Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 2, 2015

Improvement of corrosion resistance of magnesium alloys for biomedical applications

  • Kai Chen , Jianwei Dai and Xiaobo Zhang EMAIL logo
From the journal Corrosion Reviews

Abstract

In recent years, magnesium (Mg) alloys have attracted great attention due to superior biocompatibility, biodegradability, and other characteristics important for use in biodegradable implants. However, the development of Mg alloys for clinical application continues to be hindered by high corrosion rates and localized corrosion modes, both of which are detrimental to the mechanical integrity of a load-bearing temporary implant. To overcome these challenges, technologies have been developed to improve the corrosion resistance of Mg alloys, among which surface treatment is the most common way to enhance not only the corrosion resistance, but also the bioactivity of biodegradable Mg alloys. Nevertheless, surface treatments are unable to fundamentally solve the problems of fast corrosion rate and localized corrosion. Therefore, it is of great importance to alter and improve the intrinsic corrosion behavior of Mg alloys for biomedical applications. To show the significance of the intrinsic corrosion resistance of biodegradable Mg alloys and attract much attention on this issue, this article presents a review of the improvements made to enhance intrinsic corrosion resistance of Mg alloys in recent years through the design and preparation of the Mg alloys, including purifying, alloying, grain refinement, and heat treatment techniques. The influence of long-period stacking-ordered structure on corrosion behavior of the biodegradable Mg alloys is also discussed.


Corresponding author: Xiaobo Zhang, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; and Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167, China, e-mail:

Acknowledgments

This project was supported by the National Natural Science Foundation of China (51301089), the Natural Science Foundation of Jiangsu Province (BK20130745), the Innovative Foundation Project for Students of Jiangsu Province (201411276005Z) and Nanjing Institute of Technology (N20150206), and the Qing Lan Project of Jiangsu Province.

References

Atrens A, Liu M, Abidin NIZ. Corrosion mechanism applicable to biodegradable magnesium implants. Mater Sci Eng B 2011; 176: 1609–1636.10.1016/j.mseb.2010.12.017Search in Google Scholar

Atrens A, Song GL, Liu M, Shi ZM, Cao FY, Dargusch MS. Review of recent developments in the field of magnesium corrosion. Adv Eng Mater 2015; 17: 400–453.10.1002/adem.201400434Search in Google Scholar

Azeem MA, Tewari A, Mishra S, Gollapudi S, Ramamurty U. Development of novel grain morphology during hot extrusion of magnesium AZ21 alloy. Acta Mater 2010; 58: 1495–1502.10.1016/j.actamat.2009.10.056Search in Google Scholar

Ben-Haroush M, Ben-Hamu G, Eliezer D, Wagner L. The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures. Corros Sci 2008; 50: 1766–1778.10.1016/j.corsci.2008.03.003Search in Google Scholar

Bornapour M, Muja N, Shum-Tim D, Cerruti M, Pekguleryuz M. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite. Acta Biomater 2013; 9: 5319–5330.10.1016/j.actbio.2012.07.045Search in Google Scholar

Bornapour M, Celikin M, Cerruti M, Pekguleryuz M. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Mater Sci Eng C 2014; 35: 267–282.10.1016/j.msec.2013.11.011Search in Google Scholar

Chen TJ, Zhang DH, Wang W, Ma Y, Hao Y. Effects of Zn content on microstructures and mechanical properties of Mg-Zn-RE-Sn-Zr-Ca alloys. Mater Sci Eng A 2014a; 607: 17–27.10.1016/j.msea.2014.03.111Search in Google Scholar

Chen YJ, Xu ZG, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 2014b; 10: 4561–4573.10.1016/j.actbio.2014.07.005Search in Google Scholar

Deng JF, Huang GS, Zhao YC, Wang B. Electrochemical performance of AZ31 magnesium alloy under different processing conditions. Rare Metal Mat Eng 2014; 43: 316–321.10.1016/S1875-5372(14)60066-7Search in Google Scholar

Du H, Wei ZJ, Liu XW, Zhang EL. Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg-3Ca alloys for biomedical application. Mater Chem Phys 2011; 125: 568–575.10.1016/j.matchemphys.2010.10.015Search in Google Scholar

