Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 28, 2016

Magnetic fluids’ stability improved by oleic acid bilayer-coated structure via one-pot synthesis

  • Ming-Jie Chen EMAIL logo , Hui Shen , Xin Li , Jin Ruan and Wei-Qin Yuan
From the journal Chemical Papers

Abstract

To improve the magnetic fluids’ stability and demonstrate the relationships between the bilayer-coated structure and the stability, a simple method was proposed for preparingoleic acid bilayer-coated Fe3O4 magnetic fluids. The hydrophilic Fe3O4 nanoparticles coated with the bilayer-oleic acid were synthesised by a one-pot process through the chemical co-precipitation under alkaline conditions. Next, the hydrophilic Fe3O4 particles were transformed to hydrophobic particles via carboxyl-protonated modification. Carboxyl-protonated modification was found to be a reversible process, i.e. the lipophilicity of the coated Fe3O4 nanoparticles could be controlled by protonating/deprotonating the terminal carboxyl group. In addition, the space steric effect could be significantly enhanced by maximising the oleic acid adsorption and increasing the thickness of the coated layer, resulting in the oleic acid bilayer-coated Fe3O4 nanoparticles exhibiting better performance in the stability of the hexanemagnetic fluids than oleic acid monolayer-coated Fe3O4 nanoparticles.

Acknowledgements

This work was financially supported by the Science and Technology Planning Project of Guangdong Province (no. 2010B010800046) and the National Natural Science Foundation of China (nos. 20906034 and 21207041).

References

Aadinath, W., Ghosh, T., & Anandharamakrishnan, C. (2016). Multimodal magnetic nano-carriers for cancer treatment: Challenges and advancements. Journal of Magnetism and Magnetic Materials, 401, 1159–1172. DOI 10.1016/j.jmmm. 2015.10.123.Search in Google Scholar

Balakin, B. V., Notøy, I., Hoffmann, A. C., & Kosinski, P. (2012). The formation of deposit in a magnetic fluid: Numerical and experimental study. Powder Technology, 228, 108–114. DOI 10.1016/j.powtec.2012.05.004.Search in Google Scholar

Baltrusaitis, J., Cwiertny, D. M., & Grassian, V. H. (2007). Adsorption of sulfur dioxide on hematite and goethite particle surfaces. Physical Chemistry Chemical Physics, 9, 5542–5554. DOI 10.1039/b709167b.Search in Google Scholar PubMed

Bateer, B., Qu, Y., Meng, X.Y., Tian, C.G., Du, S.C., Wang, R. H., Pan, K., & Fu, H. G. (2013). Preparation and magnetic performance of the magnetic fluid stabilized by bi-surfactant. Journal of Magnetism and Magnetic Materials, 332, 151–156. DOI 10.1016/j.jmmm.2012.12.009.Search in Google Scholar

Berkovsky, B., Medvedev, V. F., & Krakov, M. S. (1993). Magnetic fluids: Engineering applications. Oxford, UK: Oxford University Press.Search in Google Scholar

Chen, M. J., Shen, H., Li, X., & Liu, H. F. (2014). Facile synthesis of oil-soluble Fe3O4 nanoparticles based on a phase transfer mechanism. Applied Surface Science, 307, 306–310. DOI 10.1016/j.apsusc.2014.04.031.Search in Google Scholar

Chu, M. H., Chen, F., Li, Y. B., & Li, X. H. (2015). Preparation and characterization of Fe3O4/carboxyl methyl starch drug-loaded magnetic fluids. In Proceedings of the 3rd International Conference on Advances in Computer Science and Information Technology (ICACSIT 2015), 21 October 2015 (pp. 475—481). Telangana, India: The World Academy of Research in Science and Engineering.Search in Google Scholar

De Palma, R., Peeters, S., Van Bael, M. J., Van den Rul, H., Bonroy, K., Laureyn, W., Mullens, J., Borghs, G., & Maes, G. (2007). Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chemistry of Materials, 19, 1821—1831. 10.1021/cm0628000.Search in Google Scholar

Fan, H. G., Leve, E. W., Scullin, C., Gabaldon, J., Tallant, D., Bunge, S., Boyle, T., Wilson, M. C., & Brinker, C. J. (2005). Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Letters, 5, 645—648. 10.1021/nl050017l.Search in Google Scholar PubMed

