Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 24, 2015

Characterization and optimization of mesoporous magnetic nanoparticles for immobilization and enhanced performance of porcine pancreatic lipase

  • Yong-Bo Shao , Tao Jing EMAIL logo , Jing-Zhi Tian , Yong-Jie Zheng and Ming-Hui Shang
From the journal Chemical Papers

Abstract

In this paper, Fe3O4 nanoparticles coated with mesoporous silica were prepared successfully, noted as Fe3O4 at the mobile composition of matter No. 41 (MCM-41). Also, Fe3O4 at MCM-41 was grafted by both 3-aminopropyltriethoxysilane (APTS) and 3-chloropropyltriethoxysilane (CPS), noted as Fe3O4 at MCM-41/APTS and Fe3O4 at MCM-41/CPS. The compounds were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, thermogravimetry and N2 adsorption/desorption. Then, the enzyme, porcine pancreas lipase (PPL), was immobilized onto these modified nanoparticles by covalent attachment, physical adsorption and cross-linking, noted as Fe3O4 at MCM-41/CPS-PPL, Fe3O4 at MCM-41-PPL and Fe3O4 at MCM-41/APTS-PPL, respectively. The results showed that Fe3O4 at MCM-41/CPS was the best nanomaterial for PPL immobilization, exhibiting enhanced immobilization efficiency (maximum 96 %), maximum relative activity (up to 96 %), high stability and reusability (83 % 56 days and 86.7 % ten cycles). Additionally, it offered some other advantages, such as easy recycling and reuse, complying with the trend of green chemistry. Therefore, Fe3O4 at MCM-41/CPS in combination with a relevant method can be proposed for commercial applications.

References

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. DOI: 10.1016/0003-2697(76)90527-3.10.1016/0003-2697(76)90527-3Search in Google Scholar

Calvaresi, M., & Zerbetto, F. (2013). The devil and holy water: protein and carbon nanotube hybrids. Accounts of Chemical Research, 46, 2454-2463. DOI: 10.1021/ar300347d.10.1021/ar300347dSearch in Google Scholar

Chiou, S. H., & Wu, W. T. (2004). Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials, 25, 197-204. DOI: 10.1016/s0142-9612(03)00482-4.10.1016/S0142-9612(03)00482-4Search in Google Scholar

Deng, Y. H., Cai, Y., Sun, Z. K., Gu, D., Wei, J., Li, W., Guo, X. H., Yang, J. P., & Zhao, D. Y. (2010). Multifunctional mesoporous composite microspheres with welldesigned nanostructure: a highly integrated catalyst system. Journal of the American Chemical Society, 132, 8466-8473. DOI: 10.1021/ja1025744.10.1021/ja1025744Search in Google Scholar

Diaz, J. F., & Balkus, K. J., Jr. (1996). Enzyme immobilization in MCM-41 molecular sieve. Journal of Molecular Catalysis B: Enzymatic, 2, 115-126. DOI: 10.1016/s1381-1177(96)00017-3.10.1016/S1381-1177(96)00017-3Search in Google Scholar

Dyal, A., Loos, K., Noto, M., Chang, S. W., Spagnoli, C., Shafi, K. V. P. M., Ulman, A., Cowman, M., & Gross, R. A. (2003). Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. Journal of the American Chemical Society, 125, 1684-1685. DOI: 10.1021/ja021223n.10.1021/ja021223nSearch in Google Scholar PubMed

Felhofer, J. L., Caranto, J. D., & Garcia, C. D. (2010). Adsorption kinetics of catalase to thin films of carbon nanotubes. Langmuir, 26, 17178-17183. DOI: 10.1021/la103035n.10.1021/la103035nSearch in Google Scholar PubMed PubMed Central

Fernandez-Fernandez, M., Sanroman, M., & Moldes, D. (2013). Recent developments and applications of immobilized laccase. Biotechnology Advances, 31, 1808-1825. DOI: 10.1016/ j.biotechadv.2012.02.013.10.1016/j.biotechadv.2012.02.013Search in Google Scholar PubMed

