Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 7, 2006

Recent advances in physiological calcium homeostasis

  • Indra Ramasamy

Abstract

A constant extracellular Ca2+ concentration is required for numerous physiological functions at tissue and cellular levels. This suggests that minor changes in Ca2+ will be corrected by appropriate homeostatic systems. The system regulating Ca2+ homeostasis involves several organs and hormones. The former are mainly the kidneys, skeleton, intestine and the parathyroid glands. The latter comprise, amongst others, the parathyroid hormone, vitamin D and calcitonin. Progress has recently been made in the identification and characterisation of Ca2+ transport proteins CaT1 and ECaC and this has provided new insights into the molecular mechanisms of Ca2+ transport in cells. The G-protein coupled calcium-sensing receptor, responsible for the exquisite ability of the parathyroid gland to respond to small changes in serum Ca2+ concentration was discovered about a decade ago. Research has focussed on the molecular mechanisms determining the serum levels of 1,25(OH)2D3, and on the transcriptional activity of the vitamin D receptor. The aim of recent work has been to elucidate the mechanisms and the intracellular signalling pathways by which parathyroid hormone, vitamin D and calcitonin affect Ca2+ homeostasis. This article summarises recent advances in the understanding and the molecular basis of physiological Ca2+ homeostasis.


Corresponding author: Dr. Indra Ramasamy, Department of Chemical Pathology, Newham University Hospital, Glen Road, London E13 8SL, UK

References

1. Brown EM. Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev 1991; 71:371–411.10.1152/physrev.1991.71.2.371Search in Google Scholar

2. Brown EM. The physiology of calcium metabolism. In: Becker KL, editor. The principles and practice of endocrinology and metabolism. Philadelphia, PA: Lippincott Williams & Wilkins, 2001.Search in Google Scholar

3. Van Os CH. Transcellular calcium transport in intestinal and renal epithelial cells. Biochem Biophys Acta 1987; 906:195–222.10.1016/0304-4157(87)90012-8Search in Google Scholar

4. Clapham DE. Calcium signalling. Cell 1995; 80:259–68.10.1016/0092-8674(95)90408-5Search in Google Scholar

5. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1:11–21.10.1038/35036035Search in Google Scholar

6. Bronner F, Pansu D. Nutritional aspects of calcium absorption. J Nutr 1999; 129:9–12.10.1093/jn/129.1.9Search in Google Scholar

7. Frick KK, Bushinsky DA. Molecular mechanisms of primary hypercalciuria. J Am Soc Nephrol 2003; 14:1082–95.10.1097/01.ASN.0000062960.26868.17Search in Google Scholar

8. Bronner F, Pansu D, Stein WD. An analysis of intestinal calcium transport across the rat intestine. Am J Physiol 1986; 250:G561–9.10.1152/ajpgi.1986.250.5.G561Search in Google Scholar

9. Pansu D, Duflos C, Bellaton C, Bronner F. Solubility and intestinal transit time limit calcium absorption in rats. J Nutr 1993; 123:1396–404.Search in Google Scholar

10. Buckley M, Bronner F. Calcium binding protein biosynthesis in the rat: regulation by calcium and 1,25-dihydroxy vitamin D3. Arch Biochem Biophys 1980; 202:235–41.10.1016/0003-9861(80)90425-7Search in Google Scholar

11. Karbach U. Segmental heterogeneity of cellular and paracellular calcium transport across rat duodenum and jejunum. Gastroenterology 1991; 100:47–58.10.1016/0016-5085(91)90581-5Search in Google Scholar

12. Favus MJ, Kathpalia SC, Coe FL. Kinetic characteristics of calcium absorption and secretion by rat colon. Am J Physiol Gastrointest Liver Physiol 1981; 240:G350–4.10.1152/ajpgi.1981.240.5.G350Search in Google Scholar PubMed

13. Hoenderop JG, Nilius B, Bindels RJ. Molecular mechanisms of active Ca2+ reabsorption in the distal nephron. Annu Rev Physiol 2002; 64:529–49.10.1146/annurev.physiol.64.081501.155921Search in Google Scholar PubMed

14. Hoenderop JG, Willems PH, Bindels RJ. Towards a comprehensive molecular model of active calcium reabsorption. Am J Physiol Renal Physiol 2000; 278:F352–60.10.1152/ajprenal.2000.278.3.F352Search in Google Scholar PubMed

15. Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ absorption. Science 1999; 285:103–6.10.1126/science.285.5424.103Search in Google Scholar PubMed

16. Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia. Physiol Rev 2005; 85:373–422.10.1152/physrev.00003.2004Search in Google Scholar PubMed