Grosvenor, A. P., Kobe, B. A., Biesinger, M. C., & McIntyre, N. S. (2004). Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 36, 1564—1574. 10.1002/sia.1984.Search in Google Scholar

Hawn, D. D., & DeKoven, B. M. (1987). Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surface and Interface Analysis, 10, 63—74. 10.1002/sia.740100203.Search in Google Scholar

Holm, C., & Weis, J. J. (2005). The structure of ferrofluids: A status report. Current Opinion in Colloid & Interface Science, 10, 133—140. 10.1016/j.cocis.2005.07.005.Search in Google Scholar

Hong, R. Y., Zhang, S. Z., Han, Y. P., Li, H.Z., Ding, J., & Zheng, Y. (2006). Preparation, characterization and application of bilayer surfactant-stabilized ferrofluids. Powder Technology, 170, 1—11. 10.1016/j.powtec.2006.08.017.Search in Google Scholar

Jia, Y., Yu, X. Y., Luo, T., Zhang, M. Y., Liu, J. H., & Huang, X. J. (2013). Two-step self-assembly of iron oxide into three-dimensional hollow magnetic porous microspheres and their toxic ion adsorption mechanism. Dalton Transactions, 42, 1921—1928. 10.1039/c2dt32522e.Search in Google Scholar PubMed

Kumar, T. V. V., Prabhakar, S., & Raju, G. B. (2002). Adsorption of oleic acid at sillimanite/water interface. Journal of Colloid and Interface Science, 247, 275—281. 10.1006/jcis.2001.8131.Search in Google Scholar PubMed

Lan, Q., Liu, C., Yang, F., Liu, S. Y., Xu, J., & Sun, D. J. (2007). Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions. Journal of Colloid and Interface Science, 310, 260–269. DOI 10.1016/j.jcis.2007.01.081.Search in Google Scholar PubMed

Lee, S. Y., & Harris, M. T. (2006). Surface modification of magnetic nanoparticles capped by oleic acids: Characterization and colloidal stability in polar solvents. Journal of Colloid and Interface Science, 293, 401—408. 10.1016/j.jcis.2005.06.062.Search in Google Scholar PubMed

Lee, S. M., Kuan, Y. D., & Sung, M. F. (2011). Design and fabrication of a magnetic fluid micropump for applications in direct methanol fuel cells. Journal of Power Sources, 196, 7609—7615. 10.1016/j.jpowsour.2011.04.060.Search in Google Scholar

Liao, S. H., Liu, C. H., Bastakoti, B. P., Suzuki, N., Chang, Y., Yamauchi, Y., Lin, F. H., & Wu, K. C. W. (2015). Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. International Journal of Nanomedicine, 10, 3315—3328. 10.2147/ijn.s68719.Search in Google Scholar PubMed PubMed Central

Limaye, M. V., Singh, S. B., Date, S. K., Kothari, D., Reddy, V. R., Gupta, A., Sathe, V., Choudhary, R. J., & Kulkarni, S. K. (2009). High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. The Journal of Physical Chemistry B, 113, 9070—9076. 10.1021/jp810975v.Search in Google Scholar PubMed

Liu, X. Q., Ma, Z. Y., Xing, J. M., & Liu, H. Z. (2004). Preparation and characterization of amino—silane modified super-paramagnetic silica nanospheres. Journal of Magnetism and Magnetic Materials, 270, 1—6. 10.1016/j.jmmm.2003.07.006.Search in Google Scholar

McIntyre, N. S., & Zetaruk, D. G. (1977). X-ray photoelectron spectroscopic studies of iron oxides. Analytical Chemistry, 49, 1521—1529. 10.1021/ac50019a016.Search in Google Scholar

Muhler, M., Nielsen, L. P., Törnqvist, E., Clausen, B. S., & Topsøe, H. (1992). Temperature-programmed desorption of H2 as a tool to determine metal surface areas of Cu catalysts. Catalysis Letters, 14, 241—249. 10.1007/bf00769661.Search in Google Scholar

