery of different pep-
tides, proteins, and antibodies inside different cells in 
vitro and in vivo, without any chemical coupling between 
the cargo and Pep-1 (79). CPPs also have great potential to 
facilitate insulin permeation from the intestinal lumen or 
nasal cavity into systemic circulation via efficient uptake 
by epithelial cells. In fact, the co-administration of insulin 
with the peptide penetratin increased intestinal and nasal 
insulin bioavailability to 35 and 50%, respectively (88).

CPPs and peptide delivery

Recently, Boisguerin et al. studied four CPPs (TAT, (RXR)4 
(an oligoarginine analog, which has an α-aminohexanoic 
acid linker (x) between arginine residues), Bpep and 
Pip2b) conjugated to the BH4-peptide, derived from the 

Table 2 Clinical status of CPP-conjugated compounds.

Company (Compound) CPP Target/Indication Status

Capstone Therapeutics 
(AZX100)

PTD4 HSP20/Keloid scarring Phase 2

KAI Pharmaceuticals
(KAI-9803) TAT PTD Protein kinase Cδ inhibitor/Myocardial infarction Phase 2b
(KAI-1678) Protein kinase Cε inhibitor/Pain Phase 2a
(KAI-1455) Protein kinase Cε inhibitor/Ischemia Phase 1
Xigen
(XG-102)

TAT PTD c-Jun-N-terminal kinases/Hearing loss,
Stroke

Phase 2
Phase 1

Revance Therapeutics
(RT001)

TAT PTD Transdemal delivery of Botulinum toxin type A/
Wrinkles
Excessive sweating

Phase 2b
Phase 1

Diatos SA
(DTS-108)

Anti-DNA antibody Nuclear delivery of cytotoxin/Cancer Preclinical
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BH4 domain of the Bcl-xL anti-apoptotic protein (89). 
TAT-BH4 and Pip2b-BH4 conjugates decreased apoptosis 
in vitro in primary cardiomyocytes. When injected intra-
venously at a low dose at the onset of reperfusion in a 
surgical model of myocardial ischemia and reperfusion 
injury, they induced a large decrease in infarct size when 
measured after 24 h reperfusion. These effects were not 
observed following the injection of the CPP alone or a 
scrambled version of BH4. A peptide inhibitor of c-Jun-
N-terminal kinase conjugated to TAT (now in clinical 
development by Xigen as XG-102), has also been shown to 
protect against apoptotic cell death in both in vitro and in 
in vivo models of cerebral ischemia (90).

Protein kinase (PK) enzymes play a major role in 
cardiac cellular function by transducing signals from 
the cell membrane to intracellular locations (91). δ-PKC 
inhibition during the reperfusion period led to restora-
tion of cellular energy stores, enhanced recovery from 
intracellular acidosis, preservation of mitochondrial 
function and reduced damage to myocytes and endothe-
lial cells after an ischemic insult (92). KAI-9803 is a novel 
peptide derived from the δV1-1 portion of δPKC, conju-
gated reversibly to the cell penetrating peptide TAT via a 
disulfide bond that inhibits δ-PKC activity by disrupting 
binding of δ-PKC to its receptor for activated C kinases, 
thereby preventing localization of δ-PKC to the mito-
chondria during periods of myocardial ischemia and rep-
erfusion (93, 94). In ex vivo studies, KAI-9803 inhibited 
global cardiac injury following ischemia and reperfusion 
in rat hearts (95) as well as in excised human cardiac 
tissue (96). Administration of KAI-9803 at the beginning 
of the reperfusion period led to much greater recovery of 
contractile function following ischemia than with a TAT 
CPP control group.

The clinical development status of several CPP-conju-
gated compounds is presented in Table 2.

Delivery of nucleic acids

Current advances in genetics have led to the recognition 
of nucleic acid-based therapies as a promising tool for 
the treatment of various pathological conditions resulting 
from unregulated expression of genes. To mediate their 
efficient cellular uptake, however, there is an urgent need 
for the delivery systems that prevent nucleic acid degra-
dation and promote intracellular delivery of loaded cargo. 
Their unique properties that enhance cellular uptake 
shared by most of CPPs make them particularly suited 
to act as gene delivery vectors. The following section 
describes the recent advances in the use of CPPs for the 

delivery of different types of nucleic acids such as DNA, 
siRNA and oligonucleosides.

DNA delivery

DNA delivery into cells has been identified as one of the 
most promising approaches to treat diseases related to 
unregulated gene expression. Overcoming physiological 
barriers that affect stability of DNA and uptake of DNA 
by targeted cells, is still the prime requirement for the 
success of DNA delivery. An approach utilizing CPPs for 
DNA delivery has been widely studied because of the very 
low toxicity profile of CPPs, low immunogenicity of CPPs, 
their ability to protect and transport loaded cargo in the 
intracellular space and a unique property shared by most 
CPPs to accumulate inside nucleus. Numerous researches 
have been carried out on CPPs for DNA delivery as out-
lined in Table 3.

