Skip to main content
Log in

An overview of phytochrome: An important light switch and photo-sensory antenna for regulation of vital functioning of plants

  • Review
  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Plants are the primary source of nutrition and essential to maintain life on earth. They have evolved very delicate and advanced photo-sensory antennae to sense their outer environment and transduce the received information for their growth and development accordingly. This “light switch” phenomenon of plants has slowly being unraveled and various plant photoreceptors, their role in downstream molecular signaling, mutual interaction, response to circadian cycle and light signals have been discovered. The photosensory antennae in plants; phytochromes, cryptochromes and phototropins play a very crucial role in sensing the ambient light intensities. By direct interaction with the environment through these photosensory antennae, plants shift their homeostasis to regulate their growth and development. The phytochrome light receptors of plants are responsive to R/FR light and by inducing signaling pathways, trigger the physiological responses such as germination and flowering. The phytochromes also directly contribute to plant development by affecting its photosynthetic rate. To elucidate the role of phytochromes in plant metabolism, this review will focus on the importance of phytochromes, their mechanism of action and their application as an emerging field in plant biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam E., Kircher S., Liu P., Merai Z., González-Schain N., Hörner M., Viczián A., Monte E., Sharrock R.A. & Schäfer E. 2013. Comparative functional analysis of full-length and N-terminal fragments of phytochrome C, D and E in red light-induced signaling. New Phytologist. 200: 86–96.

    Article  CAS  PubMed  Google Scholar 

  • Allen T., Koustenis A., Theodorou G., Somers D.E., Kay S.A., Whitelam G.C. & Devlin P.F. 2006. Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. Plant Cell Online 18: 2506–2516.

    Article  CAS  Google Scholar 

  • Andrés F., Galbraith D.W., Talón M. & Domingo C. 2009. Analysis of photoperiod sensitivity sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol. 151: 681–690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae G. & Choi G. 2008. Decoding of light signals by plant phytochromes and their interacting proteins. Annu. Rev. Plant Biol. 59: 281–311.

    Article  CAS  PubMed  Google Scholar 

  • Batschauer A., 2003. Photoreceptors and light signalling. Royal Society of Chemistry.

    Google Scholar 

  • Batutis E.J. & Ewing E.E. 1982. Far-red reversal of red light effect during long-night induction of potato (Solanum tuberosum L.) tuberization. Plant Physiol. 69: 672–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borucka J. & Fellner M. 2012. Auxin binding proteins ABP1 and ABP4 are involved in the light- and auxin-induced down-regulation of phytochrome gene PHYB in maize (Zea mays L.) mesocotyl. Plant Growth Regul. 68: 503–509.

    Article  CAS  Google Scholar 

  • Bussell A.N. & Kehoe D.M. 2013. Control of a four-color sensing photoreceptor by a two-color sensing photoreceptor reveals complex light regulation in cyanobacteria. Proc. Natl. Acad. Sci. USA. 110: 12834–12839.

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler W.L., Norris K., Siegelman H. & Hendricks S. 1959. Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc. Natl. Acad. Sci. USA 45: 1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F., Shi X., Chen L., Dai M., Zhou Z., Shen Y., Li J., Li G., Wei N. & Deng X.W. 2012. Phosphorylation of FAR-RED ELONGATED HYPOCOTYL1 is a key mechanism defining signaling dynamics of phytochrome A under red and far-red light in Arabidopsis. The Plant Cell Online. 24: 1907–1920.

    Article  CAS  Google Scholar 

  • Craufurd P. & Wheeler T. 2009. Climate change and the flowering time of annual crops. J. Exp. Bot. 60: 2529–2539.

    Article  CAS  PubMed  Google Scholar 

  • de Carbonnel M., Davis P., Roelfsema M.R.G., Inoue S.-I., Schepens I., Lariguet P., Geisler M., Shimazaki K.-I., Hangarter R. & Fankhauser C. 2010. The Arabidopsis phytochrome kinase substrate protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol. 152: 1391–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donohue K., Heschel M.S., Chiang G.C.K., Butler C.M. & Barua D. 2007. Phytochrome mediates germination responses to multiple seasonal cues. Plant, Cell & Environ. 30: 202–212.

