Skip to main content
Log in

Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against methicillin-resistant Staphylococcus aureus

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium responsible for several infections in humans. The infections caused by this bacterial strain are difficult to treat due to the resistance of MRSA to clinically used antibiotics. Several medicinal plants extracts and their phytoconstituents have been reported to possess modulation and efflux pump inhibitory (EPI) activity against MRSA strains. Alpinia calcarata rhizomes have been reported to be used in Ayurveda for several ailments including fungal infections. Based on this information and in continuation with our efforts to discover EPIs from Indian medicinal plants, we describe EPI activity of flavonoids isolated from A. calcarata. Galangin and kaempferol showed ≥ 32-fold modulation in minimum inhibitory concentration (MIC) of ethidium bromide (EtBr) as well as norfloxacin in NorA-overexpressed S. aureus (SA-1199B) strain. Pinocembrin showed 32-fold modulation of EtBr MIC in SA-1199 strain, but not in SA-1199B and K1758 strains. A significant difference was not observed in the modulation of norfloxacin MIC by galangin in SA-1199 and SA-1199B strains, which may be due to non-specific nature of galangin as modulator or EPI. However, kaempferol modulated the MIC of EtBr as well as norfloxacin 64-fold and 32-fold, respectively. Also, the best modulatory effect of kaempferol was observed only in SA-1199B strain compared to two other strains. The EPI activity of kaempferol and galangin were found to be competitive with respect to verapamil. In dose-response assay, kaempferol at 31.25 μg/mL concentration was found to be better EPI by inhibiting NorA pump in SA-1199B strain and also demonstrated further confocal microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CC:

column chromatography

DMSO:

dimethyl sulfoxide

EPI:

efflux pump inhibitory

EtBr:

ethidium bromide

FIC:

fractional inhibitory concentration

FICI:

fractional inhibitory concentration index

MHB:

Mueller-Hinton growth medium

MIC:

minimum inhibitory concentration

MF:

modulation factor

MRSA:

methicillin-resistant Staphylococcus aureus

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

TLC:

thin layer chromatography

References

  • Arambewela L.S., Basnayake C.S., Serasinghe P., Tissera MS., Dias S. & Weerasekara D.R. 1995. Traditional Treatment in Sri Lanka for Chronic Arthritis. NARESA Printing Unit, Colombo, Sri Lanka.

    Google Scholar 

  • Arambewela L.S.R. & Arawwawala L.D.A.M. 2005. Antioxidant activities of ethanolic and hot aqueous extracts of Alpinia calcarata rhizomes. Aust. J. Med. Herbalism 17: 91–94

    Google Scholar 

  • Arambewela L.S.R., Arawwawala L.D.A.M. & Ratnasooriya W.D. 2004. Antinociceptive activities of aqueous and ethanolic extracts of Alpinia calcarata rhizomes in rats. J. Ethnopharmacol. 95: 311–316

    Article  CAS  Google Scholar 

  • Arambewela L.S.R., Arawwawala L.D.A.M. & Ratnasooriya W.D. 2005. Gastroprotective activity of hot ethanolic extract of Alpinia calcarata rhizomes in rats. Ceylon J. Med. Sci. 48: 1–11

    Article  Google Scholar 

  • Basak S., Sarma G.C. & Rangan L. 2010. Ethnomedical uses of Zingiberaceous plants of Northeast India. J. Ethnopharmacol. 132: 286–296

    Article  Google Scholar 

  • CLSI 2006. Methods for Dilution Antimicrobial 448 Susceptibility Tests for Bacteria that Grow Aerobically. 7th Ed., Approved Standard, Clinical and Laboratory Standards Institute (CLSI) 449 document M7-A7, Vol. 26. CLSI, Wayne, PA.

