Die Kristallstruktur von Tetramethylstiboniumtetrachlorogallat [(CH₃)₄Sb]⁺[GaCl₄]⁻

The Crystal Structure of Tetramethylstibonium Tetrachlorogallate [(CH₃)₄Sb]⁺[GaCl₄]⁻

Hans-Dieter Hausen, Herbert Binder und Wolfgang Schwarz Institut für Anorganische Chemie der Universität Stuttgart

Z. Naturforsch. 33b, 567-569 (1978); eingegangen am 1. März 1978

Tetramethylstibonium, Tetrachlorogallate, Crystal Structure, X-ray

Tetramethylstiboniumtetrachlorogallate crystallizes in the hexagonal space group P6₃mc with two formula units per cell. The lattice constants are a=b=768.8 pm and c=1251.2 pm. The structure shows isolated cationic and anionic tetrahedra, which are only slightly distorted. The averaged bond lengths are: Sb-C 212.6 pm and Ga-Cl 217.2 pm.

In good agreement with the short Ga–Cl distance (the shortest of all compounds $((CH_3)_nGaCl_{4-n})^-; n = 1-3)$ are the measured ionization energies of Ga-3d-electrons and the calculated Pauling Qp-values.

In letzter Zeit haben wir mehrfach über Verbindungen der Zusammensetzung

 $[(CH_3)_4M^v]^+[(CH_3)_nM^{III}X_{4-n}]^-$

(mit $\dot{M}v = As$, Sb; $\dot{M}^{III} = Ga$, In, X = Cl, Br und n = 1-3)

berichtet [1-5]. Als Ergänzung zu den bisherigen Ergebnissen erschien die Strukturuntersuchung an $[(CH_3)_4Sb]^+[GaCl_4]^-$ (mit n=0) von Interesse.

 $[(CH_3)_4Sb]^+[GaCl_4]^-$ kristallisiert hexagonal mit den Gitterkonstanten a=b=768,8(4) pm und c=1251,2(4) pm. Die Elementarzelle enthält zwei Formeleinheiten (V=640,4×10⁶ pm³, Formelgewicht=393,42, $\rho_{gem}=2,01$ g/cm³, $\rho_{ront}=2,039$ g/cm³).

Sonderdruckanforderungen an Dr. Hans-Dieter Hausen, Institut für Anorganische Chemie der Universität, Pfaffenwaldring 55, D-7000 Stuttgart 80. Die Gitterkonstanten wurden bei Zimmertemperatur durch Optimieren ausgewählter Reflexe an einem automatischen Vierkreisdiffraktometer Syntex P2₁ und anschließender Verfeinerung der Meßwerte bestimmt. Von den aufgrund der systematisch ausgelöschten Reflexe $(hh2h\bar{l}l=2n+1)$ möglichen Raumgruppen, entsprechen lediglich die Lagen der Raumgruppe P6₃mc (=C⁴_{6v}) [6] einem sinnvollen Strukturmodell.

An dem Diffraktometer P21 wurden bei Zimmertemperatur insgesamt 580 unabhängige Reflexe gemessen, wovon 68 eine Intensität I $< 2\sigma(I)$ hatten $(\theta_{\max} = 35^{\circ}, \omega$ -scan, MoK_a-Strahlung). Einer dreidimensionalen Pattersonsynthese konnten die Ortsparameter von Antimon und Gallium entnommen werden, diejenigen der Chlor- und Kohlenstoffatome wurden sukzessive aus anschließenden Differenz-Fourier-Synthesen bestimmt. Die gefundenen Atomlagen entsprechen der angenommenen Modellvorstellung und bestätigen die gewählte Raumgruppe. Die abschließende anisotrope Verfeinerung aller Atome (außer Wasserstoff) mit voller Matrix konvergierte bei einem R-Wert von 0,03 $(R = \Sigma ||F_o| - |F_c|| / |F_o|)^*$. Hierbei waren die F_o -Werte mit einem Gewicht versehen, das der Standardabweichung aufgrund des statistischen Fehlers der Messung angepaßt war. Diese und alle vorhergehenden Rechnungen erfolgten mit dem Programmsystem "XTL" [7] an einem elektronischen Rechner Nova 1200. Bei Strukturfaktorenrechnungen wurden für die Atomformfaktoren die Werte von Cromer und Waber [8] verwendet.