Gao, X., Yu, K. M. K., Tam, K. Y., & Tsang, S. C. (2003). Colloidal stable silica encapsulated nano-magnetic composite as a novel bio-catalyst carrier. Chemical Communications, 2003, 2998-2999. DOI: 10.1039/b310435d.10.1039/b310435dSearch in Google Scholar PubMed

Gawande, M. B., Rathi, A. K., Nogueira, I. D., Varma, R. S., & Branco, P. S. (2013a). Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions. Green Chemistry, 15, 1895-1899. DOI: 10.1039/c3gc40457a.10.1039/c3gc40457aSearch in Google Scholar

Gawande, M. B., Branco, P. S., & Varma, R. S. (2013b). Nanomagnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chemical Society Reviews, 2013, 3371-3393. DOI: 10.1039/c3cs35480f.10.1039/c3cs35480fSearch in Google Scholar

Gómez, J. L., Bastida, J., Maximo, M. F., Montiel, M. C., Murcia, M. D., & Ortega, S. (2011). Solvent-free polyglycerol polyricinoleate synthesis mediated by lipase from Rhizopus arrhizus. Biochemical Engineering Journal, 54, 111-116. DOI: 10.1016/j.bej.2011.02.007.10.1016/j.bej.2011.02.007Search in Google Scholar

Gu, F. N., Lin, W. G., Yang, J. Y., Wei, F., Wang, Y., & Zhu, J. H. (2012). Fabrication of centimeter-sized sphere of mesoporous silica with well-defined hollow nanosphere topology and its high performance in adsorbing phenylalanine. Microporous and Mesoporous Materials, 151, 142-148. DOI: 10.1016/j.micromeso.2011.11.001.10.1016/j.micromeso.2011.11.001Search in Google Scholar

Hirsh, S. L., Bilek, M. M. M., Nosworthy, N. J., Kondyurin, A., dos Remedios, C. G., & McKenzie, D. R. (2010). A comparison of covalent immobilization and physical adsorption of a cellulase enzyme mixture. Langmuir, 26, 14380-14388. DOI: 10.1021/la1019845.10.1021/la1019845Search in Google Scholar

Khoobi, M., Motevalizadeh, S. F., Asadgol, Z., Forootanfar, H., Shafiee, A., & Faramarzi, M. A. (2014). Synthesis of functionalized polyethylenimine-grafted mesoporous silica spheres and the effect of side arms on lipase immobilization and application. Biochemical Engineering Journal, 88, 131-141. DOI: 10.1016/j.bej.2014.04.009.10.1016/j.bej.2014.04.009Search in Google Scholar

Laurent, S., Forge, D., Port, M.,Roch, A.,Robic, C., Elst, L.V., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108, 2064-2110. DOI: 10.1021/cr068445e.10.1021/cr068445eSearch in Google Scholar

Lee, D. G., Ponvel, K. M., Kim, M., Hwang, S., Ahn, I. S., & Lee, C. H. (2009). Immobilization of lipase on hydrophobic nano-sized magnetite particles. Journal of Molecular Catalysis B: Enzymatic, 57, 62-66. DOI: 10.1016/j.molcatb.2008.06.017.10.1016/j.molcatb.2008.06.017Search in Google Scholar

Li, Z., Xie, K., & Slade, R. C. T. (2001). High selective catalyst CuCl/MCM-41 for oxidative carbonylation of methanol to dimethyl carbonate. Applied Catalysis A: General, 205, 85-92. DOI: 10.1016/s0926-860x(00)00546-9.10.1016/S0926-860X(00)00546-9Search in Google Scholar

Li, C. Z., Yoshimoto, M., Fukunaga, K., & Nakao, K. (2007). Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose. Bioresource Technology, 98, 1366-1372. DOI: 10.1016/j.biortech.2006.05.028.10.1016/j.biortech.2006.05.028Search in Google Scholar PubMed

Li, L., Yang, Y., Ding, J., & Xue, J. M. (2010). Synthesis of magnetite nanooctahedra and their magnetic field-induced two-/three-dimensional superstructure. Chemistry of Materials, 22, 3183-3191. DOI: 10.1021/cm100289d.10.1021/cm100289dSearch in Google Scholar