17. Friedman PA. Renal calcium metabolism. In: Seldin DW, Giebish G, editors. The kidney, physiology and pathophysiology, 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2000:1749–89.Search in Google Scholar

18. Friedman PA, Gesek FA. Cellular calcium transport in renal epithelia: measurement, mechanisms and regulation. Physiol Rev 1995; 75:429–71.10.1152/physrev.1995.75.3.429Search in Google Scholar PubMed

19. Peng J, Chen X, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem 1999; 274:22739–46.10.1074/jbc.274.32.22739Search in Google Scholar PubMed

20. Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems HG, et al. Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3 responsive epithelia. J Biol Chem 1999; 274:8375–8.10.1074/jbc.274.13.8375Search in Google Scholar PubMed

21. Feher JJ, Fullmer CS, Wasserman RH. Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am J Physiol 1992; 262:C517–27.10.1152/ajpcell.1992.262.2.C517Search in Google Scholar PubMed

22. Wasserman RH, Taylor AN. Kallfelz FA. Vitamin D and transfer of plasma calcium to intestinal lumen in chicks and rats. Am J Physiol 1966; 211:419–23.10.1152/ajplegacy.1966.211.2.419Search in Google Scholar PubMed

23. Christakos S, Gabrielides C, Rhoton WB. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations and molecular bio-logy. Endocr Rev 1989; 10:3–26.10.1210/edrv-10-1-3Search in Google Scholar PubMed

24. Christakos S, Beck J, Hyllner SJ. Calbindin-D9K. In: Feldman D, Glorieux F, Pike JW, editors. Vitamin D. San Diego, CA: Academic Press, 1997.Search in Google Scholar

25. Sooy K, Kohut J, Meyer M. Increased urinary calcium excretion in calbindin D28K knockout mice. J Bone Miner Res 1999; 14(Suppl 1):S211.Search in Google Scholar

26. Ghijsen WE, van OS CH, Heizmann CW, Murer H. Regulation of duodenal Ca2+ pump by calmodulin and vitamin D-dependent Ca2+ binding protein. Am J Physiol 1986; 251:G223–9.10.1152/ajpgi.1986.251.2.G223Search in Google Scholar PubMed

27. Wasserman RH, Chandler JS, Meyer SA, Smith CA, Brindak ME, Fullmer CS, et al. Intestinal calcium transport and calcium extrusion processes at the basolateral membrane. J Nutr 1992; 122:662–71.10.1093/jn/122.suppl_3.662Search in Google Scholar PubMed

28. Carafoli E. Calcium pump of the plasma membrane. Physiol Rev 1991; 71:129–53.10.1152/physrev.1991.71.1.129Search in Google Scholar PubMed

29. Kip SN, Strehler EE. Characterisation of PMCA isoforms and their contribution to transcellular Ca2+ flux in MDCK cells. Am J Physiol Renal Physiol 2003; 284:F122–32.10.1152/ajprenal.00161.2002Search in Google Scholar PubMed

30. Peng J, Brown EM, Hediger MA. Epithelial Ca2+ entry channels: transcellular Ca2+ transport and beyond. J Physiol 2003; 551:729–40.10.1113/jphysiol.2003.043349Search in Google Scholar PubMed PubMed Central

31. Muller D, Hoenderop JG, Meij IC, van den Heuvel LP, Knoers NV, den Hollander AI, et al. Molecular cloning, tissue distribution, and chromosomal mapping of the human epithelial Ca2+ channel (ECaC1). Genomics 2000; 67:48–53.10.1006/geno.2000.6203Search in Google Scholar PubMed

32. Peng JB, Brown EM, Hediger MA. Structural conservation of the genes encoding CaT1, CaT2 and related cation channels. Genomics 2001; 76:99–109.10.1006/geno.2001.6606Search in Google Scholar PubMed

33. Peng JB, Hediger MA. A family of calcium permeable channels in the kidney: distinct roles in renal calcium handling. Curr Opin Nephrol Hypertens 2002; 11:555–61.10.1097/00041552-200209000-00012Search in Google Scholar PubMed

34. Dodier Y, Banderali U, Klein H, Topalak O, Dafi O, Simoes M, et al. Outer pore topology of the ECaC-TRPV5 channel by the cysteine scan mutagenesis. J Biol Chem 2004; 279:6853–62.10.1074/jbc.M310534200Search in Google Scholar PubMed

35. Jean K, Bernatchez G, Klein H, Garneau L, Sauve R, Parent L. Role of aspartate residues in Ca2+ affinity and permeation of the distal ECaC1. Am J Physiol Cell Physiol 2002; 282:C665–72.10.1152/ajpcell.00443.2001Search in Google Scholar PubMed