Erdmann N, Angrisani N, Reifenrath J, Lucas A, Thorey F, Bormann D, Meyer-Lindenberg A. Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative in vivo study in rabbits. Acta Biomater 2011; 7: 1421–1428.10.1016/j.actbio.2010.10.031Search in Google Scholar PubMed

Erinc M, Sillekens WH, Mannens RGTM, Werkhoven RJ. Applicability of existing magnesium alloys as biomedical implant materials. In: Nyberg EA, Agnew SR, Neelameggham NR, Pekguleryuz MO, editors. Magnesium technology. San Francisco, CA/Warrendale, PA: Minerals, Metals and Materials Society, 2009: 209–214.Search in Google Scholar

Ferreira PC, Piai KA, Takayanagui AMM, Segura-Muñoz SI. Aluminum as a risk factor for Alzheimer’s disease. Rev Latino-am Enfermagem 2008; 16: 151–157.10.1590/S0104-11692008000100023Search in Google Scholar

Feyerabend F, Fischer J, Holtz J, Witte F, Willumeit R, Drücker H, Vogt C, Hort N. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater 2010; 6: 1834–1842.10.1016/j.actbio.2009.09.024Search in Google Scholar PubMed

Fischerauer SF, Kraus T, Wu X, Tangl S, Sorantin E, Hänzi AC, Löffler JF, Uggowitzer PJ, Weinberg AM. In vivo degradation performance of micro-arc-oxidized magnesium implants: a micro-CT study in rats. Acta Biomater 2013; 9: 5411–5420.10.1016/j.actbio.2012.09.017Search in Google Scholar PubMed

Gao JH, Guan SK, Ren ZW, Sun YF, Zhu SJ, Wang B. Homogeneous corrosion of high pressure torsion treated Mg-Zn-Ca alloy in simulated body fluid. Mater Lett 2011; 65: 691–693.10.1016/j.matlet.2010.11.015Search in Google Scholar

Ghali E, Dietzel W, Kainer KU. General and localized corrosion of magnesium alloys: a critical review. J Mater Eng Perform 2004; 13: 7–23.10.1361/10599490417533Search in Google Scholar

Gollapudi S. Grain size distribution effects on the corrosion behaviour of materials. Corros Sci 2012; 62: 90–94.10.1016/j.corsci.2012.04.040Search in Google Scholar

Gu XN, Zheng YF, Cheng Y, Zhong SP, Xi TF. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009; 30: 484–498.10.1016/j.biomaterials.2008.10.021Search in Google Scholar PubMed

Gu XN, Xie XH, Li N, Zheng YF, Qin L. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater 2012; 8: 2360–2374.10.1016/j.actbio.2012.02.018Search in Google Scholar PubMed

Guan RG, Johnson I, Cui T, Zhao T, Zhao ZY, Li X, Liu HN. Electrodeposition of hydroxyapatite coating on Mg-4.0Zn-1.0Ca-0.6Zr alloy and in vitro evaluation of degradation, hemolysis, and cytotoxicity. J Biomed Mater Res A 2012; 100: 999–1015.10.1002/jbm.a.34042Search in Google Scholar PubMed

Hofstetter J, Becker M, Martinelli E, Weinberg AM, Mingler B, Kilian H, Pogatscher S, Uggowitzer PJ, Löffler JF. High-strength low-alloy (HSLA) Mg-Zn-Ca alloys with excellent biodegradation performance. JOM 2014; 66: 566–572.10.1007/s11837-014-0875-5Search in Google Scholar

Hofstetter J, Martinelli E, Weinberg AM, Becker M, Mingler B, Uggowitzer PJ, Löffler JF. Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo. Corros Sci 2015; 91: 29–36.10.1016/j.corsci.2014.09.008Search in Google Scholar

Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys – a review. Acta Biomater 2012; 8: 2442–2455.10.1016/j.actbio.2012.04.012Search in Google Scholar PubMed

Hort N, Huang Y, Fechner D, Störmer M, Blawert C, Witte F, Vogt C, Drücker H, Willumeit R, Kainer KU, Feyerabend F. Magnesium alloys as implant materials – principles of property design for Mg-RE alloys. Acta Biomater 2010; 6: 1714–1725.10.1016/j.actbio.2009.09.010Search in Google Scholar PubMed