Li, B. S., Liu, Z. X., Han, C. Y., Ma,W., & Zhao, S. J. (2012). In situ synthesis, characterization, and catalytic performance of tungstophosphoric acid encapsulated into the framework of mesoporous silica pillared clay. Journal of Colloid and Interface Science, 377, 334-341. DOI: 10.1016/j.jcis.2012.03.067.10.1016/j.jcis.2012.03.067Search in Google Scholar PubMed

Li, S., Zhai, S. R., Zhang, J. M., Xiao, Z. Y., An, Q. D., Li, M. H., & Song, X. W. (2013). Magnetic and stable H3PW12O40- based core@shell nanomaterial towards the esterification of oleic acid with methanol. European Journal of Inorganic Chemistry, 2013, 5428-5435. DOI: 10.1002/ejic.201300813.10.1002/ejic.201300813Search in Google Scholar

Li, S., Zhai, S. R., An, Q. D., Li, M. H., Song, Y., & Song, X. W. (2014). Designed synthesis of multifunctional Fe3O4@SiO2-NH2@CS-Co(II) towards efficient oxidation of ethylbenzene. Materials Research Bulletin, 60, 665-673. DOI: 10.1016/j.materresbull.2014.09.042.10.1016/j.materresbull.2014.09.042Search in Google Scholar

Lin, J. F., Zhao, B. H., Cao, Y., Xu, H., Ma, S. H., Guo, M. Y., Qiao, D. R., & Cao, Y. (2014). Rationally designed Fe- MCM-41 by protein size to enhance lipase immobilization, catalytic efficiency and performance. Applied Catalysis A: General, 478, 175-185. DOI: 10.1016/j.apcata.2014.03.034.10.1016/j.apcata.2014.03.034Search in Google Scholar

Ling, Y. H., Long, M. C., Hu, P. D., Chen, Y., & Huang, J. W. (2014). Magnetically separable core-shell structural γ- Fe2O3@Cu/Al-MCM-41 nanocomposite and its performance in heterogeneous Fenton catalysis. Journal of Hazardous Materials, 264, 195-202. DOI: 10.1016/j.jhazmat.2013.11.008.10.1016/j.jhazmat.2013.11.008Search in Google Scholar PubMed

Liu, S., Chen, H. M., Lu, X. H., Deng, C. H., Zhang, X. M., & Yang, P. Y. (2010). Facile synthesis of copper(II) immobilized on magnetic mesoporous silica microspheres for selective enrichment of peptides for mass spectrometry analysis. Angewandte Chemie, 122, 7719-7723. DOI: 10.1002/ange.201003602.10.1002/ange.201003602Search in Google Scholar

Liu, C. H., Huang, C. C.,Wang, Y. W., Lee, J. D., & Chang, J. S. (2012a). Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Applied Energy, 100, 41-46. DOI: 10.1016/j.apenergy.2012.05.053.10.1016/j.apenergy.2012.05.053Search in Google Scholar

Liu, J., Bai, S. Y., Jin, Q. R., Zhong, H., Li, C., & Yang, Q. H. (2012b). Improved catalytic performance of lipase accommodated in the mesoporous silicas with polymermodified microenvironment. Langmuir, 28, 9788-9796. DOI: 10.1021/la301330s.10.1021/la301330sSearch in Google Scholar PubMed

Long, J., Jiao, A. Q., Wei, B. X., Wu, Z. Z., Zhang, Y. J., Xu, X. M., & Jin, Z. Y. (2014). A novel method for pullulanase immobilized onto magnetic chitosan/Fe3O4 composite nanoparticles by in situ preparation and evaluation of the enzyme stability. Journal of Molecular Catalysis B: Enzymatic, 109, 53-61. DOI: 10.1016/j.molcatb.2014.08.007.10.1016/j.molcatb.2014.08.007Search in Google Scholar

Lu, S., He, J., & Guo, X. (2010). Architecture and performance of mesoporous silica-lipase hybrids via non-covalent interfacial adsorption. AIChE Journal, 56, 506-514. DOI: 10.1002/aic.11963.10.1002/aic.11963Search in Google Scholar