36. Voets T, Janssens A, Droogmans G, Nilius B. Outer pore architecture of a Ca2+-selective TRP channel. J Biol Chem 2004; 279:15223–30.10.1074/jbc.M312076200Search in Google Scholar

37. Den Dekker E, Hoenderop JG, Nilius B, Bindels RJ. The epithelial calcium channels, TRPV5 and TRPV6: from identification towards regulation. Cell Calcium 2003; 33:497–507.10.1016/S0143-4160(03)00065-4Search in Google Scholar

38. Huang C. The transient receptor potential superfamily of ion channels. J Am Soc Nephrol 2004; 15:1690–9.10.1097/01.ASN.0000129115.69395.65Search in Google Scholar

39. Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, et al. Homo and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 2003; 22:776–85.10.1093/emboj/cdg080Search in Google Scholar

40. Van de Graaf SF, Hoenderop JG, Gkika D, Lamers D, Prenen J, Rescher U, et al. Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO J 2003; 22:1478–87.10.1093/emboj/cdg162Search in Google Scholar

41. Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM, Hediger MA, et al. Calcium-selective ion channel, CaT1, is apically localised in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab Invest 2002; 82:1755–64.10.1097/01.LAB.0000043910.41414.E7Search in Google Scholar

42. Barley NF, Howard A, O'Callaghan D, Legon S, Walters JR. Epithelial calcium transporter expression in human duodenum. Am J Physiol Gastrointest Liver 2001; 280:G285–90.10.1152/ajpgi.2001.280.2.G285Search in Google Scholar

43. Hirnet D, Olausson J, Fecher-Trost C, Bodding M, Nastainczyk W, Wissenbach U, et al. The TRPV6 gene, cDNA and protein. Cell Calcium 2003; 33:509–18.10.1016/S0143-4160(03)00066-6Search in Google Scholar

44. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci USA 2001; 98:13324–9.10.1073/pnas.231474698Search in Google Scholar PubMed PubMed Central

45. Wade JB. Distribution of transporters along the mouse distal nephron: something old, something borrowed, something new. Am J Physiol Renal Physiol 2001; 281:F1019–2010.1152/ajprenal.2001.281.6.F1019Search in Google Scholar PubMed

46. Weber K, Erben RG, Rump A, Adamski J. Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2. Biochem Biophys Res Commun 2001; 289:1287–94.10.1006/bbrc.2001.6121Search in Google Scholar

47. Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol 2003; 14:2731–40.10.1097/01.ASN.0000094081.78893.E8Search in Google Scholar

48. Peng JB, Chen XZ, Berger S, Weremowicz S, Morton CC, Vassilev PM, et al. Human calcium transport protein CaT1. Biochem Biophys Res Commun 2000; 278:326–32.10.1006/bbrc.2000.3716Search in Google Scholar

49. Hoenderop JG, Muller D, Kemp AW, Hartog A, Suzuki M, Ishibashi K, et al. Calcitriol controls the epithelial calcium channel in kidney. J Am Soc Nephrol 2001; 12:1342–9.10.1681/ASN.V1271342Search in Google Scholar

50. Hoenderop JG, Hartog A, Stuiver M, Doucet A, Willems PH, Bindels RJ. Localization of the epithelial Ca2+ channel in rabbit kidney and intestine. J Am Soc Nephrol 2000; 11:1171–8.10.1681/ASN.V1171171Search in Google Scholar

51. Hunziker W, Walters MR, Bishop JE, Norman AW. Effect of vitamin D status on the equilibrium between occupied and unoccupied 1,25-dihydroxyvitamin D intestinal receptors in the chick. J Clin Invest 1982; 69:826–33.10.1172/JCI110522Search in Google Scholar

52. Theofan G, Nguyen AP, Norman AW. Regulation of calbindin-D28K gene expression by 1,25-dihydroxyvitamin D3 is correlated to receptor occupancy. J Biol Chem 1986; 261:16943–7.10.1016/S0021-9258(19)75981-XSearch in Google Scholar

53. Kumar R. Calcium transport in epithelial cells of the intestine and kidney. J Cell Biochem 1995; 57:392–8.10.1002/jcb.240570304Search in Google Scholar PubMed

54. Wasserman RH, Fullmer CS. Vitamin D and intestinal calcium transport: facts, speculations and hypothesis. J Nutr 1995; 125:1971S–9S.10.1093/jn/125.suppl_7.1971SSearch in Google Scholar PubMed