Izumi S, Yamasaki M, Kawamura Y. Relation between corrosion behavior and microstructure of Mg-Zn-Y alloys prepared by rapid solidification at various cooling rates. Corros Sci 2009; 51: 395–402.10.1016/j.corsci.2008.11.003Search in Google Scholar

Jamesh M, Wu GS, Zhao Y, Chu PK. Effects of silicon plasma ion implantation on electrochemical corrosion behavior of biodegradable Mg-Y-RE Alloy. Corros Sci 2013; 69: 158–163.10.1016/j.corsci.2012.11.037Search in Google Scholar

Jeong YS, Kim WJ. Enhancement of mechanical properties and corrosion resistance of Mg-Ca alloys through microstructural refinement by indirect extrusion. Corros Sci 2014; 82: 392–403.10.1016/j.corsci.2014.01.041Search in Google Scholar

Jiao W, Li HF, Zhao K, Bai HY, Wang YB, Zheng YF, Wang WH. Development of CaZn based glassy alloys as potential biodegradable bone graft substitute. J Non-Crystal Solids 2011; 357: 3830–3840.10.1016/j.jnoncrysol.2011.08.003Search in Google Scholar

Kawamura Y, Yamasaki M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure. Mater Trans 2007; 48: 2986–2992.10.2320/matertrans.MER2007142Search in Google Scholar

Kim WC, Kim JG, Lee JY, Seok HK. Influence of Ca on the corrosion properties of magnesium for biomaterials. Mater Lett 2008; 62: 4146–4148.10.1016/j.matlet.2008.06.028Search in Google Scholar

Kirkland NT. Magnesium biomaterials: past, present and future. Corros Eng Sci Technol 2012; 47: 322–328.10.1179/1743278212Y.0000000034Search in Google Scholar

Kirkland NT, Birbilis N, Walker J, Woodfield T, Dias GJ, Staiger MP. In-vitro dissolution of magnesium-calcium binary alloys: clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys. J Biomed Mater Res B 2010a; 95: 91–100.10.1002/jbm.b.31687Search in Google Scholar

Kirkland NT, Lespagnol J, Birbilis N, Staiger MP. A survey of bio-corrosion rates of magnesium alloys. Corros Sci 2010b; 52: 287–291.10.1016/j.corsci.2009.09.033Search in Google Scholar

Kubásek J, Vojtěch D. Structural and corrosion characterization of biodegradable Mg-RE (RE=Gd, Y, Nd) alloys. Trans Nonferrous Met Soc China 2013; 23: 1215–1225.10.1016/S1003-6326(13)62586-8Search in Google Scholar

Kutniy KV, Papirov II, Tikhonovsky MA, Pikalov AI, Sivtzov SV, Pirozhenko LA, Shokurov VS, Shkuropatenko VA. Influence of grain size on mechanical and corrosion properties of magnesium alloy for medical implants. Mat-wiss Werkstofftech 2009; 40: 242–246.10.1002/mawe.200900434Search in Google Scholar

Leng Z, Zhang JH, Yin TT, Zhang L, Guo XY, Peng QM, Zhang ML, Wu RZ. Influence of biocorrosion on microstructure and mechanical properties of deformed Mg-Y-Er-Zn biomaterial containing 18R-LPSO phase. J Mech Behav Biomed Mater 2013; 28: 332–339.10.1016/j.jmbbm.2013.08.012Search in Google Scholar PubMed

Li N, Zheng YF. Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol 2013; 29: 489–502.10.1016/j.jmst.2013.02.005Search in Google Scholar

Li ZJ, Gu XN, Lou SQ, Zheng YF. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 2008; 29: 1329–1344.10.1016/j.biomaterials.2007.12.021Search in Google Scholar PubMed

Li YC, Wen CE, Mushahary D, Sravanthi R, Harishankar N, Pande G, Hodgson P. Mg-Zr-Sr alloys as biodegradable implant materials. Acta Biomater 2012; 8: 3177–3188.10.1016/j.actbio.2012.04.028Search in Google Scholar PubMed