  • Edelsberg J., Weycker D., Barron R., Li X., Wu H., Oster G., Badre S., Langeberg W.J. & Weber D.J. 2014. Prevalence of antibiotic resistance in U. hospitals. Diagn. Microbiol. Infect. Dis. 78: 255–262

    Article  CAS  Google Scholar 

  • Fontaine F., Héquet A., Voisin-Chiret A.S., Bouillon A., Lesnard A., Cresteil T. & Rault S. 2015. Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: study of 6-substituted pyridine-3-boronic acid derivatives. Eur. J. Med. Chem. 95: 185–198

    Article  CAS  Google Scholar 

  • Garzoni C. & Kelley W.L. 2009. Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol. 17: 59–65

    Article  CAS  Google Scholar 

  • George M. & Pandalai K.M. 1949. Investigations on plant antibiotics. Indian J. Med. Res. 37: 169–181

    CAS  Google Scholar 

  • Gomez-Flores R., Gupta S., Tamez-Guerra R. & Mehta R.T. 1995. Determination of MICs for Mycobacterium avium-M. intracellulare complex in liquid medium by a colorimetric method. J. Clin. Microbiol. 33: 1842–1846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handzlik J., Matys A. & Kiec-Kononowicz K. 2013. Recent advances in multi-drug resistance (MDR) efflux pump inhibitors of Gram-positive bacteria S. aureus. Antibiotics 2: 28–45

    Article  CAS  Google Scholar 

  • Hema P.S. & Nair M.S. 2009. Flavonoids and other constituents from the rhizomes of Alpinia calcarata. Biochem. Syst. Ecol. 37: 52–54

    Article  CAS  Google Scholar 

  • Ippolito G., Leone S., Lauria F.N., Nicastri E. & Wenzel R.P. 2010. Methicillin-resistant Staphylococcus aureus: the superbug. Int. J. Infect. Dis. 14: S7–S11.

    Article  Google Scholar 

  • Jayaweera D.M. 1982. Medicinal Plants Used in Ceylon. National Science Council of Sri Lanka, Colombo, 213 pp.

    Google Scholar 

  • Ji J., Du X., Chen Y., Fu Y., Wang H. & Yu Y. 2013. In vitro activity of sulbactam in combination with imipenem, meropenem, panipenem or cefoperazone against clinical isolates of Acinetobacter baumannii. Int. J. Antimicrob. Agents. 41: 400–401

    Article  CAS  Google Scholar 

  • Kaatz G.W. & Seo S.M. 1997. Mechanisms of fluoroquinolone resistance in genetically related strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 41: 2733–2737

    Article  CAS  Google Scholar 

  • Kaatz G.W., Seo S.M. & Ruble C.A. 1993. Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 37: 1086–1094

    Article  CAS  Google Scholar 

  • Kaleysa R.R. 1975. Screening of indigenous plants for anthelmintic action against human Ascaris lumbricoides. Indian J. Physiol. Pharmacol. 19: 47–49

    Google Scholar 

  • Kong L.Y., Qin M.J. & Niwa M. 2002. New cytotoxic bis-labdanic diterpenoids from Alpinia calcarata. Planta Med. 68: 813–817

    Article  CAS  Google Scholar 

  • Kong L.Y., Qin M.J. & Niwa M. 2004. Two new bis-labdanic diterpenoids from Alpinia calcarata. Acta Bot. Sinica 46: 159–164

    CAS  Google Scholar 

  • Kosmidis C., Schindler B.D., Jacinto P.L., Patel D., Bains K., Seo S.M. & Kaatz G.W. 2012. Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. Int. J. Antimicrob. Agents 40: 204–209

    Article  CAS  Google Scholar 

  • Lechner D., Gibbons S., & Bucar F. 2008. Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J. Antimicrob. Chemother. 62: 345–348

    Article  CAS  Google Scholar 

  • Pages J.M. & Amaral L. 2009. Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim. Biophys. Acta 1794: 826–833

    Article  CAS  Google Scholar 

  • Poole K. & Lomovskaya O. 2006. Can efflux inhibitors really counter resistance? Drug Discov. Today — Therapeutic Strategies 3: 145–152

    Article  Google Scholar 

  • Pushpangadan P. & Atal C.K. 1984. Ethno-medico-botanical investigations in Kerala I. Some primitive tribals of Western Ghats and their herbal medicine. J. Ethnopharmacol. 11: 59–77