    Article  Google Scholar 

  • Dunwell J.M. 2000. Transgenic approaches to crop improvement. J. Exp. Bot. 51: 487–496.

    Article  CAS  PubMed  Google Scholar 

  • Endo M., Nakamura S., Araki T., Mochizuki N. & Nagatani A. 2005. Phytochrome B in the mesophyll delays flowering by suppressing flowering locus T expression in Arabidopsis vascular bundles. Plant Cell Online 17: 1941–1952.

    Article  CAS  Google Scholar 

  • Fankhauser C., Yeh K.C., Clark J., Zhang H., Elich T.D. & Chory J. 1999. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284: 1539–1541.

    Article  CAS  PubMed  Google Scholar 

  • Fernie A.R. & Willmitzer L. 2001. Molecular and biochemical triggers of potato tuber development. Plant Physiol. 127: 1459–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer A.J. & Lagarias J.C. 2004. Harnessing phytochrome’s glowing potential. Proc. Natl. Acad. Sci. USA 101: 17334–17339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin K.A. & Quail P.H. 2010. Phytochrome functions in Arabidopsis development. J. Exp Bot. 61: 11–24.

    Article  CAS  PubMed  Google Scholar 

  • Gayle H. & Hamilton H. 1983. Plant regeneration from callus tissue of (Gossypium hirsutum L.). Plant Sci. Lett. 3: 89–93.

    Google Scholar 

  • Gutu A. & Kehoe D.M. 2012. Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. Mol. Plant. 5: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Hendricks S. & Borthwick H. 1959. Photocontrol of plant development by the simultaneous excitations of two interconvertible pigments. Proc. Natl. Acad. Sci. USA. 45: 344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes J. 2013. Phytochrome cytoplasmic signaling. Annu. Rev Plant Biol. 64: 377–402.

    Article  CAS  PubMed  Google Scholar 

  • Husaineid S.S., Kok R.A., Schreuder M.E., Hanumappa M., Cordonnier-Pratt M.M., Pratt L.H., van der Plas L.H. & van der Krol A.R. 2007. Overexpression of homologous phytochrome genes in tomato: exploring the limits in photoperception. J. Exp. Bot. 58: 615–626.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa R., Aoki M., Kurotani K., Yokoi S., Shinomura T., Takano M. & Shimamoto K. 2011. Phytochrome B regulates Heading date 1 (Hd1)/mediated expression of rice florigen Hd3a and critical day length in rice. Mol. Genet. Genomics 285: 461–470.

    Article  CAS  PubMed  Google Scholar 

  • Itoh H., Nonoue Y., Yano M. & Izawa T. 2010. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat. Genet. 42: 635–638.

    Article  CAS  PubMed  Google Scholar 

  • Jackson S.D., James P., Prat S. & Thomas B. 1998. Phytochrome B affects the levels of a graft-transmissible signal involved in tuberization. Plant Physiol. 117: 29–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaedicke K., Lichtenthäler A.L., Meyberg R., Zeidler M. & Hughes J. 2012. A phytochrome-phototropin light signaling complex at the plasma membrane. Proc. Natl. Acad. Sci. USA 109: 12231–12236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jen J.J., Norris K.H. & Watada A.E. 1977. In vivo measurement of phytochrome in tomato fruit. Plant Physiol. 59: 628–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y., Lau O.S. & Deng X.W. 2007. Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet. 8: 217–230.

    Article  CAS  PubMed  Google Scholar 

  • Karniol B. & Vierstra R.D., 2006. Structure, function, and evolution of microbial phytochromes, Photomorphogenesis in Plants and Bacteria. Springer, pp. 65–98.