55. Fleet JC, Eksir F, Hance KW, Wood RJ. Vitamin D inducible calcium transport and gene expression in three Caco-2 cell lines. Am J Physiol Gastrointest Liver Physiol 2002; 283:G618–25.10.1152/ajpgi.00269.2001Search in Google Scholar PubMed

56. Wood RJ, Tchack L, Taparia S. 1,25-Dihydroxyvitamin D3 increases the expression of CaT1 epithelial calcium channel in the Caco-2 human intestinal cell line. BMC Physiol 2001; 1:1.10.1186/1472-6793-1-11Search in Google Scholar

57. Song Y, Peng X, Porta A, Takanaga H, Peng JB, Hediger MA, et al. Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25-dihydroxyvitamin D3 in the intestine and kidney of mice. Endocrinology 2003; 144:3885–94.10.1210/en.2003-0314Search in Google Scholar

58. Song Y, Kato S, Fleet JC. Vitamin D receptor (VDR) knockout mice reveal VDR-independent regulation of intestinal calcium absorption and ECaC2 and calbindin D9K mRNA. J Nutr 2003; 133:374–80.10.1093/jn/133.2.374Search in Google Scholar

59. Van Abel M, Hoenderop JG, van der Kemp AW, van Leeuwen JP, Bindels RJ. Regulation of the epithelial Ca2+channels in small intestine as studied by quantitative mRNA detection. Am J Gastrointest Liver Physiol 2003; 285:G78–85.10.1152/ajpgi.00036.2003Search in Google Scholar

60. Thomas ML, Xu X, Norfleet AM, Watson CS. The presence of functional estrogen receptors in intestinal epithelial cells. Endocrinology 1993; 132:426–30.10.1210/endo.132.1.8419141Search in Google Scholar

61. Arjmandi BH, Salih MA, Herbert DC, Sims SH, Kalu DN. Evidence for oestrogen receptor-linked calcium transport in the intestine. Bone Miner 1993; 21:63–74.10.1016/S0169-6009(08)80121-3Search in Google Scholar

62. Kip SN, Strehler EE. Characterization of PMCA isoforms and their contribution to transcellular Ca2+ flux in MDCK cells. Am J Physiol Renal Physiol 2003; 284:F122–32.10.1152/ajprenal.00161.2002Search in Google Scholar PubMed

63. Kip SN, Strehler EE. Vitamin D3 upregulates plasma membrane Ca2+-ATPase expression and potentiates apico-basal Ca2+ flux in MDCK cells. Am J Physiol Renal Physiol 2004; 286:F363–69.10.1152/ajprenal.00076.2003Search in Google Scholar PubMed

64. Hoenderop JG, Dardenne O, van Abel M, van der Kemp AW, van Os CH, St.-Arnaud R, et al. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1α-hydroxylase knockout mice. FASEB J 2002; 16:1398–406.10.1096/fj.02-0225comSearch in Google Scholar PubMed

65. Hoenderop JG, Chon H, Gkika D, Bluyssen HA, Holstege FC, St.-Arnaud R, et al. Regulation of gene expression by dietary Ca2+ in kidneys of 25-hydroxyvitamin D3-1α-hydroxylase knockout mice. Kidney Int 2004; 65:531–9.10.1111/j.1523-1755.2004.00402.xSearch in Google Scholar PubMed

66. van Abel M, Hoenderop JG, Dardenne O, St Arnaud R, van Os CH, van Leeuwen HJ, et al. 1,25-Dihydroxyvitamin D3-independent stimulatory effects of estrogen on the expression of ECaC1 in the kidney. J Am Soc Nephrol 2002; 13:2102–9.10.1097/01.ASN.0000022423.34922.2ASearch in Google Scholar

67. Hoenderop JG, Nilius B, Bindels RJ. ECaC: the gatekeeper of transepithelial Ca2+ transport. Biochem Biophys Acta 2002; 1600:6–11.10.1016/S1570-9639(02)00438-7Search in Google Scholar

68. Slepchenko BM, Bronner F. Modelling of transcellular Ca transport in rat duodenum points to coexistence of two mechanisms of apical entry. Am J Physiol Cell Physiol 2001; 281:C270–81.10.1152/ajpcell.2001.281.1.C270Search in Google Scholar PubMed

69. Vennekens JG, Hoenderop JG, Prenen M, Stuiver M, Willems PH, Droogmans G, et al. Permeation and gating properties of the novel epithelial Ca2+ channel. J Biol Chem 2000; 275:3963–9.10.1074/jbc.275.6.3963Search in Google Scholar PubMed