Li T, He Y, Zhang HL, Wang XT. Microstructure, mechanical property and in vitro biocorrosion behavior of single-phase biodegradable Mg-1.5Zn-0.6Zr alloy. J Magn Alloy 2014a; 2: 181–189.10.1016/j.jma.2014.05.006Search in Google Scholar

Li H, Peng QM, Li XJ, Li K, Han ZS, Fang DQ. Microstructures, mechanical and cytocompatibility of degradable Mg-Zn based orthopedic biomaterials. Mater Des 2014b; 58: 43–51.10.1016/j.matdes.2014.01.031Search in Google Scholar

Li YX, Zhang YY, Jungwirth S, Seely N, Fang YD, Shi XM. Corrosion inhibitors for metals in maintenance equipment: introduction and recent developments. Corros Rev 2014c; 32: 163–181.10.1515/corrrev-2014-0002Search in Google Scholar

Liang SQ, Guan DK, Tan XP. The relation between heat treatment and corrosion behavior of Mg-Gd-Y-Zr alloy. Mater Des 2011; 32: 1194–1199.10.1016/j.matdes.2010.10.022Search in Google Scholar

Liao JS, Hotta M, Mori Y. Improved corrosion resistance of a high-strength Mg-Al-Mn-Ca magnesium alloy made by rapid solidification powder metallurgy. Mater Sci Eng A 2012; 544: 10–20.10.1016/j.msea.2012.02.046Search in Google Scholar

Lin X, Yang XM, Tan LL, Li M, Wang X, Zhang Y, Yang K, Hu ZQ, Qiu JH. In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy. Appl Surf Sci 2014; 288: 718–726.10.1016/j.apsusc.2013.10.113Search in Google Scholar

Liu M, Song GL. Impurity control and corrosion resistance of magnesium-aluminum alloy. Corros Sci 2013; 77: 143–150.10.1016/j.corsci.2013.07.037Search in Google Scholar

Liu CL, Xin YC, Tang GY, Chu PK. Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid. Mater Sci Eng A 2007a; 456: 350–357.10.1016/j.msea.2006.12.020Search in Google Scholar

Liu CL, Xin YC, Tian XB, Chu PK. Corrosion behavior of AZ91 magnesium alloy treated by plasma immersion ion implantation and deposition in artificial physiological fluids. Thin Solid Films 2007b; 516: 422–427.10.1016/j.tsf.2007.05.048Search in Google Scholar

Liu C, Chen DL, Bhole S, Cao X, Jahazi M. Polishing-assisted galvanic corrosion in the dissimilar friction stir welded joint of AZ31 magnesium alloy to 2024 aluminum alloy. Mater Charact 2009a; 60: 370–376.10.1016/j.matchar.2008.10.009Search in Google Scholar

Liu M, Uggowitzer PJ, Nagasekhar AV, Schmutz P, Easton M, Song GL, Atrens A. Calculated phase diagrams and the corrosion of die-cast Mg-Al alloys. Corros Sci 2009b; 51: 602–619.10.1016/j.corsci.2008.12.015Search in Google Scholar

Liu M, Schmutz P, Uggowitzer PJ, Song GL, Atrens A. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys. Corros Sci 2010; 52: 3687–3701.10.1016/j.corsci.2010.07.019Search in Google Scholar

Lu F, Ma A, Jiang JH, Yang DH, Zhou Q. Review on long-period stacking-ordered structures in Mg-Zn-RE alloys. Rare Metals 2012; 31: 303–310.10.1007/s12598-012-0510-ySearch in Google Scholar

Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: a materials perspective. Biomaterials 2007; 28: 1689–1710.10.1016/j.biomaterials.2006.11.042Search in Google Scholar PubMed

Manivasagam G, Suwas S. Biodegradable Mg and Mg based alloys for biomedical implants. Mater Sci Technol 2014; 30: 515–520.10.1179/1743284713Y.0000000500Search in Google Scholar

Mao L, Yuan GY, Wang SH, Niu JL, Wu GH, Ding WJ. A novel biodegradable Mg-Nd-Zn-Zr alloy with uniform corrosion behavior in artificial plasma. Mater Lett 2012; 88: 1–4.10.1016/j.matlet.2012.08.012Search in Google Scholar

