Skip to main content
Log in

Molecular dynamics simulation and docking studies on novel mutants (T11V, T12P and D364S) of the nucleotide-binding domain of human heat shock 70 kDa protein

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The aim of investigating protein interaction between Homo sapiens adenovirus and heat shock 70 kDa protein (Hsp70) is to study a potentially synergistic interaction that would enhance the anti-apoptotic mechanisms, hence increasing the virus replication rate and improve the killing efficiency of tumour cells in cancer therapy. Currently, the protein interaction between Hsp70 and E1A 32 kDa of human adenovirus C serotype 5 (Ad5) is still unknown. Mutant models (T11V, T12P and D364S) were built, simulated and their interactions with Ad5 were studied. The E1A 32 kDa of human Ad5 motif (PNLVP) showed the lowest binding energy and intermolecular energy values with the novel T11V mutant at −8.26 kcal/mol and −11.21 kcal/mol. The protein-ligand complex models revealed that the T11V mutant had the strongest and most stable interaction with the PNLVP motif among all the four protein-ligand complex structures. This knowledge would assist future in vivo investigations of this protein-ligand complex structure in cancer treatment research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ad5:

adenovirus C serotype 5

GRAVY:

grand average of hydropathicity

HLS:

helical lid subdomain

Hsp:

heat shock protein

Hsp70:

heat shock 70 kDa protein

MD:

molecular dynamics

NBD:

nucleotide-binding domain

RMSD:

root mean square deviation

RMSF:

root mean square fluctuation

SASA:

solvent accessible surface area

SBD:

substrate-binding domain

SBSD:

substrate-binding subdomain

References

  • Abavaya K., Morimoto R.I., Murphy S.P. & Myers M.P. 1992. The human heat shock protein Hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev. 6: 1153–1164.

    Article  Google Scholar 

  • Adusumilli P.S., Carpenter S.G., Chan M.K., Eisenberg D.P., Fong Y., Hendershott K.J. & Yu Z. 2010. Hyperthermia potentiates oncolytic herpes viral killing of pancreatic cancer through a heat shock protein pathway. Surgery 148: 325–334.

    Article  PubMed  Google Scholar 

  • Ansieau S. & Leutz A. 2002. The conserved Mynd domain of BS69 binds cellular and oncoviral proteins through a common PXLXP motif. J. Biol. Chem. 277: 4906–4910.

    Article  CAS  PubMed  Google Scholar 

  • Aprile F.A., Dhulesia A., Stengel F., Roodveldt C., Benesch J.L.P., Tortora P., Robinson C.V., Salvatella X., Dobson C.M. & Cremades N. 2013. Hsp70 oligomerization is mediated by an interaction between the interdomain linker and the substrate-binding domain. PLoS One 8: 1–17.

    Article  CAS  Google Scholar 

  • Aparoy P., Kuntal B.K. & Reddanna P. 2010. EasyModeller: a graphical interface to MODELLER. BMC Res. Notes 3: 226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benyo B., Benyo Z., Biro J.C., Fordos G., Micsik T., Sansom C. & Szlavecz A. 2003. A common periodic table of codons and amino acids. Biochem. Biophys. Res. Commun. 306: 408–415.

    Article  PubMed  CAS  Google Scholar 

  • Berendsen H.J.C., Groenhof C., Hess B., Lindahl E., Mark A.E. & van Der Spoel D. 2005. GROMACS: fast, flexible, and free. J. Comput. Chem. 26: 1701–1718.

    Article  PubMed  CAS  Google Scholar 

  • Bertelsena E.B., Chang L., Gestwickib J.E. & Zuiderwega E.R.P. 2009. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. USA 106: 8471–8476.

    Article  Google Scholar 

  • Brandi M., Hilgenfeld R., Pal D., Sühnel J. & Weiss M.S. 2001. More hydrogen bonds for the (structural) biologist. Trends Biochem. Sci. 26: 521–523.

    Google Scholar 

  • Bukau B. & Horwich A.L. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351–366.

    Article  CAS  PubMed  Google Scholar 

  • Bukau B., Mayer M.P. & Vogel M. 2006. Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker. J. Biol. Chem. 281: 38705–38711.

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne N.J. & Jackson R.M. 2006. Predicting protein interaction sites: binding hot-spots in protein-protein and proteinligand interfaces. Bioinformatics 22: 1335–1342.

    Article  CAS  PubMed  Google Scholar 

  • Cabra Ledesma V.C., Kumar D.P., Sarbeng E.B., Vorvis C. & Willis J.E. 2011. The four hydrophobic residues on the Hsp70 inter-domain linker have two distinct roles. J. Mol. Biol. 411: 1099–1113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colovos C. & Yeates T.O. 1993. Verification of protein structures: patterns of non-bonded atomic interactions. Protein Sci. 2: 1511–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini S., Colonna G. & Facchiano A.M. 2008. ESBRI: a web server for evaluating salt bridges in proteins. Bioinformation 3: 137–138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Craig E.A. & Stone D.E. 1990. Self-regulation of 70 kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 1622–1632.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinier G., Montgomery D.L., Sivendran R., Stotz M. & Swain J.F. 2007. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol. Cell 26: 27–39.