Mateo, C., Palomo, J. M., Fuentes, M., Betancor, L., Grazu, V., Lopez-Gallego, F., Pessela, G. B. C. C., Hidalgo, A., Fernandez-Lorente, G., Fernandez-Lafuente, R., Guisan, J. M. (2006). Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme and Microbial Technology, 39, 274-280. DOI: 10.1016/j.enzmictec.2005.10.014.10.1016/j.enzmictec.2005.10.014Search in Google Scholar

Mazur, M., Barras, A., Kuncser, V., Galatanu, A., Zaitzev, V., Turcheniuk, K. V., Woisel, P., Lyskawa, J., Laure, W., Siriwardena, A., Boukherrouba, R., & Szunerits, S. (2013). Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors. Nanoscale, 2013, 2692-2702. DOI: 10.1039/c3nr33506b.10.1039/c3nr33506bSearch in Google Scholar

Mello, M. R., Phanon, D., Silveira, G. Q., Llewellyn, P. L., & Ronconi, C. M. (2011). Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous and Mesoporous Materials, 143, 174-179. DOI: 10.1016/j.micromeso.2011.02.022.10.1016/j.micromeso.2011.02.022Search in Google Scholar

Moradzadegan, A., Ranaei-Siadat, S. O., Ebrahim-Habibi, A., Barshan-Tashnizi, M., Jalili, R., Torabi, S. F., & Khajeh, K. (2010). Immobilization of acetylcholinesterase in nanofibrous PVA/BSA membranes by electrospinning. Engineering in Life Sciences, 10, 57-64. DOI: 10.1002/elsc.200900001.10.1002/elsc.200900001Search in Google Scholar

Mosafa, L., Moghadam, M., & Shahedi, M. (2013). Papain enzyme supported on magnetic nanoparticles: Preparation, characterization and application in the fruit juice clarification. Chinese Journal of Catalysis, 34, 1897-1904. DOI: 10.1016/s1872-2067(12)60663-9.10.1016/S1872-2067(12)60663-9Search in Google Scholar

Park, H. J., McConnell, J. T., Boddohi, S., Kipper, M. J., & Johnson, P. A. (2011). Synthesis and characterization of enzyme-magnetic nanoparticle complexes: effect of size on activity and recovery. Colloids and Surfaces B: Biointerface, 83, 198-203. DOI: 10.1016/j.colsurfb.2010.11.006.10.1016/j.colsurfb.2010.11.006Search in Google Scholar PubMed

Patra, A. K., Dutta, A., & Bhaumik, A. (2012). Highly ordered mesoporous TiO2-Fe2O3 mixed oxide synthesized by sol-gel pathway: An efficient and reusable heterogeneous catalyst for dehalogenation reaction. ACS Applied Materials & Interfaces, 4, 5022-5028. DOI: 10.1021/am301394u.10.1021/am301394uSearch in Google Scholar PubMed

Raghunathan, A., Melikhov, Y., Snyder, J. E., & Jiles, D. C. (2012). Modeling of two-phase magnetic materials based on Jiles-Atherton theory of hysteresis. Journal of Magnetism and Magnetic Materials, 324, 20-22. DOI: 10.1016/j.jmmm.2011.07.017.10.1016/j.jmmm.2011.07.017Search in Google Scholar

Reddy, L. H., Arias, J. L., Nicolas, J., & Couvreur, P. (2012). Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chemical Reviews, 112, 5818-5878. DOI: 10.1021/cr300068p.10.1021/cr300068pSearch in Google Scholar PubMed

Rossi, L. M., Quach, A. D., & Rosenzweig, Z. (2004). Glucose oxidase magnetite nanoparticle bioconjugate for glucose sensing. Analytical and Bioanalytical Chemistry, 380, 606-613. DOI: 10.1007/s00216-004-2770-3.10.1007/s00216-004-2770-3Search in Google Scholar PubMed

Shang, F. P., Sun, J. R., Wu, S. J., Yang, Y., Kan, Q. B., & Guan, J. Q. (2010). Direct synthesis of acid- base bifunctional mesoporous MCM-41 silica and its catalytic reactivity in deacetalization-Knoevenagel reactions. Microporous and Mesoporous Materials, 134, 44-50. DOI: 10.1016/j.micromeso.2010.05.005.10.1016/j.micromeso.2010.05.005Search in Google Scholar

