Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 15, 2021

Effective removal of tetracycline from water by batch method using activated carbon, magnetic carbon nanocomposite, and membrane hybrid technology

  • Muhammad Wahab , Muhammad Zahoor EMAIL logo , Syed Muhammad Salman and Sumaira Naz

Abstract

In this study two adsorbents (activated carbon; AC and magnetic activated carbon; MCN) were prepared from Dalbergia sissoo sawdust and used as potential adsorbents for the removal of tetracycline (TC) from water. Both the adsorbents were characterized by instrumental techniques like energy dispersive x-ray (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), x-ray diffraction (XRD), surface area analyzer and thermal gravimetric/Differential thermal analysis (TG/DTA). The effect of antibiotic initial concentration, contact-time, pH, adsorbent-dose, and temperature were evaluated to determine optimum adsorption conditions. The optimum TC concentration for both AC and MCN was 120 mg/L while optimum time of saturation for both adsorbents was 120 min. The optimum pH determined was five while optimum adsorbent dose was 0.1 g. The adsorption isothermal data of both sets of experiments was best explained by Langmuir model. The kinetic data was well explained by pseudo-second order kinetics model. The ΔH° (enthalpy change) and ΔSo (entropy change) were; −14.989 and 25.174 kJ/mol for AC and −11.628 and 51.302 kJ/mol for MCN respectively. The values of Gibbs free energy (ΔG°) calculated for AC were 7.36, −7.99, −7.36, −7.61, and −8.12 kJ/mol while for MCN these were −15.02, −15.53, −16.05, −16.56, and −17.07 kJ/mol corresponding to temperatures; 298, 303, 313, 323, and 333 K. To control fouling in ultra-filtration, nano-filtration, and reverse osmosis membranes caused by TC, and both adsorbents, a continuous stirred reactor was connected in series with membrane pilot plant. The improvement brought about by both adsorbent in parameters like % retention and permeate flux was also evaluated. Comparatively, better improvement was brought about in % retention and permeates flux by MCN.


Corresponding author: Muhammad Zahoor, Department of Chemistry, University of Malakand, Chakdara Dir Lower, 18800, Khyber Pakhtunkhwa, Pakistan, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflict of interest.

  4. Data availability statement: All the data associated with this research has been presented in this paper.

References

1. Li, G., Feng, Y., Zhu, W., Zhang, X. Kor. J. Chem. Eng. 2015, 32, 2109; https://doi.org/10.1007/s11814-015-0058-2.Search in Google Scholar

2. Zhu, J., Snow, D. D., Cassada, D., Monson, S., Spalding, R. J. Chromatogr. A 2001, 928, 177; https://doi.org/10.1016/s0021-9673(01)01139-6.Search in Google Scholar

3. Kim, S., Eichhorn, P., Jensen, J. N., Weber, A. S., Aga, D. S. Environ. Sci. Technol. 2005, 39, 5816; https://doi.org/10.1021/es050006u.Search in Google Scholar

4. Kemper, N. Ecol. Indicat. 2008, 8, 1.10.1016/j.ecolind.2007.06.002Search in Google Scholar

5. Kim, S. C., Carlson, K. Environ. Sci. Technol. 2007, 41, 50; https://doi.org/10.1021/es060737+.10.1021/es060737+Search in Google Scholar

6. Halling-Sørensen, B., Nielsen, S. N., Lanzky, P., Ingerslev, F., Lützhøft, H. H., Jørgensen, S. Chemosphere. 1998, 36, 357.10.1016/S0045-6535(97)00354-8Search in Google Scholar

7. Nelson, M. L., Dinardo, A., Hochberg, J., Armelago, G. J. Am. J. Phys. Anthropol. 2010, 143, 151; https://doi.org/10.1002/ajpa.21340.Search in Google Scholar

8. Williams-Nguyen, J., Sallach, J. B., Bartelt-Hunt, S., Boxall, A. B., Durso, L. M., McLain, J. E., Zilles, J. L. J. Environ. Qual. 2016, 45, 394; https://doi.org/10.2134/jeq2015.07.0336.Search in Google Scholar

9. Jafari, M., Aghamiri, S. F., Khaghanic, G. World Appl. Sci. J. 2011, 14, 1642.Search in Google Scholar

10. Oller, I., Malato, S., Sanchez-Perez, J. Sci. Total Environ. 2011, 409, 4141; https://doi.org/10.1016/j.scitotenv.2010.08.061.Search in Google Scholar

11. Dirany, A., Sires, I., Oturan, N., Ozcan, A., Oturan, M. A. Environ. Sci. Technol. 2012, 46, 4074; https://doi.org/10.1021/es204621q.Search in Google Scholar