70. Nilius B, Vennekens R, Prenen J, Hoenderop JG, Bindels RJ, Droogmans G. Whole-cell and single channel monovalent cation currents through the novel rabbit epithelial Ca2+ channel ECaC. J Physiol 2000; 527:239–48.10.1111/j.1469-7793.2000.00239.xSearch in Google Scholar PubMed PubMed Central

71. Bodding M, Wissenbach U, Flockerzi V. The recombinant human TRPV6 channel functions as Ca2+ sensor in human embryonic kidney and rat basophilic leukaemia cells. J Biol Chem 2002; 39:36656–64.10.1074/jbc.M202822200Search in Google Scholar PubMed

72. Nilius B, Prenen J, Vennekens R, Hoenderop JG, Bindels RJ, Droogmans G. Modulation of the epithelial calcium channel, ECaC, by intracellular Ca2+. Cell Calcium 2001; 29:416–28.10.1054/ceca.2001.0201Search in Google Scholar PubMed

73. Hoenderop JG, Vennekens R, Muller D, Prenen J, Droogmans G, Bindels RJ, et al. Function and expression of the epithelial Ca2+ channel family: comparison of mammalian ECaC1 and 2. J Physiol 2001; 537:747–61.10.1113/jphysiol.2001.012917Search in Google Scholar

74. Nilius B, Prenen J, Hoenderop JG, Vennekens R, Hoefs S, Weidma AF, et al. Fast and slow inactivation kinetics of the Ca2+ channels ECaC1 and ECaC2 (TRPV5 and TRPV6). J Biol Chem 2002; 277:30852–8.10.1074/jbc.M202418200Search in Google Scholar PubMed

75. Niemeyer BA, Bergs C, Wissenbach U, Flockerzi V, Trost C. Competitive regulation of CaT-like-mediated Ca2+ entry by protein kinase C and calmodulin. Proc Natl Acad Sci USA 2001; 98:3600–5.10.1073/pnas.051511398Search in Google Scholar PubMed PubMed Central

76. Rhoads AR, Friedberg F. Sequence motifs for calmodulin regulation. FASEB J 1997; 11:331–40.10.1096/fasebj.11.5.9141499Search in Google Scholar

77. Lambers TT, Weidman AF, Nilius B, Hoenderop JG, Bindel RJ. Regulation of the mouse epithelial Ca2+channel TRPV6 by the Ca2+-sensor calmodulin. J Biol Chem 2004; 279:28855–61.10.1074/jbc.M313637200Search in Google Scholar

78. Nilius B, Weidema F, Prenen J, Hoenderop JG, Vennekens R, Hoefs S, et al. The carboxyl terminus of the epithelial Ca2+ channel ECaC1 is involved in Ca2+-dependent inactivation. Pflugers Arch 2002; 445:584–8.10.1007/s00424-002-0923-9Search in Google Scholar

79. Gkika D, Mahieu F, Nilius B, Hoenderop JG, Bindels RJ. 80K-H as a new Ca2+ sensor regulating the activity of the epithelial Ca2+ channel transient receptor potential cation channel V5 (TRPV5). J Biol Chem 2004; 279:26351–7.10.1074/jbc.M403801200Search in Google Scholar

80. Sooy K, Kohut J, Christakos S. The role of calbindin and 1,25-dihydroxyvitamin D3 in the kidney. Curr Opin Nephrol Hypertens 2000; 9:341–7.10.1097/00041552-200007000-00004Search in Google Scholar

81. Yeh B, Sun T, Lee JZ, Chen H, Huang C. Mechanism and molecular determinant for regulation of rabbit transient receptor potential type 5 (TRPV5) channel by extracellular pH. J Biol Chem 2003; 278:51044–52.10.1074/jbc.M306326200Search in Google Scholar

82. Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM, et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TPRV5. J Clin Invest 2003; 112:1906–14.10.1172/JCI200319826Search in Google Scholar

83. Bianco SD, Peng JB, Takanaga H, Kos CH, Crescenzi A, Brown EM, et al. Mice lacking the epithelial calcium channel CaT1 (TRPV6) show a deficiency in intestinal calcium absorption despite high plasma levels of 1,25-dihydroxy vitamin D [abstract]. FASEB J 2004; 18:A706.Search in Google Scholar

84. Cooke NC, Haddad JG. Vitamin D binding protein. In: Feldman D, Glorieux FH, JW Pike, editors. Vitamin D. San Diego, CA: Academic Press, 1997:87–101.Search in Google Scholar