The potential of peptides for DNA delivery was dem-
onstrated as early as 1998 by Pooga et al. (109). In their 
study, DNA condensed with Transportan peptide suc-
cessfully suppressed expression of functional galanin 
receptors. Later, simple complexes formed by luciferase 
encoded plasmids and oligoarginines showed a slight 
improvement in transfection efficiency in comparison to 
plasmid-only controls (110). This was improved by N-ter-
minal modification of octa-arginine (R8) by hydrophobic 
moiety such as stearic acid, referred to as stearyl-R8 (110). 
This strategy was later extended to another arginine-rich 
peptide, (RxR)4 for delivery of pDNA and showed signifi-
cant increase in gene expression in variety of cell lines 
than regular stearyl-oligoarginine (57). Recently, stearyl-
TP10 was reported to mediate efficient gene delivery in 
vitro and in vivo without any toxicity or immunogenic-
ity (111). Lo et  al. reported a TAT peptide analog modi-
fied with histidines and cysteins (C-5H-TAT-5H-C), which 
showed enhanced luciferase expression in a variety of cell 
lines. It also showed increased luciferase gene expression 
after direct injections to the brain and spinal cord (112). 
An interesting study was carried out by Liu et al., where 
the macro-branched cell penetrating peptides POLYTAT1, 
POLYTAT 2 and POLYTAT 3 were designed for gene deliv-
ery. All three compounds demonstrated higher transfec-
tion efficiency in mammalian cell lines when condensed 
with DNA compared to TAT alone (113). Rajpal et  al., 
showed synthesis of various novel CPP candidates from 
already known pVEC (101). It was found that the presence 
of histidines along with 9 arginines and secondary amphi-
pathicity showed efficient DNA delivery with low toxicity 
even in absence of chloroquine in multiple cell lines.
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siRNA delivery

RNA interference (RNAi) has been recognized as a vital 
tool for manipulation of gene expression in cells. Numer-
ous studies have exploited the usefulness of CPPs for 
intracellular delivery of siRNAs. Initial attempts were 
made to link siRNAs with CPPs either by covalent or non-
covalent approaches. Numerous studies have since been 
carried out to evaluate both approaches for the silencing 
of the target gene (Table 3).

The first successful delivery of siRNA using cell pen-
etrating peptide was achieved with the MPG peptide (102). 
Non-covalently linked siRNA/MPG complexes resulted in 
significant downregulation of the target protein, GAPDH. 
This RNAi effect was further increased when siRNA was 
complexed with MPGΔNLS, a NLS mutant of MPG. Applica-
tion of the MPG peptide was also evaluated for the deliv-
ery of siRNA in vivo. This attempt resulted in successful 
downregulation of targeted genes and ultimately a reduc-
tion in tumor growth (114). In 2006, Sandra and coworkers 
tested the ability of MPGα, a variant of MPG, for the deliv-
ery of siRNA (103). The interesting part in their study was 
the discovery of significant gene silencing with the MPGα/
siRNA complex even in presence of several endocytosis 
inhibitors. Lundberg et  al. reported a histidine-modified 
penetratin analog, an EB1 peptide, with endosomolytic 
properties, which vectorized siRNA in non-covalent 
manner and showed significant gene silencing in cell cul-
tures (115). Modified polyarginine peptides, cholesteryl 
oligoarginine, have also been exploited for the delivery of 
siRNA (106). Complexation of Chol-R9 with siRNA as well 
as DNA resulted in a significant increase in cell transfec-
tion compared to plain R9 in vitro. They observed that 
the in vivo delivery of siRNA/Chol-R9 complex resulted in 
decreased expression of intratumoral vascular endothelial 
growth factor (VEGF, the target protein), which resulted in 
a decreased tumor volume. Stearylation was also reported 
to improve siRNA delivery efficiency into cells using CPPs. 
Langel et  al. reported that stearylated transportan TP-10 
efficiently delivered a splice-correcting phosphorothioate 
20-O-methyl RNA (20-OMe ON) into cells (10, 116). Later the 
novel PF6 carrier peptide (a stearyl-TP10 analogue modi-
fied with the chloroquine derivative trifluoromethylquino-
line) was developed to improve endosomal escape (68). 
The PF6 peptide showed efficient transfection in human 
umbilical vein endothelial cells (HUVEC) and Jurkat cells 
with siRNA. Moreover, the high RNAi response produced 
by PF6/siRNA was retained in the presence of serum. The 
same group also developed PepFect 14 (PF14), by substi-
tution of stearly-TP10 lysines with ornithines (69). PF14/
siRNA nanocomplexes prepared by a solid dispersion Ta

bl
e 

3 
CP

Ps
 u

se
d 

fo
r n

uc
le

ic
 a

ci
d 

de
liv

er
y.