Mario CD, Griffiths H, Goktekin O, Peeters N, Verbist J, Bosiers M, Deloose K, Heublein B, Rohde R, Kasese V, Ilsley C, Erbel R. Drug-eluting bioabsorbable magnesium stent. J Interven Cardiol 2004; 17: 391–395.10.1111/j.1540-8183.2004.04081.xSearch in Google Scholar PubMed

Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy. Mater Sci Eng A 2005; 393: 269–274.10.1016/j.msea.2004.10.040Search in Google Scholar

Mueller WD, Nascimento ML, Mele MFL. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater 2010; 6: 1749–1755.10.1016/j.actbio.2009.12.048Search in Google Scholar PubMed

Narayanan TSNS, Park IS, Lee MH. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: prospects and challenges. Prog Mater Sci 2014; 60: 1–71.10.1016/j.pmatsci.2013.08.002Search in Google Scholar

Peng LM, Chang JW, Guo XW, Atrens A, Ding WJ, Peng YH. Influence of heat treatment and microstructure on the corrosion of magnesium alloy Mg-10Gd-3Y-0.4Zr. J Appl Electrochem 2009; 39: 913–920.10.1007/s10800-008-9739-4Search in Google Scholar

Peng QM, Huang YD, Zhou L, Hort N, Kainer KU. Preparation and properties of high purity Mg-Y biomaterials. Biomaterials 2010; 31: 398–403.10.1016/j.biomaterials.2009.09.065Search in Google Scholar PubMed

Peng QM, Li XJ, Ma N, Liu RP, Zhang HJ. Effects of backward extrusion on mechanical and degradation properties of Mg-Zn biomaterial. J Mech Behav Biomed Mater 2012; 10: 128–137.10.1016/j.jmbbm.2012.02.024Search in Google Scholar PubMed

Peng QM, Guo JX, Fu H, Cai XC, Wang YN, Liu BZ, Xu ZG. Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases. Sci Rep 2014; 4: 3620.10.1038/srep03620Search in Google Scholar PubMed PubMed Central

Pound BG. Corrosion behavior of metallic materials in biomedical applications. I. Ti and its alloys. Corros Rev 2014a; 32: 1–20.10.1515/corrrev-2014-0007Search in Google Scholar

Pound BG. Corrosion behavior of metallic materials in biomedical applications. II. Stainless steels and Co-Cr alloys. Corros Rev 2014b; 32: 21–41.10.1515/corrrev-2014-0008Search in Google Scholar

Qiao ZX, Shi ZM, Hort N, Abidin NIZ, Atrens A. Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting. Corros Sci 2012; 61: 185–207.10.1016/j.corsci.2012.04.030Search in Google Scholar

Ralston KD, Birbilis N. Effect of grain size on corrosion: a review. Corrosion 2010; 66: 075005.10.5006/1.3462912Search in Google Scholar

Ralston KD, Birbilis N, Davies CHJ. Revealing the relationship between grain size and corrosion rate of metals. Scripta Mater 2010; 63: 1201–1204.10.1016/j.scriptamat.2010.08.035Search in Google Scholar

Ren YB, Huang JJ, Yang K, Zhang BC, Yao ZM, Wang H. Study of bio-corrosion of pure magnesium. Acta Metall Sin 2005; 41: 1228–1232.Search in Google Scholar

Rojaee R, Fathi M, Raeissi K. Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating. Mater Sci Eng C 2013; 33: 3817–3825.10.1016/j.msec.2013.05.014Search in Google Scholar PubMed

Salahshoor M, Guo YB. Biodegradation Control of magnesium-calcium biomaterial via adjusting surface integrity by synergistic cutting-burnishing. Procedia CIRP 2014; 13: 143–149.10.1016/j.procir.2014.04.025Search in Google Scholar

Shi ZM, Cao FY, Song GL, Liu M, Atrens A. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg-RE alloys: RE=Ce, La, Nd, Y, Gd. Corros Sci 2013; 76: 98–118.10.1016/j.corsci.2013.06.032Search in Google Scholar

Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1999; 1: 11–33.10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-NSearch in Google Scholar

Song GL, Atrens A, Dargusch M. Influence of microstructure on the corrosion of diecast AZ91D. Corros Sci 1999; 41: 249–273.10.1016/S0010-938X(98)00121-8Search in Google Scholar