Sharma, R. K., Monga, Y., & Puri, A. (2014). Magnetically separable silica@Fe3O4 core-shell supported nano-structured copper(II) composites as a versatile catalyst for the reduction of nitroarenes in aqueous medium at room temperature. Journal of Molecular Catalysis A: Chemical, 393, 84-95. DOI: 10.1016/j.molcata.2014.06.009.10.1016/j.molcata.2014.06.009Search in Google Scholar

Shi, B. F., Wang, Y. Q., Ren, J. W., Liu, X. H., Zhang, Y., Guo, Y. L., Guo, Y., & Lu, G. Z. (2010). Superparamagnetic aminopropyl-functionalized silica core-shell microspheres as magnetically separable carriers for immobilization of penicillin G acylase. Journal of Molecular Catalysis B: Enzymatic, 63, 50-56. DOI: 10.1016/j.molcatb.2009.12.003.10.1016/j.molcatb.2009.12.003Search in Google Scholar

Singamaneni, S., Bliznyuk, V. N., Binek, C., & Tsymbal, E. Y. (2011). Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. Journal of Materials Chemistry, 2011, 16819-16845. DOI: 10.1039/c1jm11845e.10.1039/c1jm11845eSearch in Google Scholar

Sohrabi, N., Rasouli, N., & Torkzadeh, M. (2014). Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles. Chemical Engineering Journal, 240, 426-433. DOI: 10.1016/j.cej.2013.11.059.10.1016/j.cej.2013.11.059Search in Google Scholar

Šulek, F., Drofenik, M., Habulin, M., & Knez, Ž. (2010). Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase. Journal of Magnetism and Magnetic Materials, 322, 179-185. DOI: 10.1016/j.jmmm.2009.07.075.10.1016/j.jmmm.2009.07.075Search in Google Scholar

Sun, C., Lee, J. S. H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 60, 1252-1265. DOI: 10.1016/j.addr.2008.03.018.10.1016/j.addr.2008.03.018Search in Google Scholar PubMed PubMed Central

Tang, W.W., Zeng, G. M., Gong, J. L., Liang, J., Xu, P., Zhang, C., & Huang, B. B. (2014). Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Science of the Total Environment, 468, 1014-1027. DOI: 10.1016/j.scitotenv.2013.09.044.10.1016/j.scitotenv.2013.09.044Search in Google Scholar PubMed

Tran, D. T., Chen, C. L., & Chang, J. S. (2012). Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. Journal of Biotechnology, 158, 112-119. DOI: 10.1016/j.jbiotec.2012.01.018.10.1016/j.jbiotec.2012.01.018Search in Google Scholar PubMed

Wang, P. (2006). Nanoscale biocatalyst systems. Current Opinion in Biotechnology, 17, 574-579. DOI: 10.1016/j.copbio. 2006.10.009.Search in Google Scholar

Wang, X. Z., Zhao, Z. B., Qu, J. Y., Wang, Z. Y., & Qiu, J. S. (2010). Shape-control and characterization of magnetite prepared via a one-step solvothermal route. Crystal Growth & Design, 10, 2863-2869. DOI: 10.1021/cg900472d.10.1021/cg900472dSearch in Google Scholar

Wang, F., Li, Z. H., Li˘u, D.,Wang, G. Q., & Liu, D. (2014). Synthesis of magnetic mesoporous silica composites via a modified St¨ober approach. Journal of Porous Materials, 21, 513-519. DOI: 10.1007/s10934-014-9798-3.10.1007/s10934-014-9798-3Search in Google Scholar

Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., Lai, C., Wei, Z., Huang, C., Xie, G. X., & Liu, Z. F. (2012a). Use of iron oxide nanomaterials in wastewater treatment: A review. Science of the Total Environment, 424, 1-10. DOI: 10.1016/j.scitotenv.2012.02.023.10.1016/j.scitotenv.2012.02.023Search in Google Scholar PubMed