85. Safadi FF, Thornton P, Magiera H, Hollis BW, Gentile M, Haddad JG, et al. Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J Clin Invest 1999; 103:239–51.10.1172/JCI5244Search in Google Scholar

86. Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH)vitamin D3. Cell 1999; 96:507–15.10.1016/S0092-8674(00)80655-8Search in Google Scholar

87. DeLuca HF. The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB J 1988; 2:224–36.10.1096/fasebj.2.3.3280376Search in Google Scholar

88. Liu WW, Yu T, Carling C, Juhlin J, Rastad P, Ridefelt G, et al. Regulation of Gp330/megalin expression by vitamins A and D. Eur J Clin Invest 1998; 28:100–7.10.1046/j.1365-2362.1998.00253.xSearch in Google Scholar

89. Guo Y, Strugnell S, Back DW, Jones G. Transfected human liver cytochrome P-450 hydroxylates vitamin D analogs at different side chain positions. Proc Natl Acad Sci USA 1993; 90:8668–72.10.1073/pnas.90.18.8668Search in Google Scholar

90. Bjorkhem I, Holmberg I, Oftebro H, Pedersen JI. Properties of a reconstituted vitamin D3 25-hydroxylase from rat liver mitochondria. J Biol Chem 1980; 255:5244–9.10.1016/S0021-9258(19)70777-7Search in Google Scholar

91. Fukushima M, Susuki Y, Tohira Y, Nishi Y, Susuki M, Sasaki S, et al. 25-Hydroxylation of 1-alpha-hydroxyvitamin D3 in vivo and in perfused rat liver. FEBS Lett 1976; 65:211–4.10.1016/0014-5793(76)80482-6Search in Google Scholar

92. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 2003; 72:137–74.10.1146/annurev.biochem.72.121801.161712Search in Google Scholar

93. Theodoropoulos C, Demers C, Mirshahi A, Gascon-Barre M. 1,25-Dihydroxyvitamin D3 downregulates the rat intestinal vitamin D3-25-hydroxylase CYP27A. Am J Physiol Endocrinol Metab 2001; 281:E315–25.10.1152/ajpendo.2001.281.2.E315Search in Google Scholar

94. Theodoropoulos C, Demers C, Petit J, Gascon-Barre M. High sensitivity of rat hepatic vitamin D3-25 hydroxylase CYP27A to 1,25-dihydroxyvitamin D3 administration. Am J Physiol Endocrinol Metab 2003; 284:E138–47.10.1152/ajpendo.00303.2002Search in Google Scholar

95. Reiss AB, Martin KO, Rojer DE, Iyer S, Grossi EA, Galloway AC, et al. Sterol 27-hydroxylase: expression in human arterial endothelium. J Lipid Res 1997; 38:1254–60.10.1016/S0022-2275(20)37206-0Search in Google Scholar

96. Rosen H, Reshef A, Maeda N, Lippoldt A, Shpizen S, Triger L, et al. Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27 hydroxylase gene. J Biol Chem 1998; 273:14805–12.10.1074/jbc.273.24.14805Search in Google Scholar PubMed

97. Repa JJ, Lund EG, Horton JD, Leitersdorf E, Russell DW, Dietschy JM, et al. Disruption of the sterol 27-hydroxylase gene in mice results in hepatomegaly and hypertriglyceridemia. J Biol Chem 2000; 275:39685–92.10.1074/jbc.M007653200Search in Google Scholar PubMed

98. Cali JJ, Hsieh CL, Francke U, Russell DW. Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem 1991; 266:7779–83.10.1016/S0021-9258(20)89518-0Search in Google Scholar

99. Sawada N, Sakaki T, Kitanaka S, Kato S, Inouye K. Structure-function analysis of CYP27B1 and CYP27A1. Eur J Biochem 2001; 268:6607–15.10.1046/j.0014-2956.2001.02615.xSearch in Google Scholar

100. Verrips A, Hoefsloot LH, Steenbergen GC, Theelen JP, Wevers RA, Gabreels JM, et al. Clinical and molecular genetic characteristics of patients with cerebrotendinous xanthomatosis. Brain 2000; 123:908–19.10.1093/brain/123.5.908Search in Google Scholar

101. Hosseinpour F, Wikvall K. Porcine microsomal vitamin D3 25-hydroxylase (CYP2D25). J Biol Chem 2000; 275:34650–5.10.1074/jbc.M004185200Search in Google Scholar

102. Yoshioka H, Morohashi K, Sogawa K, Miyata T, Kawajiri K, Hirose T, et al. Structural analysis and specific expression of microsomal P-450 (M-1) mRNA in male rat livers. J Biol Chem 1987; 262:1706–11.10.1016/S0021-9258(19)75695-6Search in Google Scholar