    Book  Google Scholar 

  • Kasperbauer M.J. 1988. Phytochrome involvement in regulation of the photosynthetic apparatus and plant adaptation. Plant Physiol. Biochem. 26: 519–524.

    CAS  Google Scholar 

  • Kasperbauer M.J. 2000. Strawberry yield over red versus black plastic mulch. Crop Sci. 40: 171–174.

    Article  Google Scholar 

  • Kasperbauer M.J. 2008. Phytochrome regulation of morphogenesis in green plants: from the beltsville spectrograph to colored mulch in the fiel. Photochem. Photobiol. 56: 823–832.

    Article  Google Scholar 

  • Kasperbauer M.J. & Hamilton J.L. 1984. Chloroplast structure and starch grain accumulation in leaves that received different red and far-red levels during development. Plant Physiol. 74: 967–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kebrom T.H., Burson B.L. & Finlayson S.A. 2006. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol. 140: 1109–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller M.M., Jaillais Y., Pedmale U.V., Moreno J.E., Chory J. & Ballaré C.L. 2011. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J. 67: 195–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komiya R., Yokoi S. & Shimamoto K. 2009. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136: 3443–3450.

    Article  CAS  PubMed  Google Scholar 

  • Lee Y.S., Jeong D.H., Lee D.Y., Yi J., Ryu C.H., Kim S.L., Jeong H.J., Choi S.C., Jin P. & Yang J. 2010. OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J. 63: 18–30.

    CAS  PubMed  Google Scholar 

  • Li J., Li G., Wang H. & Wang Deng X. 2011. Phytochrome signaling mechanisms. Arabidopsis Book 9

  • Libenson S., Rodriguez V., Pereira M.L., Sánchez R. & Casal J. 2002. Low red to far-red ratios reaching the stem reduce grain yield in sunflower. Crop Sci. 42: 1180–1185.

    Article  Google Scholar 

  • Mannen K., Matsumoto T., Takahashi S., Yamaguchi Y., Tsukagoshi M., Sano R., Suzuki H., Sakurai N., Shibata D. & Koyama T. 2014. Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5. Biochem. Bioph. Res. Co. 443: 768–774.

    Article  CAS  Google Scholar 

  • Mohamed B.B., Sarwar M.B., Hassan S., Rashid B., Aftab B. & Hussain T. 2015. Tolerance of Roselle (Hibiscus sabdariffa L.) genotypes to drought stress at vegetative stage. Adv. Life Sci. 2(2): 74–82.

    CAS  Google Scholar 

  • Monteith J. 1965. Light distribution and photosynthesis in field crops. Ann. Bot. 29: 17–37.

    Article  Google Scholar 

  • Ni M., Tepperman J.M. & Quail P.H. 1999. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400: 781–784.

    Article  CAS  PubMed  Google Scholar 

  • Park E., Park J., Kim J., Nagatani A., Lagarias J.C. & Choi G. 2012. Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters. Plant J. 72: 537–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer A., Nagel M.K., Popp C., Wüst F., Bindics J., Viczián A., Hiltbrunner A., Nagy F., Kunkel T. & Schäfer E. 2012. Interaction with plant transcription factors can mediate nuclear import of phytochrome B. Proc. Natl. Acad. Sci. USA 109: 5892–5897.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao A.Q., Bakhsh A., Mehmood A., Shahid A.A., Shahzad K., Malik A. & Husnain T. 2013. Variation in expression of Arabidopsis thaliana Phytochrome B gene in cotton due to difference in Transgene copy number. J. Sci. Technol. Tehran

    Google Scholar 

  • Rao A.Q., Bakhsh A., Nasir I.A., Riazuddin S. & Husnain T. 2011a. Phytochrome B mRNA expression enhances biomass yield and physiology of cotton plants. Afr. J. Biotechnol. 10: 1818–1826.