Pe
pt

id
e

Se
qu

en
ce

In
te

ra
ct

io
n

Re
fe

re
nc

es

DN
A 

de
liv

er
y

 
M

PG
GA

LF
LG

FL
GA

AG
ST

M
GA

W
SQ

PK
KK

RK
V

No
n-

co
va

le
nt

(9
7)

 
KA

LA
W

EA
KL

AK
AL

AK
AL

AK
HL

AK
AL

AK
AL

KA
CE

A
No

n-
co

va
le

nt
(9

8)
 

pp
TG

1
Gl

y-
Le

u-
Ph

e-
Ly

s-
Al

a-
Le

u-
Le

u-
Ly

s-
Le

u-
Le

u-
Ly

s-
Se

r-L
eu

-T
rp

-L
ys

-L
eu

-L
eu

-L
eu

-L
ys

-A
la

No
n-

co
va

le
nt

(9
9)

 
TA

T-
λ 

ph
ag

e
TA

T 
pe

pt
id

e 
lin

ke
d 

to
 p

ha
ge

 p
ro

te
in

 a
lo

ng
 w

ith
 R

GD
 p

ep
tid

e,
 N

LS
 d

om
ai

n 
of

 S
V4

0 
T 

an
tig

en
No

n-
co

va
le

nt
(1

00
)

 
S 9R

M
od

ifi
ed

 p
VE

C
No

n-
co

va
le

nt
(1

01
)

si
RN

A 
de

liv
er

y
 

M
PG

GA
LF

LG
FL

GA
AG

ST
M

GA
W

SQ
PK

KK
RK

V
No

n-
co

va
le

nt
(1

02
)

 
M

PG
ΔNL

S
GA

LF
LG

FL
GA

AG
ST

M
GA

W
SQ

PK
SK

RK
V

No
n-

co
va

le
nt

(1
02

)
 

M
PG

α
GA

LF
LA

FL
AA

AL
SL

M
GL

W
SQ

PK
KK

RK
V

No
n-

co
va

le
nt

(7
, 1

03
)

 
Ac

tiv
at

ed
 P

en
et

ra
tin

 1
RQ

IK
IW

FQ
NR

RM
KW

KK
Th

io
l l

in
ka

ge
(1

04
)

 
R 9

RR
RR

RR
RR

R
No

n-
co

va
le

nt
(1

05
)

 
Ch

ol
-R

9
Ch

ol
es

te
ry

l-R
RR

RR
RR

RR
No

n-
co

va
le

nt
(1

06
)

 
CA

DY
Ac

-G
LW

RA
LW

RL
LR

SL
W

RL
LW

RA
-c

ys
te

am
id

e
No

n-
co

va
le

nt
(1

07
)

 
LM

W
P

VS
RR

RR
RR

GG
RR

RR
No

n-
co

va
le

nt
(1

08
)

M
PG

, M
PG

 is
 a

 b
ip

ar
tit

e 
am

ph
ip

at
hi

c p
ep

tid
e 

de
riv

ed
 fr

om
 b

ot
h 

th
e 

fu
si

on
 p

ep
tid

e 
do

m
ai

n 
of

 H
IV

-1
 g

p4
1 p

ro
te

in
 a

nd
 th

e 
NL

S 
(n

uc
le

ar
 lo

ca
liz

at
io

n 
se

qu
en

ce
) o

f S
V4

0 
la

rg
e 

T 
an

tig
en

. M
PG

ΔNL
S , 

NL
S 

m
ut

an
t o

f M
PG

.



148      Sawant et al.: Therapeutic delivery using cell-penetrating peptides

technique displayed comparable RNAi activity with that 
of the freshly prepared nanocomplexes in solution (117).

Dowdy et al. reported an interesting approach for the 
delivery of siRNA using a fusion protein with three repeats 
of a TAT peptide containing a double-stranded RNA 
binding domain (PTD-DRBD) (118). PTD-DRBD showed 
efficient gene knockdown in various hard-to-transfect 
primary and transformed cells, including T cells, HUVEC 
and human embryonic stem cells without any cytotoxicity 
or immunogenicity. TAT-DRBD also showed tumor reduc-
tion in a tumor xenograft model after intratumoral deliv-
ery in mice (119).

Crombez et  al., also demonstrated the successful 
intracellular delivery of siRNA when complexed with a 
synthetic peptide, CADY (107). This peptide had very high 
affinity for siRNA (Kd = 15.2 nM) which resulted in the for-
mation of stable complexes. The cellular uptake mecha-
nism of CADY/siRNA complex was partially dependent 
on the endosomal pathway. However, it was apparently 
associated with interaction between the cell membrane 
and trypsin residues of the peptide. Low molecular weight 
protamine (LMWP), derived from natural protamine, 
evaluated for the delivery of siRNA, showed formation of 
stable complexes of LMWP with siRNA which resulted in 
gene silencing, both in vitro and in vivo (108). Interest-
ingly, the treatment with/siRNA complex did not result in 
an increase in the serum level of inflammatory cytokines 
including interferon IFN-α and interleukin IL-12 indicat-
ing a minimum immunostimulatory effect.