    Article  CAS  Google Scholar 

  • Eisenberg D., Luthy R. & Bowie J.U. 1997. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 277: 396–404.

    Article  CAS  PubMed  Google Scholar 

  • Elengoe A., Hamdan S. & Naser M.A. 2014. Modeling and docking studies on novel mutants (K71L and T204V) of the AT-Pase domain of human heat shock 70 kDa protein 1. Int. J. Mol. Sci. 15: 6797–6814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiser A. & Sali A. 2003. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 374: 461–491.

    Article  CAS  PubMed  Google Scholar 

  • Freeman B.C., Joachimiak A., Morimoto R.I., Osipiuk J. & Sriram M. 2007. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Structure 5: 403–414.

    Google Scholar 

  • Freeman B.C. & Yamamoto K.R. 2002. Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296: 2232–2235.

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R. & Appel R.D. 2005. Protein identification and analysis tools on the ExPASy server, pp: 571–607. In: Walker J.M. (ed.) The Proteomics Protocols Handbook. Humana Press.

    Chapter  Google Scholar 

  • George Priya Doss C. & Nagasundaram N. 2012. Investigating the structural impacts of I64T and P311S mutations in APE1-DNA complex: a molecular dynamics approach. PLoS One 7: 1–11.

    Article  CAS  Google Scholar 

  • Gething M.J. & Sambrook J. 1992. Protein folding in the cell. Nature 355: 33–45.

    Article  CAS  PubMed  Google Scholar 

  • Gilis D. & Rooman M. 1997. Predicting protein stability changes upon mutation using database-derived potentials: solvent accessibility determines the importance of local versus non-local interactions along the sequence. J. Mol. Biol. 272: 276–290.

    Article  CAS  PubMed  Google Scholar 

  • Glotzer J.B., Saltik M., Chiocca S., Michou A.L, Moseley P. & Cotton M. 2000. Activation of heat-shock response by an adenovirus is essential for virus replication. Nature 407: 207–211.

    Article  CAS  PubMed  Google Scholar 

  • Golas E.I., Czaplewski C., Scheraga H.A. & Liwo A. 2015. Common functionally important motions of the nucleotidebinding domain of Hsp70. Proteins 83: 282–299.

    Article  CAS  PubMed  Google Scholar 

  • Golas E., Maisuradze G.G., Senet P., Oldziej S., Czaplewski C., Scheraga H.A. & Liwo A.J. 2012. Simulation of the opening and closing of Hsp70 chaperones by coarse-grained molecular dynamics. J. Chem. Theory Comput. 8: 1750–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imperiale M.J, Kao H.T., Feldman L.T., Nevins J.R. & Strickland S. 1984. Common control of the heat shock gene and early adenovirus genes: evidence for a cellular ElA-like activity. Mol. Cell. Biol. 4: 867–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatebour C., Gennissen A., Ramos Y.F., Kerkhoven R.M., Sonntag-Buck V, Stunnenberg H.G. & Bernards R. 1995. BS69, a novel adenovirus ElA-associated protein that inhibits E1A transactivation. EMBO J. 14: 3159–3169.

    Article  Google Scholar 

  • Hendrickson W.A. & Liu Q. 2007. Insights into Hsp70 chaperone activity from a crystal structure of the yeast HspllO Ssel. Cell 131: 106–120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hightower L.E. 1991. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66: 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Hurley J.H. 1996. The sugar kinase heat shock protein 70 actin super family: Implications of conserved structure for mechanism. Annu. Rev. Biophys. Biomol. Struct. 25: 137–162.

    Article  CAS  PubMed  Google Scholar 

  • Jackson R.M. & Laurie A.T. 2005. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21: 1908–1916.

    Article  PubMed  Google Scholar 

  • Johnson E.R. & McKay D.B. 1999. Mapping the role of active site residues for transducing an ATP-induced conformational change in the bovine 70-kDa heat shock cognate protein. Biochemistry 38: 10823–10830.

    Article  CAS  PubMed  Google Scholar 

  • Kampinga H.H., Hageman J., Vos M.J., Kubota H., Tanguay R.M., Bruford E.A., Cheetham M.E., Chen B. & Hightower, L.E. 2009. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14: 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Kampinga H.H & Craig E.A. 2010. The Hsp70 chaperone machinery: J-proteins as drivers of functional specificity Nat. Rev. Mol. Cell Biol. 11: 579–592.

    Article  CAS  Google Scholar 

  • Kityk R., Kopp J., Sinning I. & Mayer M.P. 2012. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48: 863–874.

    Article  CAS  PubMed  Google Scholar 

  • Koellner G. & Steiner T. 2001. Hydrogen bonds with p-acceptors in proteins: frequencies and role in stabilising local 3-D structures. J. Mol. Biol. 305: 535–557.

    Article  PubMed  CAS  Google Scholar 

  • Laufen T., Mayer M.P., Paal K., Rüdiger S. & Schröder H. 2000. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat. Struct. Biol. 7: 586–593.