    CAS  Google Scholar 

  • Rao A.Q., Irfan M., Saleem Z., Nasir I.A., Riazuddin S. & Husnain T. 2011b. Overexpression of the phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of cotton (Gossypium hirsutum). J. Zhejiang Univc B. 12: 326–334.

    Article  CAS  Google Scholar 

  • Rausenberger J., Hussong A., Kircher S., Kirchenbauer D., Timmer J., Nagy F., Schäfer E. & Fleck C. 2010. An integra-tive model for phytochrome B mediated photomorphogenesis: from protein dynamics to physiology. PLoS One. 5: e10721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzini L., Favory J.-J., Cloix C., Faggionato D., O’Hara A., Kaiserli E., Baumeister R., Schafer E., Nagy F. & Jenkins G.I. 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Sci. Signal. 332: 103.

    CAS  Google Scholar 

  • Robson P. & Smith H. 1997. Fundamental and biotechnological applications of phytochrome transgenes. Plant Cell Environ. 20: 831–839.

    Article  CAS  Google Scholar 

  • Rockwell N.C., Su Y.-S. & Lagarias J.C. 2006. Phytochome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57: 837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rösler J., Jaedicke K. & Zeidler M. 2010. Cytoplasmic phy-tochrome action. Plant Cell Physiol. 51: 1248–1254.

    Article  CAS  PubMed  Google Scholar 

  • Saďdou A.-A., Clotault J., Couderc M., Mariac C., Devos K.M., Thuillet A.-C., Amoukou I.A. & Vigouroux Y. 2014. Association mapping, patterns of linkage disequilibrium and selection in the vicinity of the PHYTOCHROME C gene in pearl millet. Theor. Appl. Genet. 127: 19–32.

    Article  CAS  Google Scholar 

  • Sakai T., Kagawa T., Kasahara M., Swartz T.E., Christie J.M., Briggs W.R., Wada M. & Okada K. 2001. Arabidopsis nph1 and npl1: blue light receptors that mediate both pho-totropism and chloroplast relocation. Proc. Natl. Acad. Sci. USA 98: 6969–6974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez R.A., Miguel L., Lima C. & de Lederkremer R.M. 2002. Effect of low water potential on phytochrome-induced germination, endosperm softening and cell-wall mannan degradation in Datura ferox seeds. Seed Sci. Res. 12: 155–164.

    Article  Google Scholar 

  • Santelli R.V. & Siviero F. 2001. A search for homologues of plant photoreceptor genes and their signaling partners in the sugarcane expressed sequence tag (Sucest) database. Genet. Mol. Biol. 24: 49–53.

    Article  CAS  Google Scholar 

  • Schäfer E. & Bowler C. 2002. Phytochrome-mediated photoperception and signal transduction in higher plants. EMBO reports. 3: 1042–1048.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schäfer E. & Nagy F., 2006. Photomorphogenesis in plants and bacteria: Function and Signal Transduction Mechanisms. Springer, 662 pp.

    Book  Google Scholar 

  • Schittenhelm S., Menge-Hartmann U. & Oldenburg E. 2004. Photosynthesis, carbohydrate metabolism, and yield of phyto-chrome-B-overexpressing potatoes under different light regimes. Crop Sci. 44: 131–143.

    Article  CAS  Google Scholar 

  • Shin J., Kim K., Kang H., Zulfugarov I.S., Bae G., Lee C.-H., Lee D. & Choi G. 2009a. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc. Natl. Acad.Sci. USA 106: 7660–7665.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin J., Kim K., Kang H., Zulfugarov I.S., Bae G., Lee C.H., Lee D. & Choi G. 2009b. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc. Natl. Acad. Sci. USA 106: 7660–7665.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sineshchekov V., Koppel L., Shor E., Kochetova G., Galland P. & Zeidler M. 2013. Protein Phosphatase Activity and Acidic/Alkaline Balance as Factors Regulating the State of Phytochrome A and its Two Native Pools in the Plant Cell. Photochem. Photobiol. 89: 83–96.