Delivery of pharmaceutical nanocarriers

Various types of pharmaceutical nanocarriers have been 
used successfully to increase the stability of drugs, alter 
their pharmacokinetics and ultimately reduce the unde-
sired side-effects with improvement in the efficacy of 
the loaded drugs (120, 121). The most commonly studied 
nanocarriers are liposomes and micelles. These nanocar-
riers can be loaded with a wide variety of drugs and can 
be functionalized with various ligands (120, 122). CPPs 
including TAT have been used to functionalize various 
nanocarriers (liposomes, micelles, nanoparticles) to 
increase the intracellular delivery of the cargo.

The chemistry utilized to join the peptide and nano-
carrier together has a direct effect on subsequent func-
tion. Ideally, whatever chemistry is used to attach the 
peptide to a nanocarrier should result in a uniform display 
of the peptides on the nanocarrier surface with their active 
regions clearly extended and available for interaction. For 
example, it is very important that the positive charge on 

the oligoarginine motifs are clearly available for direct 
interaction with the extracellular membranes (123). Steri-
cally blocking of the oligoarginine or other nanocarrier 
surface-attached ligands can result in mixed functional 
avidity with some nanocarriers undergoing high efficiency 
uptake while others do not. Further, for efficient uptake 
of CPP-modified nanocarrier, it is also important to have 
a high density, or ratio, of CPP on nanocarrier surfaces. 
However, low modification levels may not be sufficient 
for uptake, especially when applying small concentra-
tions of nanocarrier materials to cells (123). While devel-
oping smart stimuli-sensitive nanocarrier, it is important 
to control the peptides affinity to the nanocarrier surface. 
It has become increasingly evident that the CPP peptides 
should be attached to the cargos in such a way that allows 
them to be released intracellularly at a specific organelle 
where their activity is highest. This can be achieved with a 
linkage that is responsive to external stimuli (e.g., light or 
heat) or other environmental cues (e.g., changes in pH or 
presence of a reducing agent/protease) (124). Also, partic-
ular attention should be paid to the characteristics of the 
nanocarrier material itself, other ligands and functional 
groups on their surface, the peptide sequence itself and 
the final required utility. There are currently four general 
strategies commonly applied for attachment of peptides to 
nanoparticle materials (Table 4).

Various in vitro and in vivo examples of TAT-modified 
nanocarriers that can serve as the basis for cellular fluores-
cence and magnetic labeling reagents have been reported. 
The first example of use of TAT peptide as a vector for 
nanoparticle delivery was described in 1999 (132). TAT 
functionalized iron oxide nanoparticles efficiently labeled 
cells, to serve as a tool for magnetic resonance imaging 
(MRI) or magnetic separation of cells in vivo.

Modification of liposomes with TAT enhanced the 
delivery of liposome into cells, such as murine Lewis lung 
carcinoma (LLC) cells, human breast tumor BT20 cells, 
and rat cardiac myocytes H9C2 (19). The TAT was attached 
to liposomes via the spacer, p-nitrophenylcarbonyl-
PEG-PE, at a density of a few hundreds of TAT per single 
200  nm liposome vesicle. Only those TAT-liposomes, 
which provided direct contact of TAT residues with cells, 
displayed an enhanced uptake by the cells (133). TAT-
modified liposomes also enhanced binding and endocy-
tosis in ovarian carcinoma cells (20). Ant (43–58) and TAT 
coupled to small unilamellar liposomes accumulated 
in higher proportions within tumor cells and dendritic 
cells than unmodified control liposomes (134). Applica-
tion of CPP-modified liposomes for aerosol lung delivery 
was investigated with three CPPs: TAT, Ant, and R8 con-
jugated to neutral liposomes. Efficient internalization of 
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Table 4 Strategies applied for attachment of peptides to nanoparticle materials.

Conjugation 
strategy

Requirements Examples References

Electrostatic 
interaction

–– Simple mixing of oppositely charged peptide and 
nanocarrier.

–– Positively charged lysine-rich 21-residue Pep-1 
peptidyl sequence noncovalently associated 
with commercial streptavidin-conjugated 
CdSe/ZnS core/shell quantum dots, which 
facilitated their delivery to HeLa cells.

–– Negatively charged citrate-stabilized 
Au-nanoparticles associated with a positively 
charged, coiled peptide with a pH change used 
as a stimulus to alter the electrostatics and 
control assembly kinetic.