103. Andersson S, Joravall H. Sex differences in cytochrome P450 dependent 25-hydroxylation of C27-steroids and vitamin D3 in rat liver microsomes. J Biol Chem 1986; 261:16932–6.10.1016/S0021-9258(19)75979-1Search in Google Scholar

104. Cheng JB, Motola DL, Mangelsdorf DL, Russell DW. Deorphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxilase. J Biol Chem 2003; 278:38084–93.10.1074/jbc.M307028200Search in Google Scholar PubMed PubMed Central

105. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci USA 2004; 101:7711–5.10.1073/pnas.0402490101Search in Google Scholar PubMed PubMed Central

106. Yamasaki T, Izumi S, Ide H, Ohyama Y. Identification of a novel rat microsomal vitamin D3 25-hydroxylase. J Biol Chem 2004; 279:22848–56.10.1074/jbc.M311346200Search in Google Scholar PubMed

107. Gupta RP, Hollis BW, Patel SB, Patrick KS, Bell NH. CYP3A4 is a human microsomal vitamin D 25-hydroxylase. J Bone Miner Res 2004; 19:680–8.10.1359/JBMR.0301257Search in Google Scholar PubMed

108. Axen E, Postlind H, Wikvall K. Effects on CYP27 mRNA expression in rat kidney and liver by 1α,25-dihydroxy- vitamin D3, a suppressor of renal 25-hydroxyvitamin D3 1α-hydroxylase activity. Biochem Biophys Res Commun 1995; 215:136–41.10.1006/bbrc.1995.2443Search in Google Scholar

109. Segev H, Honigman A, Rosen H, Leitersdorf E. Transcriptional regulation of the human sterol 27-hydroxylase gene (CYP27) and promoter mapping. Atherosclerosis 2001; 156:339–47.10.1016/S0021-9150(00)00654-7Search in Google Scholar

110. Garuti R, Croce MA, Piccinini L, Tiozzo R, Bertolini S, Calandra S. Functional analysis of the promoter of human sterol 27-hydroxylase gene in HepG2 cells. Gene 2002; 283:133–43.10.1016/S0378-1119(01)00874-5Search in Google Scholar

111. Esvelt RP, Schnoes HK, DeLuca HF. Isolation and characterization of 1α-hydroxy-23-carboxytetranorvitamin D3: a major metabolite of 1,25-dihydroxyvitamin D3. Biochemistry 1979; 18:3977–83.10.1021/bi00585a021Search in Google Scholar

112. Van Leeuwen JP, van den Bemd GC, van Driel M, Buurman CJ, Pols HA. 24,25-Dihydroxyvitamin D3 and bone metabolism. Steroids 2001; 66:375–80.10.1016/S0039-128X(00)00155-0Search in Google Scholar

113. Chen KS, Prahl JM, DeLuca HF. Isolation and expression of human 1,25-dihydroxyvitamin D3 24-hydroxylase cDNA. Proc Natl Acad Sci USA 1993; 90:4543–7.10.1073/pnas.90.10.4543Search in Google Scholar PubMed PubMed Central

114. Itoh S, Yoshimura T, Iemura O, Yamadam E, Tsujikawa K, Kohama T. Molecular cloning of 25-hydroxyviatmin D3 24-hydroxylase from mouse kidney: its inducibility by vitamin D3. Biochem Biophys Acta 1995; 1264:26–8.Search in Google Scholar

115. Akeno N, Saikatsu S, Kawane T, Horiuchi N. Mouse vitamin D-24 hydroxylase: molecular cloning, tissue distribution, and transcriptional regulation by 1α,25-dihydroxyvitamin D3. Endocrinology 1997; 138:2233–40.10.1210/endo.138.6.5170Search in Google Scholar PubMed

116. Shinki T, Shimada H, Wakino S, Anazawa H, Hayashi M, Saruta T, et al. Cloning and expression of rat 25-hydroxyvitamin D3-1α-hydroxylase cDNA. Proc Natl Acad Sci USA 1997; 94:12920–5.10.1073/pnas.94.24.12920Search in Google Scholar PubMed PubMed Central

117. Fu GK, Portale AA, Miller AL. Complete structure of the human gene for vitamin D 1α-hydroxylase, P450c1α. DNA Cell Biol 1997; 12:1499–507.Search in Google Scholar