    Article  CAS  PubMed  Google Scholar 

  • Sineshchekov V., Loskovich A., Inagaki N. & Takano M. 2007. Two native pools of phytochrome A in monocots: evidence from fluorescence investigations of phytochrome mutants of rice. Photochem. Photobiol. 82: 1116–1122.

    Article  CAS  Google Scholar 

  • Sineshchekov V.A. 2010. Fluorescence and photochemical investigations of phytochrome in higher plants. J. Bot. 2010: 1–15

    Article  CAS  Google Scholar 

  • Smith H. 1995. Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Biol. 46: 289–315.

    Article  CAS  Google Scholar 

  • Smith H. 2000. Phytochromes and light signal perception by plants - an emerging synthesis. Nature. 407: 585–591.

    Article  CAS  PubMed  Google Scholar 

  • Smith H. & Whitelam G. 1997. The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ. 20: 840–844.

    Article  Google Scholar 

  • Song C., Psakis G., Lang C., Mailliet J., Gärtner W., Hughes J. & Matysik J. 2011. Two ground state isoforms and a chro-mophore D-ring photoflip triggering extensive intramolecular changes in a canonical phytochrome. Proc. Natl. Acad. Sci. USA 108: 3842–3847.

    Article  PubMed  PubMed Central  Google Scholar 

  • Soy J., Leivar P., González-Schain N., Sentandreu M., Prat S., Quail P.H. & Monte E. 2012. Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis. Plant J.

    Google Scholar 

  • Steindler C., Carabelli M., Borello U., Morelli G. & Ruberti I. 1997. Phytochrome A, phytochrome B and other phy-tochrome(s) regulate ATHB-2 gene expression in etiolated and green Arabidopsis plants. Plant Cell Environ. 20: 759–763.

    Article  CAS  Google Scholar 

  • Strasser B., Sánchez-Lamas M., Yanovsky M.J., Casal J.J. & Cerdán P.D. 2010. Arabidopsis thaliana life without phytochromes. Proc. Natl. Acad. Sci. USA 107: 4776–4781.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sysoeva M.I., Markovskaya E.F. & Sherudilo E.G. 2013. Role of phytochrome B in the development of cold tolerance in cucumber plants under light and in darkness. Russ. J. Plant Physl. 60: 383–387.

    Article  CAS  Google Scholar 

  • Takano M., Inagaki N., Xie X., Yuzurihara N., Hihara F., Ishizuka T., Yano M., Nishimura M., Miyao A. & Hirochika H. 2005. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. The Plant Cell Online. 17: 3311–3325.

    Article  CAS  Google Scholar 

  • Tang W., Ji Q., Huang Y., Jiang Z., Bao M., Wang H. & Lin R. 2013. FAR-RED ELONGATED HYPOCOTYL3 and FAR-RED IMPAIRED RESPONSE1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiology. 163: 857–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiele A., Herold M., Lenk I., Quail P.H. & Gatz C. 1999. Heterologous expression of Arabidopsis phytochrome B in trans-genic potato influences photosynthetic performance and tuber development. Plant Physiol. 120: 73–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres-Galea P., Huang L.F., Chua N.H. & Bolle C. 2006. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phy-tochrome A responses. Mol. Genet. Genomics. 276: 13–30.

    Article  CAS  PubMed  Google Scholar 

  • Trupkin S.A., Debrieux D., Hiltbrunner A., Fankhauser C. & Casal J.J. 2007. The serine-rich N-terminal region of Arabidopsis phytochrome A is required for protein stability. Plant Mol. Biol. 63: 669–678.

    Article  CAS  PubMed  Google Scholar 

  • Ulijasz A.T., Cornilescu G., Cornilescu C.C., Zhang J., Rivera M., Markley J.L. & Vierstra R.D. 2010. Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature. 463: 250–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velazquez Escobar F., Hildebrandt T., Utesch T., Schmitt F.-J., Seuffert I., Schulz C., Michael N., Mroginski M.A., Friedrich T. & Hildebrandt P. 2014. Structural parameters controlling the fluorescence properties of phytochromes. Biochemistry 53: 20–29.