(125)

(126)

Direct 
interaction

–– Direct binding of certain peptide motifs to nanocarrier 
via high-affinity interactions, such as binding of thiols 
to a Au-nanoparticle surface, or to quantum dots with 
a Hisn-appended peptide (commonly a His6).

–– Peptides assembled with quantum dots to 
create sensors for monitoring proteolytic 
activity for CPP-facilitated cellular delivery.

(127)
(128)

Secondary 
interaction

–– Mixing of peptide sequences with synthetic insertion 
of a biotin groups and nanocarrier functionalized with 
avidin/streptavidin.

–– Mixing of nitriloacetic acid functionalized 
nanocarriers with a Hisn –appended peptide.

–– A variety of functionalized nanocarriers such as 
Au-nanoparticles, FePt magnetic nanoparticles 
or semiconductor quantum dots.

(129)
(130)
(131)

Covalent 
linkage

–– The most commonly available groups on both 
nanocarrier and peptides such as amines, thiols and 
carboxyl groups are used for conjugation.

–– Use of chemistry including 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide hydrochloride/ 
N-hydroxysuccinimide (EDC/NHS) to join amines to 
carboxyls, maleimides to target reduced thiols, and 
thiol exchange, which also target thiols.

–– Modification of liposomes and micelles with 
TATp.

(19, 23)

the modified liposomes was observed by airway epithelial 
cells in culture and delivered cargo (e.g. dextran) to the 
cytoplasm of the cells (135).

The requirement for direct unhindered contact of CPP 
with cells was also shown for TAT-modified micelles (23). 
These micelles, when loaded with the anticancer drug 
paclitaxel, demonstrated increased cytotoxicity in vitro 
with various cancer cell lines. This was considered to be 
a result of an increased cell interaction of TAT-modified 
micelles compared to non-modified-micelles.

The treatment of central nervous system diseases 
such as brain glioma is a major challenge due to the pres-
ence of the blood–brain barrier (BBB). The cationic charge 
of TAT can facilitate interaction with the normally nega-
tively charged BBB, triggering permeabilization of the 
cell membrane via a receptor/transporter-independent 
pathway which results in endocytosis of the sequence (41). 
TAT crossed the BBB and accumulated in the CNS (136). 
Qin et  al. covalently conjugated TAT with cholesterol to 
prepare DOX-loaded liposomes for brain glioma therapy 
(137). Results of the biodistribution study showed higher 

efficiency of brain delivery and lower cardiotoxic risk. The 
survival time of the glioma-bearing rats treated with TAT-
modified liposome was much longer than controls.

TAT was also used to modify thiocholesterol-based 
cationic lipids (TCL)-based nanolipoparticles (NLPs). 
The TAT-modified NLPs had a zwitterionic surface and 
a higher transfection efficiency than the non-modified 
cationic NLPs (138). The TAT-modified lipoplexes were 
internalized by cells mainly via a cholesterol-dependent 
clathrin-mediated pathway (139).

The potential of TAT-modified liposomes to enhance 
the delivery of a model gene, a plasmid encoding for the 
GFP (pEGFP-N1), to human brain tumor U-87 MG cells was 
investigated both in vitro and in vivo in an intracranial 
model in nude mice (140). An enhanced selective delivery 
of pEGFP-N1 to tumor cells and effective transfection was 
observed after intratumoral injection compared to plain 
plasmid-loaded lipoplexes. No transfection (green fluo-
rescence of GFP) was noted in the normal brain adjacent 
to tumors. Thus, TAT–lipoplexes may be used to augment 
the delivery of genes to tumor cells when injected 
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intratumorally, without affecting the normal adjacent 
brain.

We have reported a double–targeted delivery system 
using low cationic DNA lipoplexes modified with TAT and/
or with monoclonal anti-myosin monoclonal antibody 
2G4 (mAb 2G4) specific for cardiac myosin for targeted 
gene delivery to ischemic myocardium (141). Increased 
transfection was observed in vitro of both normoxic and 
hypoxia damaged cardiomyocytes in the presence of TAT. 
Modification of these lipoplexes with mAb 2G4 antibody 
increased the transfection further in the case of hypoxic, 
but not normoxic cardiomyocytes. After in vivo adminis-
tration, an increased accumulation of mAb 2G4-modified 
TAT lipoplexes in the ischemic rat myocardium led to 
significantly enhanced transfection of cardiomyocytes in 
the ischemic zone. Thus, the genetic transformation of 
hypoxic cardiomyocytes can be enhanced with lipoplexes 
modified with TAT and/or mAb 2G4.

We recently reported R8-modified pegylated lipo-
somal DOX (R8-PLD) for the treatment of non-small cell 
lung cancer, for which the primary treatment modal-
ity currently consists of surgery and radiotherapy. The 
treatment of non-small cell lung cancer cell line, A549 
monolayers with R8-PLD increased the level of cell death 
marker lactate dehydrogenase (LDH) secretion con-
firming higher cytotoxicity of R8-PLD than PLD. R8-PLD 
induced greater level of apoptosis to A549 tumor xeno-
graft and dramatic inhibition of tumor volume and tumor 
weight reduction (21).