Song YW, Shan DY, Han EH. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomedical application. Mater Lett 2008; 62: 3276–3279.10.1016/j.matlet.2008.02.048Search in Google Scholar

Song D, Ma AB, Jiang JH, Lin PH, Yang DH, Fan JF. Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing. Corros Sci 2011; 53: 362–373.10.1016/j.corsci.2010.09.044Search in Google Scholar

Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006; 27: 1728–1734.10.1016/j.biomaterials.2005.10.003Search in Google Scholar

Taltavull C, Torres B, Lopez AJ, Rodrigo P, Otero E, Atrens A, Rams J. Corrosion behaviour of laser surface melted magnesium alloy AZ91D. Mater Des 2014; 57: 40–50.10.1016/j.matdes.2013.12.069Search in Google Scholar

Virtanen S. Biodegradable Mg and Mg alloys: corrosion and biocompatibility. Mater Sci Eng B 2011; 176: 1600–1608.10.1016/j.mseb.2011.05.028Search in Google Scholar

Waizy H, Weizbauer A, Maibaum M, Witte F, Windhagen H, Lucas A, Denkena B, Meyer-Lindenberg A, Thorey F. Biomechanical characterisation of a degradable magnesium-based (MgCa0.8) screw. J Mater Sci Mater Med 2012; 23: 649–655.10.1007/s10856-011-4544-8Search in Google Scholar

Waksman R. Biodegradable stents: they do their job and disappear. J Invasive Cardiol 2006; 18: 70–74.Search in Google Scholar

Wan YZ, Xiong GY, Luo HL, He F, Huang Y, Zhou XS. Preparation and characterization of a new biomedical magnesium-calcium alloy. Mater Des 2008; 29: 2034–2037.10.1016/j.matdes.2008.04.017Search in Google Scholar

Wang H, Estrin Y, Zúberová Z. Bio-corrosion of a magnesium alloy with different processing histories. Mater Lett 2008; 62: 2476–2479.10.1016/j.matlet.2007.12.052Search in Google Scholar

Wang J, Wang LG, Guan SK, Zhu SJ, Ren CX, Hou SS. Microstructure and corrosion properties of as sub-rapid body fluid for vascular stent application solidification Mg-Zn-Y-Nd alloy in dynamic simulated body fluid for vascular stent application. J Mater Sci Mater Med 2010; 21: 2001–2008.10.1007/s10856-010-4063-zSearch in Google Scholar PubMed

Wang YS, Lim CS, Lim CV, Yong MS, Teo EK, Moh LN. In vitro degradation behavior of M1A magnesium alloy in protein-containing simulated body fluid. Mater Sci Eng C 2011; 31: 579–587.10.1016/j.msec.2010.11.017Search in Google Scholar

Wang JL, Tang J, Zhang P, Li YD, Wang J, Lai YX, Qin L. Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review. J Biomed Mater Res B 2012; 100: 1691–1701.10.1002/jbm.b.32707Search in Google Scholar PubMed

Wang ZQ, Li DJ, Zeng XQ, Wu XM, Ding WJ. Effects of heat treatments on corrosion behavior of Mg AT72 alloy. Mater Sci Forum 2013; 747: 230–237.10.4028/www.scientific.net/MSF.747-748.230Search in Google Scholar

Willbold E, Kalla K, Bartsch I, Bobe K, Brauneis M, Remennik S, Shechtman D, Nellesen J, Tillmann W, Vogt C, Witte F. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal. Acta Biomater 2013; 9: 8509–8517.10.1016/j.actbio.2013.02.015Search in Google Scholar PubMed

Witte F, Eliezer A. Biodegradable metals. In: Eliaz N, editor. Degradation of implant materials. New York: Springer, 2012: 93–109.Search in Google Scholar

Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005; 26: 3557–3563.10.1016/j.biomaterials.2004.09.049Search in Google Scholar PubMed

Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 2008; 12: 63–72.10.1016/j.cossms.2009.04.001Search in Google Scholar