Xu, P., Zeng, G. M., Huang, D. L., Lai, C., Zhao, M. H., Wei, Z., Li, N. J., Huang, C., & Xie, G. X. (2012b). Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chemical Engineering Journal, 203, 423-431. DOI: 10.1016/j.cej.2012.07.048.10.1016/j.cej.2012.07.048Search in Google Scholar

Xu, J. K., Ju, C. X., Sheng, J., Wang, F., Zhang, Q., Sun, G. L., & Sun, M. (2013). Synthesis and characterization of magnetic nanoparticles and its application in lipase immobilization. Bulletin of the Korean Chemical Society, 34, 2408-2412. DOI: 10.5012/bkcs.2013.34.8.2408.10.5012/bkcs.2013.34.8.2408Search in Google Scholar

Xu, J. K., Sun, J. J., Wang, Y. J., Sheng, J., Wang, F., & Sun, M. (2014). Application of iron magnetic nanoparticles in protein immobilization. Molecules, 19, 11465-11486. DOI: 10.3390/molecules190811465.10.3390/molecules190811465Search in Google Scholar PubMed PubMed Central

Yang, J., Hu, Y., Jiang, L., Zou, B., Jia, R., & Huang, H. (2013). Enhancing the catalytic properties of porcine pancreatic lipase by immobilization on SBA-15 modified by functionalized ionic liquid. Biochemical Engineering Journal, 70, 46-54. DOI: 10.1016/j.bej.2012.09.016.10.1016/j.bej.2012.09.016Search in Google Scholar

Yang, L., Guo, Y. L., Zhan, W. C., Guo, Y., Wang, Y. S., & Lu, G. Z. (2014). One-pot synthesis of aldehyde-functionalized mesoporous silica-Fe3O4 nanocomposites for immobilization of penicillin G acylase. Microporous and Mesoporous Materials, 197, 1-7. DOI: 10.1016/j.micromeso.2014.05.044.10.1016/j.micromeso.2014.05.044Search in Google Scholar

Ye, P., Xu, Z. K., Wu, J., Innocent, C., & Seta, P. (2006). Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. Biomaterials, 27, 4169-4176. DOI: 10.1016/j. biomaterials.2006.03.027.Search in Google Scholar

Ye, P., Jiang, J., & Xu, Z. K. (2007). Adsorption and activity of lipase from Candida rugosa on the chitosanmodified poly(acrylonitrile-co-maleic acid) membrane surface. Colloids and Surfaces B: Biointerfaces, 60, 62-67. DOI: 10.1016/j.colsurfb.2007.05.022.10.1016/j.colsurfb.2007.05.022Search in Google Scholar PubMed

Yoon, T. J., Lee, W., Oh, Y. S., & Lee, J. K. (2003). Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New Journal of Chemistry, 2003, 227-229. DOI: 10.1039/b209391j.10.1039/b209391jSearch in Google Scholar

Zhang, D. H., Zhou, C., Sun, Z. H., Wu, L. Z., Tung, C. H., & Zhang, T. R. (2012). Magnetically recyclable nanocatalysts (MRNCs): a versatile integration of high catalytic activity and facile recovery. Nanoscale, 2012, 6244-6255. DOI: 10.1039/c2nr31929b.10.1039/c2nr31929bSearch in Google Scholar PubMed

Zhou, Z., Piepenbreier, F., Reddy Marthala, V. R., Karbacher, K., & Hartmann, M. (2015). Immobilization of lipase in cage-type mesoporous organosilicas via covalent bonding and crosslinking. Catalysis Today, 243, 173-183. DOI: 10.1016/j.cattod.2014.07.047.10.1016/j.cattod.2014.07.047Search in Google Scholar

Zlateski, V., Fuhrer, R., Koehler, F. M., Wharry, S., Zeltner, M., Stark, W. J., Moody, T. S., & Grass, R. N. (2014). Efficient magnetic recycling of covalently attached enzymes on carbon-coated metallic nanomagnets. Bioconjugate Chemistry, 25, 677-684. DOI: 10.1021/bc400476y.10.1021/bc400476ySearch in Google Scholar PubMed

Received: 2015-1-22
Revised: 2015-4-17
Accepted: 2015-4-22
Published Online: 2015-7-24
Published in Print: 2015-10-1

© Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0142/html
Scroll to top button