The arginine octamer (R8) modified liposomes were 
studied for cellular delivery of siRNA. The R8-liposomal 
siRNA had a very high stability in serum and produced 
a highly elevated transfection efficiency of SK-MES-1 
lung tumor cells otherwise resistant to Lipofectamine 
2000-mediated transfection. The siRNA in R8-liposomes 
effectively inhibited the targeted gene and significantly 
reduced the proliferation of cancer cells (142). Argi-
nine-9 (R9) was also investigated as a potential carrier for 
siRNAs (143). Harashima et  al. have developed R8-modi-
fied liposomes with condensed DNA cores coated with 
lipid membranes. These liposomes are prepared by pro-
grammed packaging known as multifunctional envelope-
type nanodevices (MEND) and showed high transfection 
efficiency and little cytotoxicity (59, 144). This system 
was also developed for delivery of siRNA (145). The MEND 
system developed with stearyl-R8 showed highest RNAi 
response. Later, improved endosomal escape of R8-MEND 
was reported by surface decoration with a pH-dependent 
fusogenic peptide GALA and a optimized lipid mixture for 
endosomal fusion (146) or with a new pH-sensitive cati-
onic lipid, YSK05 (147).

A traceable micellar system was constructed 
from degradable poly(ethylene oxide)-block-poly(ε-
caprolactone) (PEO-b-PCL) block copolymers for simulta-
neous intracellular delivery of DOX and siRNA against P-gp 
expression in multidrug-resistant MDA-MB-435 human 
tumor models that overexpress P-gp (148). The functional 
group on the PCL block incorporated short polyamines 
for complexation with siRNA or chemically conjugated 
DOX via a pH-sensitive hydrazone linkage. These micelles 
were surface-modified with integrin Rvβ3-specific ligand 
(RGD4C) for active cancer targeting and TAT peptide for 
intracellular delivery. The micelles were further tagged 
with near-infrared fluorescent imaging probes. Compared 
to plain micelles, TAT- and RGD-micelles significantly 
increased cellular uptake of FAM-siRNA and DOX. Also the 
level of reversal of resistance was higher for RGD4C and 
TAT-modified micelles.

Kanazawa et  al. prepared methoxy poly(ethylene 
glycol) (MPEG)/polycaprolactone (PCL) diblock copoly-
mers conjugated with a TAT peptide via a disulfide linkage 
and evaluated their ability as an siRNA carrier. The MPEG-
PCL-SS-TAT/anti-VEGF siRNA complexes achieved a high 
anti-tumor effect in tumor-bearing mice after i.v. admin-
istration (149).

After endocytosis, the sequestration and entrapment 
of the majority of internalized material within endocytic 
vesicles represents the major limitation of CPP-medi-
ated delivery of biologically active molecules. When the 
endosomolytic peptide HA2 was covalently conjugated 
with TAT to induce the release of a TAT-coupled cargo 
from endocytic bodies, it exerted a more significant bio-
logical effect at lower concentrations (47). Lundberg et al. 
attempted a similar strategy by noncovalent packaging 
of siRNA duplexes with an endosomolytic peptide that 
is potentially capable of enhancing the effectiveness of 
CPP/siRNA complex delivery by inducing its release from 
endosomes (115).

Recently, a tumor-penetrating peptide, iRGD (CRGDK-
GPDC), was reported to increase vascular and tissue pen-
etration in a tumor-specific and neuropilin-1-dependent 
manner, as compared to conventional RGD peptides (150–
152). The iRGD homes to tumor sites by binding to integ-
rins, which are highly expressed in tumor endothelium. 
After binding, the iRGD peptide is proteolytically cleaved 
to produce CRGDK fragment, which favors binding to 
neuropilin-1 receptor, facilitating the penetration of 
drugs into the tumor. This lead to enhanced therapeu-
tic effect of antitumor drugs. The iRGD when conjugated 
to liposomes enhanced the antitumor efficacy in breast 
tumor cells, including multidrug-resistant cells (153). Gu 
et al. co-administered iRGD with MT1-AF7p peptide (which 
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presents high binding affinity to membrane type-1 matrix 
metalloproteinase) functionalized paclitaxel-loaded PEG-
poly(lactic acid) (PLA) nanoparticles. This resulted in sig-
nificantly improved nanoparticles extravasation across 
the blood-brain tumor barrier and accumulation in glioma 
parenchyma and longer median survival time of the nude 
mice bearing intracranial C6 glioma (154).