Die Ergebnisse der Verfeinerung sind in den Tabellen I und II zusammengefaßt. Zur Veranschaulichung dient Abb. 1.

Tab. II. $[(CH_3)_4Sb]^+[GaCl_4]^-$, Bindungslängen (in pm) und -winkel (in °). In Klammern die Standardabweichung bezogen auf die letzte(n) Dezimale(n).

Ga - Cl1,1	218,7(2)	Cl1, I - Ga - Cl2	109,7(1)
Ga - Cl 2	212,8(3)	Cl I, 1 - Ga - Cl I, 2	109,3(1)
Sb – C1,1	213,8(9)	C1, I - Sb - C2	110,7(3)
Sb - C2	209,1(14)	C1,1 - Sb - C1,2	108,3(3)

* Die Liste der beobachteten und berechneten Strukturfaktoren kann vom Autor angefordert werden.

Tab. I. Orts- $(\times 10^4)$ und Temperaturparameter. Der Parameter U des isotropen Temperaturfaktors $\exp(-8\pi^2 \text{Usin}^2\theta/\lambda^2)$ sowie die Parameter Uij des anisotropen Temperaturfaktors $\exp(-2\pi^2(\text{U}_{11}h^2a^{*2}\cdots + 2\text{U}_{12}hka^*b^*\cdots))$ haben die Dimension (pm²). In Klammern der mittlere Fehler in Einheiten der letzten Dezimalen.

	x/a	y/b	z/c	U	U 11	\mathbf{U}_{22}	U ₃₃	U 12	U 13	U ₂₃
Ga Sb Cl1 Cl2	0 3333 	0 6666 1546 0	0 2388(1) 588(2) 	418(4) 445(2) 622(7) 596(12)	452(6) 456(3) 513(12) 762(24)	452 456 513 762	372(5) 444(3) 626(12) 390(16)	226 228 197(12) 381	0 0 	0 0 117 0
C1 C2	4868(13) 3333	4 868 6666	2992(7) 719(11)	525(23) 540(46)	534(63) 584(80)	534 584	661(42) 473(73)	296(38) 292	— 69(39) 0	69 0

Abb. 1. Projektion der Struktur auf 001.

Die Struktur zeigt isolierte kationische und anionische Tetraeder. Sämtliche Atome besetzen spezielle zweizählige Lagen, Chlor und Kohlenstoff zusätzlich auch die spezielle sechszählige Lage der Raumgruppe: Ga und Cl2 die zweizählige Lage (2a) mit z = 0 bzw. z = -0,1701, Cl1 die sechszählige Lage (6c), Sb und C2 die zweizählige Lage (2b) und C1 ebenfalls die sechszählige Lage (6c). Die internen Abstände und Winkel des Tetramethylstibonium-Kations stimmen gut mit denjenigen früherer Untersuchungen [2-5] überein. Der Unterschied in den Bindungslängen Sb-C1 und Sb-C2 ist für eine Diskussion nicht signifikant, da derartige Abstandsdifferenzen bei gleichwertigen Bindungen zwischen entsprechenden Atomen verschiedener Symmetrie in der Regel beobachtet werden. Dasselbe gilt für die unterschiedlich beobachteten Ga-Cl-Bindungslängen. Diese sind allerdings die kürzesten aller beobachteten Werte in der Řeihe [(CH3)nGaCl4-n]-.