    Article  CAS  PubMed  Google Scholar 

  • Velez-Ramirez A.I., van Ieperen W., Vreugdenhil D., van Poppel P.M., Heuvelink E. & Millenaar F.F. 2014. A single locus confers tolerance to continuous light and allows substantial yield increase in tomato. Nat. Comm. 5: 4549.

    Article  CAS  Google Scholar 

  • Vogelmann T.C. 1989. Penetration of light into plants. Photochem. Photobiol. 50: 895–902.

    Article  Google Scholar 

  • Wagner J.R., Brunzelle J.S., Forest K.T. & Vierstra R.D. 2005. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature. 438: 325–331.

    Article  CAS  PubMed  Google Scholar 

  • Wallerstein I. 2001. Long day plants transformed with phytochrome characterized by altered flowering response to day length. U.S. Patent Application 10/451, 369.

    Google Scholar 

  • Wang Q., Zhu Z., Ozkardesh K. & Lin C. 2012. Phytochromes and phytohormones: The shrinking degree of separation. Mol. Plant. 6: 5–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X., Xu J., Guo H., Jiang L., Chen S., Yu C., Zhou Z., Hu P., Zhai H. & Wan J. 2010. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol. 153: 1747–1758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidler G., zur Oven-Krockhaus S., Heunemann M., Orth C., Schleifenbaum F., Harter K., Hoecker U. & Batschauer A. 2012. Degradation of Arabidopsis CRY2 Is Regulated by SPA Proteins and Phytochrome A. Plant Cell Online. 24: 2610–2623.

    Article  CAS  Google Scholar 

  • Wigge P.A. 2013. Ambient temperature signalling in plants. Curr. Opin. Plant Biol. 16: 661–666.

    Article  CAS  PubMed  Google Scholar 

  • Xu X., Vreugdenhil D. & Lammeren A.A.M. 1998. Cell division and cell enlargement during potato tuber formation. J. Exp. Bot. 49: 573–582.

    Article  CAS  Google Scholar 

  • Zafar S.A., Shokat S., Ahmed H.G.M., Khan A., Ali M.Z. & Atif R.M. 2015. Assessment of salinity tolerance in rice using seedling based morpho-physiological indices. Adv. Life Sci. 2(4): 142–149.

    CAS  Google Scholar 

  • Zheng X., Wu S., Zhai H., Zhou P., Song M., Su L., Xi Y., Li Z., Cai Y. & Meng F. 2013. Arabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light. Plant Cell Online. 25: 115–133.

    Article  CAS  Google Scholar 

  • Zheng Z.L., Yang Z., Jang J.C. & Metzger J.D. 2001. Modification of plant architecture in Chrysanthemum by ectopic expression of the tobacco phytochrome B1 gene. J. Amer. Soc. Hortic. Sci. 126: 19–26.

    Article  CAS  Google Scholar 

  • Zhiponova M.K., Morohashi K., Vanhoutte I., Machemer- Noonan K., Revalska M., Van Montagu M., Grotewold E. & Russinova E. 2014. Helix-loop-helix/basic helix-loop-helix transcription factor network represses cell elongation in Arabidopsis through an apparent incoherent feed-forward loop. Proc. Natl. Acad. Sci. USA 111: 2824–2829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y., Tepperman J.M., Fairchild C.D. & Quail P.H. 2000. Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3. Proc. Natl. Acad.Sci. USA 97: 13419–13424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Qayyum Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, A.Q., Ullah Khan, M.A., Shahid, N. et al. An overview of phytochrome: An important light switch and photo-sensory antenna for regulation of vital functioning of plants. Biologia 70, 1273–1283 (2015). https://doi.org/10.1515/biolog-2015-0147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0147

Key words

Navigation