Pinho, M., Génevaux, J. M., Dauchez, N., Brouard, B., Collas, P., & Mezière, H. (2014). Damping induced by ferrofluid seals in ironless loudspeaker. Journal of Magnetism and Magnetic Materials, 356, 125—130. 10.1016/j.jmmm.2013.12.047.Search in Google Scholar

Shen, L. F., Laibinis, P. E., & Hatton, T. A. (1999a). Aqueous magnetic fluids stabilized by surfactant bilayers. Journal of Magnetism and Magnetic Materials, 194, 37—44. 10.1016/s0304-8853(98)00587-3.Search in Google Scholar

Shen, L. F., Laibinis, P. E., & Hatton, T. A. (1999b). Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces. Langmuir, 15, 447—453. 10.1021/la9807661.Search in Google Scholar

Szczech, M., & Horak, W. (2015). Tightness testing of rotary ferromagnetic fluid seal working in water environment. Industrial Lubrication and Tribology, 67, 455—459. 10.1108/ilt-02-2015-0014.Search in Google Scholar

Thorat, N. D., Patil, R. M., Khot, V. M., Salunkhe, A. B., Prasad, A. I., Barick, K. C., Ningthoujam, R. S., & Pawar, S. H. (2013). Highly water-dispersible surface-functionalized LSMO nanoparticles for magnetic fluid hyperthermia application. New Journal of Chemistry, 37, 2733—2742. 10.1039/c3nj00007a.Search in Google Scholar

Wang, Y., Teng, X. W., Wang, J. S., & Yang, H. (2003). Solventfree atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core–shell nanoparticles. Nano Letters, 3, 789—793. 10.1021/nl034211o.Search in Google Scholar

Wang, Z. Z., & Li, D. C. (2015). Theoretical analysis and experimental study on loading process among stages of magnetic fluid seal. International Journal of Applied Electromagnetics and Mechanics, 48, 101—110. 10.3233/jae-140126.Search in Google Scholar

Willis, A. L., Turro, N. J., & O’Brien, S. (2005). Spectroscopic characterization of the surface of iron oxide nanocrystals. Chemistry of materials, 17, 5970—5975. 10.1021/cm051370v.Search in Google Scholar

Wilson, D., & Langell, M. A. (2014). XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Applied Surface Science, 303, 6—13. 10.1016/j.apsusc.2014.02.006.Search in Google Scholar

Wu, N. Q., Fu, L., Su, M., Aslam, M., Wong, K. C., & Dravid, V. P. (2004). Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Letters, 4, 383—386. 10.1021/nl1035139x.Search in Google Scholar

Wu, H. M., Zhu, H. Z., Zhuang, J. Q., Yang, S., Liu, C., & Cao, Y. C. (2008). Water-soluble nanocrystals through dual-interaction ligands. Angewandte Chemie International Edition, 47, 3730—3734. 10.1002/anie.200800434.Search in Google Scholar

Xu, X. Q., Shen, H., Xu, J. R., & Li, X. J. (2004). Aqueous-based magnetite magnetic fluids stabilized by surface small micelles of oleolysarcosine. Applied Surface Science, 221, 430—436. 10.1016/s0169-4332(03)00959-0.Search in Google Scholar

Yamashita, T., & Hayes, P. (2008). Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 254, 2441—2449. 10.1016/j.apsusc.2007.09.063.Search in Google Scholar

Yang, K., Peng, H. B., Wen, Y. H., & Li, N. (2010). Reexamination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe2O4 nanoparticles. Applied Surface Science, 256, 3093–3097. DOI 10.1016/j. apsusc.2009.11.079.Search in Google Scholar

Yu, W. W., Chang, E., Sayes, C. M., Drezek, R., & Colvin, V. L. (2006). Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer. Nanotechnology, 17, 4483–4487. DOI 10.1088/0957-4484/17/17/033.Search in Google Scholar

Zhou, C. H., Li, X.M., Si, H.L., Guo, Y., Xu, L., Zhang, Z. J., & Li, L. S. (2011). Synthesis of water-soluble Fe3O4 nanocrystals with a phase-transfer method. Acta Chimica Sinica, 69, 1381-1386.Search in Google Scholar

Received: 2016-1-12
Revised: 2016-5-4
Accepted: 2015-5-5
Published Online: 2016-9-28
Published in Print: 2016-12-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2016-0096/html
Scroll to top button