Wu YJ, Lin DL, Zeng XQ, Peng LM, Ding WJ. Formation of a lamellar 14H-type long period stacking ordered structure in an as-cast Mg-Gd-Zn-Zr alloy. J Mater Sci 2009; 44: 1607–1612.10.1007/s10853-008-3213-xSearch in Google Scholar

Wu GS, Ibrahim JM, Chu PK. Surface design of biodegradable magnesium alloys – a review. Surf Coat Technol 2013; 233: 2–12.10.1016/j.surfcoat.2012.10.009Search in Google Scholar

Xin Y, Hu T, Chu PK. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater 2011; 7: 1452–1459.10.1016/j.actbio.2010.12.004Search in Google Scholar

Xu SW, Zheng MY, Kamado S, Wu K, Wang GJ, Lv XY. Dynamic microstructural changes during hot extrusion and mechanical properties of a Mg-5.0Zn-0.9Y-0.16Zr (wt.%) alloy. Mater Sci Eng A 2011; 528: 4055–4067.Search in Google Scholar

Yamamoto A. Biomedical application of magnesium alloys. J Japan Inst Light Met 2008; 58: 570–576.10.2464/jilm.58.570Search in Google Scholar

Yang JX, Jiao YP, Cui FZ, Lee IS, Yin QS, Zhang Y. Modification of degradation behavior of magnesium alloy by IBAD coating of calcium phosphate. Surf Coat Technol 2008; 202: 5733–5736.10.1016/j.surfcoat.2008.06.035Search in Google Scholar

Zakiyuddin A, Yun K, Lee K. Corrosion behavior of as-cast and hot rolled pure magnesium in simulated physiological media. Met Mater Int 2014; 20: 1163–1168.10.1007/s12540-014-6022-6Search in Google Scholar

Zhang GD, Huang JJ, Yang K, Zhang BC, Ai HJ. Experimental study of in vivo implantation of a magnesium alloy at early stage. Acta Metall Sin 2007; 43: 1186–1190.Search in Google Scholar

Zhang SX, Zhang XN, Zhao CL, Li JN, Song Y, Xie CY, Tao HR, Zhang Y, He YH, Jiang Y, Bian YJ. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater 2010; 6: 626–640.10.1016/j.actbio.2009.06.028Search in Google Scholar

Zhang JS, Xu JD, Cheng WL, Chen CJ, Kang JJ. Corrosion behavior of Mg-Zn-Y alloy with long-period stacking ordered structures. J Mater Sci Technol 2012a; 28: 1157–1162.10.1016/S1005-0302(12)60186-8Search in Google Scholar

Zhang XB, Wang ZZ, Yuan GY, Xue YJ. Improvement of mechanical properties and corrosion resistance of biodegradable Mg-Nd-Zn-Zr alloys by double extrusion. Mater Sci Eng B 2012b; 177: 1113–1119.10.1016/j.mseb.2012.05.020Search in Google Scholar

Zhang XB, Wu YJ, Xue YJ, Wang ZZ, Yang L. Biocorrosion behavior and cytotoxicity of a Mg-Gd-Zn-Zr alloy with long period stacking ordered structure. Mater Lett 2012c; 86: 42–45.10.1016/j.matlet.2012.07.030Search in Google Scholar

Zhang XB, Yuan GY, Mao L, Niu JL, Ding WJ. Biocorrosion properties of as-extruded Mg-Nd-Zn-Zr alloy compared with commercial AZ31 and WE43 alloys. Mater Lett 2012d; 66: 209–211.10.1016/j.matlet.2011.08.079Search in Google Scholar

Zhang XB, Yuan GY, Wang ZZ. Mechanical properties and biocorrosion resistance of Mg-Nd-Zn-Zr alloy improved by cyclic extrusion and compression. Mater Lett 2012e; 74: 128–131.10.1016/j.matlet.2012.01.086Search in Google Scholar

Zhang XB, Ba ZX, Wang ZZ, He XC, Shen C, Wang Q. Influence of silver addition on microstructure and corrosion behavior of Mg-Nd-Zn-Zr alloys for biomedical application. Mater Lett 2013a; 100: 188–191.10.1016/j.matlet.2013.03.061Search in Google Scholar