Smart stimuli-sensitive  
multifunctional nanocarriers
Although, CPPs have shown immense potential for intra-
cellular delivery of variety of cargoes, their in vivo applica-
tion is usually limited because of nonspecificity leading 
to risk of unwanted tissue distribution and drug-induced 
toxic effects on normal tissues. Thus, the nonselective in 
vivo penetration is of major pharmacological concern. 
To solve this problem we introduced the idea of ‘smart 
stimuli-sensitive multifunctional nanocarrier’. An ideal 
multifunctional nanocarrier should circulate in blood 
for a prolonged time, bear specific cell-surface targeting 
moieties (monoclonal antibodies, Fab fragments, phage 
display peptides) and respond to certain stimulus char-
acteristics of the pathological site (to either release an 
entrapped drug or expose “hidden” active moieties (such 
as non-specific CPPs) by surface-attached pH- or temper-
ature-sensitive coatings) and finally, deliver the cargo 
intracellularly.

We have prepared targeted long-circulating PEGylated 
liposomes and PEG–phosphatidylethanolamine (PEG–
PE)-based micelles possessing several functionalities as 
can be seen in Figure 3 (155). These nanocarriers were 
surface modified with a monoclonal antibody (infarct-
specific antimyosin antibody 2G4 or cancer-specific 
antinucleosome antibody 2C5) and cell penetrating 
TAT moieties with TAT-(short PEG)–PE derivatives. In 

addition, the low pH-sensitive PEG2000 or 5000-hydrazone 
(Hz)-PE was used for liposome surface modification or for 
micelle preparation to shield the TAT moieties at normal 
pH. At pH 7.5–8.0, both liposomes and micelles had high 
specific binding with antibody substrates, but showed 
very limited internalization of NIH/3T3 or U-87 cells. 
However, after brief incubation (15-to-30 min) at low pH 
(pH 5.0–6.0) these nanocarriers lost their protective PEG 
shell by acidic hydrolysis of PEG–Hz–PE and acquired the 
ability to get internalized effectively by cells via exposed 
TAT moieties.

Recently, we reported multifunctional liposomes 
prepared by modification of Doxil with TAT moieties and 
cancer-specific mAb 2C5. TAT was conjugated with a short 
PEG1000-PE spacer, and mAb 2C5 was attached to a long 
PEG chain (2C5-PEG3400-PE) (156). The TAT moieties were 
shielded with pH-sensitive PEG2000-Hz-PE. This multifunc-
tional immuno-Doxil® preparation increased cytotoxicity 
of B16-F10, HeLa and MCF-7 cells when pre-incubated at 
lower pH, indicating TAT exposure and cell penetration 
activity. Based on the above idea, a liposomal delivery 
system modified with TAT-PEG2000-PE and a protective 
longer cysteine (Cys)-cleavable PEG(5000) to modulate the 
function of TAT was studied recently (157). TAT-modi-
fied stimulus-sensitive polymeric micelles prepared to 
enhance interaction with cells under acidified conditions 
have been described (22, 158).

We also expanded the applicability of this concept 
by using other stimulus sensitive bonds such as enzyme 
sensitivity. In particular, the levels of matrix metallo-
protease 2 (MMP 2) are upregulated in the extracellular 
matrix of the tumor. We reported a novel matrix metallo-
protease-2 (MMP 2)-sensitive multifunctional immunoli-
posome comprised of a TAT peptide function shielded 
sterically by long-chain PEG, mAb 2C5 for active tumor 
targeting attached to the liposomal surface and a MMP 
2-cleavable octapeptide (Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln) 
as a labile bond between long chain PEG and lipid. The 

Long PEG
chain “Shielded”

TATp

Non-“shielded”
TATp

pH-sensitive
bond

pH 5-6
mAb 2C5

mAb 2C5

Figure 3 ‘Smart’ nanocarrier system exposing targeting antibody while protecting CPPs.
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octapeptide linker was degraded by the extracellular 
MMP2 in the tumor cells, exposing the TAT moiety result-
ing in increased cellular uptake (159).

Harris et  al. developed the magnetofluorescent dex-
tran-coated iron oxide nanoparticles modified with long-
chain PEG via the MMP 2 cleavable spacer to mask CPP 
(160). This system was able to selectively accumulate at 
the xenograft tumor via the enhanced permeability and 
retention (EPR) effect, followed by detachment of PEG due 
to cleavage of the linker by endogenous MMP 2. As a con-
sequence, CPP function was exposed and cell penetration 
of the iron oxide nanoparticles was activated. Similarly, 
Mok et al. developed MMP2-senstive, PEG- and CPP-modi-
fied quantum dots (QD) for cancer diagnosis (161).