    Article  PubMed  CAS  Google Scholar 

  • Laskowski R.A., MacArthur M.W., Moss D.S. & Thornton J.M. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26: 283–291.

    Article  CAS  Google Scholar 

  • Masselink H. & Bernards R. 2000. The adenovirus E1A binding protein BS69 is a corepressor of transcription through recruitment of N-CoR. Oncogene 19: 1538–1546.

    Article  CAS  PubMed  Google Scholar 

  • Mayer M.P., Brehmer D., Gassler C.S. & Bukau B. 2001. Hsp70 chaperone machines. Adv. Protein Chem. 59: 1–44.

    Article  CAS  PubMed  Google Scholar 

  • Netzer W.J. & Hartl, F.U. 1998. Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms. Trends Biochem. Sci. 23: 68–73.

    Article  CAS  PubMed  Google Scholar 

  • Nicolai A., Senet P., Delarue P. & Ripoll D.R. 2010. Human inducible Hsp70: structures, dynamics, and interdomain communication from all-atom molecular dynamics simulations. J. Chem. Theory Comput. 206: 2501–2519.

    Article  CAS  Google Scholar 

  • O’Brien M.C., Flaherty K.M. & McKay D.B. 1996. Lysine 71 of the chaperone protein Hsc70 is essential for ATP hydrolysis. J. Biol. Chem. 271: 15874–15878.

    Article  PubMed  Google Scholar 

  • Palleros D.R., Reid K.L., Shi L., Welch W.J. & Fink A.L. 1993. ATP-induced protein Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature 365: 664–666.

    Article  CAS  PubMed  Google Scholar 

  • Ritossa F. 1962. A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 18: 571–573.

    Article  CAS  Google Scholar 

  • Roy S., Maheshwari N., Chauhan R., Sen N.K. & Sharma A. 2011. Structure prediction and functional characterization of secondary metabolite proteins of Ocimum. Bioinformation 6: 315–319.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rupley J.A. & Shrake A. 1997. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79: 351–371.

    Google Scholar 

  • Sanner M.F. 1999. Python: a programming language for software integration and development. J. Mol. Graph. Model. 17: 57–61.

    CAS  PubMed  Google Scholar 

  • Schuttelkopf A.W. & van Aalten D.M. 2004. PRODRG — a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60: 1355–1363.

    Article  PubMed  CAS  Google Scholar 

  • Simon M.C., Kitchener K., Kao H.T., Hickey E., Weber L., Voellmy R., Heintz N. & Nevins J.R. 1987. Selective induction of human heat shock gene transcription by the adenovirus E1A gene products, including the 12S E1A product. Mol. Cell. Biol. 7: 2884–2890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa M.C. & McKay D.B. 1998. The hydroxyl of threonine 13 of the bovine 70-kDa heat shock cognate protein is essential for transducing the ATP-induced conformational change. Biochemistry 37: 15392–15399.

    Article  CAS  PubMed  Google Scholar 

  • Stone D.E. & Craig E.A. 1990. Self-regulation of 70 kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 1622–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasconcelos D.Y., Cai X.H. & Oglesbee M.J. 1998. Constitutive overexpression of the major inducible 70 kDa heat shock protein mediates large plaque formation by measles virus. J. Gen. Virol. 79: 2239–2247.

    Article  CAS  PubMed  Google Scholar 

  • Wallner B. & Elofsson A. 2003. Can correct protein models be identified? Protein Sci. 12: 1073–1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White E., Spector D. & Welch W. 1988. Differential distribution of the adenovirus E1A proteins and colocalization of E1A with the 70-kilodalton cellular heat shock protein in infected cells. J. Virol. 62: 4153–4166.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wickner S., Skowyra D., Hoskins J. & Mckenney K. 1992. DnaJ, DNAK, and GrpE heat shock proteins are required in oriPl DNA replication solely at the RepA monomerization step. Proc. Natl. Acad. Sci. USA 89: 10345–10349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiederstein M. & Sippl M. 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35: W407-W410.

  • Yamamoto M. & Curiel, D.T. 2010. Current issues and future directions of oncolytic adenoviruses. Mol. Ther. 18: 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Zhuravleva A. & Gierasch M. 2010. Allosteric signal transmission in the nucleotide-binding domain of 70kDa heat shock protein (Hsp70) molecular chaperones. Proc. Natl. Acad. Sci. USA 108: 6987–6992.

    Article  Google Scholar 

  • Zuiderwerg E.R.P., Bhattacharya A., Kurochkin A.V., Yip G.N.B., Zhang Y. & Bertelsen E.B. 2009. Allostery in Hsp70 chaperones is transduced by subdomain rotations. J. Mol. Biol. 388: 475–490.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salehhuddin Hamdan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elengoe, A., Naser, M.A. & Hamdan, S. Molecular dynamics simulation and docking studies on novel mutants (T11V, T12P and D364S) of the nucleotide-binding domain of human heat shock 70 kDa protein. Biologia 70, 1655–1671 (2015). https://doi.org/10.1515/biolog-2015-0194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0194

Key words

Navigation