Zhang XB, Yuan GY, Fang XX, Wang ZZ, Zhang T. Effects of solution treatment on yield ratio and biocorrosion behaviour of as-extruded Mg-2.7Nd-0.2Zn-0.4Zr alloy for cardiovascular stent application. Mater Technol 2013b; 28: 155–158.10.1179/1753555712Y.0000000048Search in Google Scholar

Zhang XB, Yuan GY, Wang ZZ. Biocorrosion properties of as-cast Mg-Nd-Zn-Zr magnesium alloy. Chin J Nonferrous Met 2013c; 23: 905–911.Search in Google Scholar

Zhang XB, Yuan GY, Wang ZZ. Effects of extrusion ratio on microstructure, mechanical and corrosion properties of biodegradable Mg-Nd-Zn-Zr alloy. Mater Sci Technol 2013d; 29: 111–116.10.1179/1743284712Y.0000000107Search in Google Scholar

Zhang XB, Ba ZX, Wang Q, Wu YJ, Wang ZZ, Wang Q. Uniform corrosion behavior of GZ51K alloy with long period stacking ordered structure for biomedical application. Corros Sci 2014a; 88: 1–5.10.1016/j.corsci.2014.07.004Search in Google Scholar

Zhang XB, He XC, Xue YJ, Wang ZZ, Wang Q. Effects of Sr on microstructure and corrosion resistance in simulated body fluid of as cast Mg-Nd-Zr magnesium alloys. Corros Eng Sci Technol 2014b; 49: 345–351.10.1179/1743278213Y.0000000143Search in Google Scholar

Zhang XB, He XC, Xue YJ, Wang ZZ, Wang Q. Microstructure and corrosion resistance of as-cast Mg-Nd-Gd-Sr-Zn-Zr alloys for biomedical applications. Mater Technol 2014c; 29: 179–187.10.1179/1753555714Y.0000000129Search in Google Scholar

Zhang L, Zhang JH, Xu C, Jing YB, Zhuang JP, Wu RZ, Zhang ML. Formation of stacking faults for improving the performance of biodegradable Mg-Ho-Zn alloy. Mater Lett 2014d; 133: 158–162.10.1016/j.matlet.2014.06.171Search in Google Scholar

Zhang XB, Wang Q, Chen FB, Wu YJ, Wang ZZ, Wang Q. Relation between LPSO structure and biocorrosion behavior of biodegradable GZ51K alloy. Mater Lett 2015; 138: 212–215.10.1016/j.matlet.2014.09.133Search in Google Scholar

Zhao X, Shi LL, Xu J. A comparison of corrosion behavior in saline environment: rare earth metals (Y, Nd, Gd, Dy) for alloying of biodegradable magnesium alloys. J Mater Sci Technol 2013a; 29: 781–787.10.1016/j.jmst.2013.05.017Search in Google Scholar

Zhao X, Shi LL, Xu J. Mg-Zn-Y alloys with long-period stacking ordered structure: in vitro assessments of biodegradation behavior. Mater Sci Eng C 2013b; 33: 3627–3637.10.1016/j.msec.2013.04.051Search in Google Scholar PubMed

Zhao Y, Wu GS, Lu QY, Wu J, Xu RZ, Yeung KWK, Chu PK. Improved surface corrosion resistance of WE43 magnesium alloy by dual titanium and oxygen ion implantation. Thin Solid Films 2013c; 529: 407–411.10.1016/j.tsf.2012.05.046Search in Google Scholar

Zhao ZW, Teng XY, Zhou GR, Leng JF, Geng JW. Effect of Mg-Zn-Nd quasicrystal addition on corrosion resistance of AZ91 alloys. Rare Metal Mat Eng 2014; 43: 791–795.10.1016/S1875-5372(14)60085-0Search in Google Scholar

Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R 2014; 77: 1–34.10.1016/j.mser.2014.01.001Search in Google Scholar

Zomorodian A, Garcia MP, Silva TM, Fernandes JCS, Fernandes MH, Montemor MF. Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy. Acta Biomater 2013; 9: 8660–8670.10.1016/j.actbio.2013.02.036Search in Google Scholar PubMed

Received: 2015-1-18
Accepted: 2015-4-14
Published Online: 2015-6-2
Published in Print: 2015-7-1

©2015 by De Gruyter

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/corrrev-2015-0007/html
Scroll to top button