Jiang et al. group developed a “activatable cell pene-
trating peptides” (ACPPs) system for tumor imaging (162). 
In this system, a MMP2/9 substrate peptide, XPLGLAG, 
was selected as the cleavable linker, and poly Glu (E9) 
was chosen as the inhibitory polyanionic moiety to inter-
act with CPP. The CPP-bearing payload was delivered 
into tumor cells after the linker was cleaved by MMP2/9. 
It provided sharp-contrast images that distinguished the 
high-uptake regions from those with low uptake. This cor-
responded well to the MMP activity distribution (163). This 
system was further modified by adding a large- molecular-
weight carrier (dendrimer, PAMAM) to the polyarginine 
CPP of the ACPP. This system provided amplified signals 
because of the presence of more than one contrast agent 
per peptide (164). The same group recently reported acti-
vatable cell-penetrating peptide (dtACPP) system that is 
dual-triggered by the lowered pH and MMP2. The dtACPP-
modified nanoparticles used to co-deliver plasmid 
expressing interfering RNA targeting VEGF (shVEGF) 
and DOX resulted in effective shutdown of blood vessels 
and cell apoptosis within the tumor (165). Based on this 
strategy, an activatable low molecular weight protamine 
(ALMWP, E10-PLGLAG-VSRRRRRRGGRRRR) in which the 
positive charges on the LMWP necessary for transduc-
tion were initially masked by a polyanionic peptide (E10) 
sequence, a MMP-2/9 cleavable peptide linker sequence 
PLGLAG16 used as a linker. This ALMWP when used as 
tumor-targeting ligand to modify PEG-PLA nanoparticles 
exhibited an enhanced MMP-dependent accumulation 
in HT-1080 (human fibrosarcoma) cells via both energy-
independent direct translocation and clathrin-mediated, 
cytoskeleton-dependent endocytosis (166). Pharmacoki-
netic and biodistribution study in HT-1080 tumor-bearing 
mice showed that ALMWP-modified paclitaxel-loaded 
nanoparticles significantly increased the accumulation of 
paclitaxel in the tumor site but not the nontarget tissues 
and also exhibited improved antitumor efficacy over that 

by unmodified nanoparticles and LMWP-functionalized 
nanoparticles.

A prodrug strategy based on electrostatic interaction, 
ATTEMPTS (antibody targeted, [protamine] triggered, 
electrically modified prodrug-type strategy) was reported. 
This system is based on the charge neutralization of CPP 
by heparin and the competitive binding between CPP and 
protamine with heparin. The system comprised of conju-
gate of the polycationic CPP and the protein drug as ‘drug 
compartment’ and ‘targeting compartment made of a 
heparin-modified antibody. There is strong electrostatic 
binding between polyanionic heparin motif on the anti-
body and the polycationic CPP, resulting in formation of 
polyelectrolyte Drug-CPP Hep-Ab prodrug style complex. 
The CPP function is inhibited due to binding with heparin 
and is expected to remain stable during targeting with no 
detachment of the two compartments. The release of the 
active CPP-drug conjugates is triggered by systemic injec-
tion of protamine (167).

Shamay et  al. reported a system in which, CPP was 
modified with photolabile caged mol- ecules, thereby pro-
viding light-dependent cell internalization (168). In this 
system, the positive charges of lysine residues on the CPP 
(52-RRMKWKK-58) were temporarily masked by photo-
cleavable groups, Nvoc(6-nitroveratrylcarbonyl), thus 
forming the caged CPP (cCPP, Ac-KRRMKNvocWKNvocK-
Nvoc). After illuminated with the UV light, the protecting 
groups (Nvoc) were cleaved and CPP function is exposed.

Concluding remarks and future 
perspectives
Discovery of various CPPs and their ability to deliver 
attached cargo intracellularly could benefit hundreds 
of potential therapeutic molecules including large mol-
ecules like peptides and nucleic acids. The progress in the 
use of CPPs would be further benefited by more detailed 
understanding of their mechanism of entry into cells 
which might lead to development of cell or tissue spe-
cific CPPs. Currently, the idea of ‘smart stimuli-sensitive 
multifunctional nanocarrier’ serves the purpose of pro-
tecting these non-specific CPPs till reaching the target. 
More detailed studies on bioavailability of CPP-modified 
nanocarrier, possible toxicity mechanisms are also impor-
tant considerations, which might depend on the nature of 
the CPP, the linker design, and the specific cargo. Thus, 
thoughtful CPP-conjugate design will be high priority to 
the development of safe and effective therapeutics. The 
production of multifunctional nanocarriers economically 
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and on large scale is also challenging. The important crite-
ria that should be kept in mind while designing multifunc-
tional nanocarriers include: (1) the use of biocompatible, 
biodegradable materials, (2) the use of simple and repro-
ducible bioconjugation techniques for the surface modi-
fication of nanocarriers, (3) a simple multifunctional 
nanocarrier assembly process, (4) the optimization of 

biophysicochemical properties of the nanocarrier to 
achieve optimal drug loading/release, a long circulation 
half-life, enhanced target tissue accumulation and (5) 
optimal nanocarrier stability.
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