    Article  CAS  Google Scholar 

  • Raj G., Pradeep D.P., Yusufali C., Da M. & Baby S. 2013. Chemical profiles of volatiles in four Alpinia species from Kerala, South India. J. Essential Oil Res. 25: 97–102

    Article  CAS  Google Scholar 

  • Randhawa H.K., Gautam A., Sharma M., Bhatia R., Varshney G.C., Raghava G.P.S. & Nandanwar H. 2016. Cellpenetrating peptide and antibiotic combination therapy: a potential alternative to combat drug resistance in methicillinresistant Staphylococcus aureus. Appl. Microbiol. Biotechnol. 2: 1–11

    Google Scholar 

  • Ratnasooriya W.D. & Jayakody J.R. 2006. Effects of aqueous extract of Alpinia calcarata rhizomes on reproductive competence of male rats. Acta Biol. Hung. 57: 23–35

    Article  CAS  Google Scholar 

  • Roy S.K., Kumari N., Pahwa S., Agrahari U.C., Bhutani K.K., Jachak S.M. & Nandanwar H. 2013. NorA efflux pump inhibitory activity of coumarins from Mesua ferrea. Fitoterapia 90: 140–150

    Article  CAS  Google Scholar 

  • Roy S.K., Pahwa S., Nandanwar H. & Jachak S.M. 2012. Phenlypropanoids of Alipina galanga as efflux pump inhibitors in Mycobacterium smegmatis mc2 155. Fitoterapia 83: 1248–1255

    Article  CAS  Google Scholar 

  • Sangwan P.L., Koul J.L., Koul S., Reddy M.V., Thota N., Khan I.A., Kumar A., Kalia N.P. & Qazi G.N. 2008. Piperine analogs as potent Staphylococcus aureus NorA efflux pump inhibitors. Bioorg. Med. Chem. 16: 9847–9857

    Article  CAS  Google Scholar 

  • Schmitz F.J., Fluit A.C., Luckefahr M., Engler B., Hofmann B., Verhoef J. & Jones M.E. 1998. The effect of reserpine, an inhibitor of multidrug efflux pumps, on the in-vitro activities of ciprofloxacin, sparfloxacin and moxifloxacin against clinical isolates of Staphylococcus aureus. J. Antimicrob. Chemother. 42: 807–810

    Article  CAS  Google Scholar 

  • Shin D., Kinoshita K., Koyama K. & Takahashi K. 2002. Antiemetic principles of Alpinia officinarum. J. Nat. Prod. 65: 1315–1318

    Article  CAS  Google Scholar 

  • Smith E.C., Kaatz G.W., Seo S.M., Wareham N., Williamson E.M. & Gibbons S. 2007. The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrob, Agents Chemother. 51: 4480–4483

    Article  CAS  Google Scholar 

  • Stavri M., Piddock L.J.V. & Gibbons S. 2007. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother. 59: 1247–1260

    Article  CAS  Google Scholar 

  • Subramoniam A., Madhavachandran V. & Gangaprasad A. 2013. Medicinal plants in the treatment of arthritis. Annal. Phytomed. 2: 3–36

    CAS  Google Scholar 

  • Truong-Bolduc Q.C., Strahilevitz J. & Hooper D.C. 2006. NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob. Agents Chemother. 50: 1104–1107

    Article  CAS  Google Scholar 

  • Urbatsch L.E., Mabry T.J., Miyakado M., Ohno N. & Yoshika H. 1976. Flavonol methyl ethers from Ericameria diffusa. Phytochemistry 15: 440–441

    Article  CAS  Google Scholar 

Download references

Acknowledgements

HKR thankful to CSIR’s network project (BSC-121) for the project fellowship, HSN is thankful to CSIR, India, for funding through its network project (BSC-121).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pallavi N. Ahirrao or Hemraj S. Nandanwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randhawa, H.K., Hundal, K.K., Ahirrao, P.N. et al. Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against methicillin-resistant Staphylococcus aureus. Biologia 71, 484–493 (2016). https://doi.org/10.1515/biolog-2016-0073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0073

Key words

Navigation