12. Ahmed, M. B., Zhou, J. L., Ngo, N. H., Guo, W. Sci. Total Environ. 2015, 532, 112; https://doi.org/10.1016/j.scitotenv.2015.05.130.Search in Google Scholar

13. Ji, L., Chen, W., Duan, L., Zhou, D. Environ. Sci. Technol. 2009, 43, 2322; https://doi.org/10.1021/es803268b.Search in Google Scholar

14. Soon, Y., Lueptow, R. M. J. Membr. Sci. 2005, 261, 76.10.1016/j.memsci.2005.03.038Search in Google Scholar

15. Zahoor, M., Mahramanlioglu, M. Fresenius Environ. Bull. 2011, 20, 2508.Search in Google Scholar

16. Kosutic, K., kastelan-Kunst, L., Kunst, B. J. Membr. Sci. 2000, 168, 101.10.1016/S0376-7388(99)00309-9Search in Google Scholar

17. Zahoor, M. Desalination Water Treat. 2016, 57, 23661; https://doi.org/10.1080/19443994.2015.1137787.Search in Google Scholar

18. Abdulghani, A. J., Jasim, H. H., Hassan, A. S. Int. J. Anal. Chem. 2013, 2013, 1–11. https://doi.org/10.1155/2013/305124.Search in Google Scholar

19. Tang, D., Zheng, Z., Lin, K., Luang, J., Zhang, J. J. Hazard Mater. 2007, 143, 49; https://doi.org/10.1016/j.jhazmat.2006.08.066.Search in Google Scholar

20. Fasoto, T. S., Arawande, J. O., Akinnusotu, A. Int. J. Mod. Chem. 2014, 6, 28.Search in Google Scholar

21. Wahaba, M., Zahoor, M., Salmana, S. M. Membr. Technol. 2019, 27, 28.Search in Google Scholar

22. Langmuir, I. J. Am. Chem. Soc. 1918, 40, 1361–1403; https://doi.org/10.1021/ja02242a004.Search in Google Scholar

23. Freundlich, H. Z. Phys. Chem. 1907, 57, 385–470.10.1515/zpch-1907-5723Search in Google Scholar

24. Dada, A., Olalekan, A., Olatunya, A., Dada, O. IOSR J. Appl. Chem. 2012, 3, 38.10.9790/5736-0313845Search in Google Scholar

25. Jankovic, B., Adnadevic, B., Ovnovic, J. Thermochim. Acta. 2007, 452, 106.10.1016/j.tca.2006.07.022Search in Google Scholar

26. Iyer, K., Kunju, A. Colloid. Surface. 1992, 63, 235; https://doi.org/10.1016/0166-6622(92)80244-v.Search in Google Scholar

27. Lin, J., Wang, L. Front. Environ. Sci. Eng. China 2209, 3, 320.10.1007/s11783-009-0030-7Search in Google Scholar

28. Dokoumetzidis, A., Macheras, P. J. Pharmacokinet. Pharmacodyn. 2009, 36, 165; https://doi.org/10.1007/s10928-009-9116-x.Search in Google Scholar

29. Das, A., Banerjee, M., Bar, N., Das, S. K. SN Appl. Sci. 2019, 1, 776; https://doi.org/10.1007/s42452-019-0813-9.Search in Google Scholar

30. Guibal, E., jansson-Charrier, M., Saucedo, I., Cloires, P. L. Langmuir 1995, 11, 591; https://doi.org/10.1021/la00002a039.Search in Google Scholar

31. EI-Awady, A. A., Abd-EI-Nabey, B. A., Aziz, S. G. J. Electrochem. Soc. 1992, 139, 2149.10.1149/1.2221193Search in Google Scholar

32. Chester, T. L., Coym, J. W. J. Chromatogr. A 2003, 1003, 101; https://doi.org/10.1016/s0021-9673(03)00846-x.Search in Google Scholar

33. Torrent, J., Sanz, F. J. Electrochem. Chem. Interfacial Electrochem. 1990, 286, 207; https://doi.org/10.1016/0022-0728(90)85073-e.Search in Google Scholar

34. Jiang, W. T., Chang, P. H., Wang, Y. S., Tai, Y., Jean, J. S., Li, Z. Int. J. Environ. Sci. Technol. 2015, 12, 1695; https://doi.org/10.1007/s13762-014-0547-6.10.1007/s13762-014-0547-6Search in Google Scholar

35. Kara, S., Aydiner, C., Demirbas, E., Kobya, M., Dizge, N. Desalination 2007, 212, 282; https://doi.org/10.1016/j.desal.2006.09.022.Search in Google Scholar

Received: 2020-06-12
Accepted: 2021-01-03
Published Online: 2021-01-15
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2020-1698/html
Scroll to top button