Die Zunahme der Bindungslängen nicht nur der Ga-Cl-, sondern auch der Ga-C-Bindung mit steigendem n erklären wir durch eine Verringerung der positiven Ladung am Ga bei Ersatz von Cl durch die CH₃-Gruppe und einer damit verbundenen Zunahme der Polarität beider Bindungen. Für diese Annahme spricht auch die Abnahme der Ionisierungsenergien der Ga-3d-Elektronen mit steigendem n. In Tab. III sind die Abstandswerte, die nach Pauling berechneten relativen Ladungen Qp [9, 10] am Gallium sowie die Ionisierungsenergien angegeben.

Bei Berechnung der relativen Ladungen wurden für die Atome die bekannten Werte von Allred und Rochow, für die CH₃-Gruppe der Wert von Huheey [11] verwendet.

Die mit ESCA bestimmten Werte der Ionisierungsenergien der Ga-3d-Elektronen sind in [eV] angegeben und auf das Referenzsignal Au 4f 7/2 =84 eV bezogen (Meßgenauigkeit $\Delta E = \pm 0.15$ eV).

Der Deutschen Forschungsgemeinschaft danken wir für die Unterstützung dieser Arbeit durch Sachbeihilfen.

n = 0 $n = 1$ $n = 2$ $n = 3$ $n = 4$	[GaCl ₄]- [CH ₃ GaCl ₃]- [(CH ₃) ₂ GaCl ₂]- [(CH ₃) ₃ GaCl]- [(CH ₃) ₄ GaD	Ga-Cl (pm) 217,2* 222,3* 227,7* 238,1	Ga-C (pm) - 193,4 198,0* 205,7* 231(2) [12]	E _I Ga-3d (eV) 23,4 22,5 21,0 20,6 19.6	Qp 0,108 0,275 0,442 0,609 0,776	Tab. III. [(CH ₃) n GaCl ₄₋ n] ⁻ (n=0-4); Abstände (pm) Ga-3d-Ionisierungs- energien (eV) und relative Ladungeu (Qp) nach Pauling.
n = 4	[(CH ₃) ₄ Ga] ⁻	-	231(?) [12]	19,6	0,776	C C

* Mittelwerte; (?) Bisherige eigene Untersuchungen lassen einen Wert von 213 bis 215 pm erwarten.

- [1] H. J. Widler, H. D. Hausen und J. Weidlein, Z. Naturforsch. 30b, 645 (1975).
- [2] H. J. Guder, W. Schwarz, J. Weidlein, H. J. Widler und H. D. Hausen, Z. Naturforsch. 31b, 1185 (1976).
- [3] W. Schwarz, H. J. Guder, R. Prewo und H. D. Hausen, Z. Naturforsch. 31b, 1427 (1976). [4] H. D. Hausen, H. J. Guder und W. Schwarz,
- J. Organomet. Chem. 132, 37 (1977).
- [5] H. J. Widler, W. Schwarz, H. D. Hausen und J. Weidlein, Z. Anorg. Allg. Chem., im Druck.
 [6] International Tables for X-Ray Crystallography,
- Kynoch Press, Birmingham 1969.
- [7] XTL/E-XTL Crystallographic Programs, Syntex Analytical Instruments, Inc. Cupertino. California 95014, 1976.

- [8] D. T. Cromer und J. T. Waber, International Tables for X-Ray Crystallography, Vol. IV, S. 771ff., The Kynoch Press, Birmingham 1974.
- [9] L. Pauling, Die Natur der chemischen Bindung. Verlag Chemie, Weinheim 1964.
- [10] K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S. E. Karlsson, I. Lindgren und B. Lindberg, Nova Acta Regiae Societatis Scientia-rum Upsaliensis, Ser. IV, Vol. 20. Verlag Almquist und Wiksells, Uppsala 1967.
- [11] J. E. Huheey, J. Phys. Chem. 69, 2086 (1966).
- [12] R. Wolfrum, G. Sauermann und E. Weiss, J. Organomet. Chem. 18, 27 (1969) (siehe dort weitere Literatur).