118. Monkawa T, Yoshida T, Wakino S, Shinki T, Anazawa H, DeLuca HF, et al. Molecular cloning of cDNA and genomic DNA for human 25-hydroxyvitamin D31α-hydroxylase. Biochem Biophys Res Commun 1997; 239:527–33.10.1006/bbrc.1997.7508Search in Google Scholar PubMed

119. Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S. 25-Hydroxyvitamin D31α-hydroxylase and vitamin D synthesis. Science 1997; 277:1827–30.10.1126/science.277.5333.1827Search in Google Scholar PubMed

120. Fu GK, Lin D, Zhang MY, Bikle DD, Shackleton CH, Miller WL, et al. Cloning of human 25-hydroxyvitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol 1997; 11:1961–70.Search in Google Scholar

121. Portale AA, Booth BE, Tsai HC, Morris RC. Reduced plasma concentration of 1,25-dihydroxyvitamin D in children with moderate renal insufficiency. Kidney Int 1982; 21:627–32.10.1038/ki.1982.70Search in Google Scholar

122. Lambert PW, Stern PH, Avioli RC, Brackett NC, Turner RT, Greene A, et al. Evidence for extrarenal production of 1,25-dihydroxyvitamin D in man. J Clin Invest 1982; 69:722–5.10.1172/JCI110501Search in Google Scholar

123. Pitts TO, Piraino BH, Mitro R, Chen TC, Segre GV, Greenberg A, et al. Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild moderate and severe renal failure. J Clin Endocrinol Metab 1988; 67:876–81.10.1210/jcem-67-5-876Search in Google Scholar

124. Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ, Stewart PM, et al. Extrarenal expression of 25-hydroxyvitamin D3-1 alpha-hydroxylase. J Clin Endocrinol Metab 2001; 86:888–94.Search in Google Scholar

125. Howard GA, Turner RT, Sherrard DJ, Baylink DJ. Human bone cells in culture metabolize 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. J Biol Chem 1981; 256:7738–40.10.1016/S0021-9258(18)43337-6Search in Google Scholar

126. Delvin EE, Arabian A. Kinetics and regulation of 25-hydroxycholecalciferol 1-alpha-hydroxylase from cells isolated from human term deciduas. Eur J Biochem 1987; 163:659–62.10.1111/j.1432-1033.1987.tb10915.xSearch in Google Scholar

127. Glorieux FH, Arabian A, Delvin EE. Pseudo-vitamin D deficiency: absence of 25-hydroxyvitamin D 1-alpha-hydroxylase activity in human placenta decidual cells. J Clin Endocrinol Metab 1995; 80:2255–8.Search in Google Scholar

128. Anderson PH, O'Loughlin PD, May BK, Morris HA. Quantification of CYP27B1, CYP24 and VDR mRNA levels in the kidney using real time reverse transcriptase-polymerase chain reaction. J Mol Endocrinol 2003; 31:123–32.10.1677/jme.0.0310123Search in Google Scholar

129. Anderson PH, O'Loughlin PD, May BK, Morris HA. Determinants of circulating 1,25-dihydroxyvitamin D3 levels: the role of renal synthesis and catabolism of vitamin D. J Steroid Endocrinol Mol Biol 2004; 55:111–3.10.1016/j.jsbmb.2004.03.089Search in Google Scholar

130. Garabedian M, Holick MF, DeLuca HF, Boyle IT. Control of 25-hydroxycholecalciferol metabolism by parathyroid glands. Proc Natl Acad Sci USA 1972; 69:1673–6.10.1073/pnas.69.7.1673Search in Google Scholar

131. Fraser DR, Kodicek E. Regulation of 25-hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone. Nat New Biol 1973; 241:183–6.Search in Google Scholar

132. Tanaka Y, DeLuca HF. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys 1973; 154:566–74.10.1016/0003-9861(73)90010-6Search in Google Scholar

133. Kawashima H, Torikai S, Kurokawa K. Calcitonin selectively stimulates 25-hydroxyvitamin D3-1α-hydroxylase in proximal straight tubule of rat kidney. Nature 1981; 291:327–8.10.1038/291327a0Search in Google Scholar PubMed

134. Portale AA, Halloran BP, Murphy MM, Morris JC. Oral intake of phosphorus can determine the serum concentrations of 1,25-dihydroxyvitamin D by determining its production rate in humans. J Clin Invest 1986; 77:7–12.10.1172/JCI112304Search in Google Scholar PubMed PubMed Central

135. Zhang MY, Wang X, Wang JT, Compagnone NA, Mellon SH, Olson JL, et al. Dietary phosphorus transcriptionally regulates 25-hydroxyvitamin D-1α-hydroxylase gene expression in the proximal renal tubule. Endocrinology 2002; 143:587–95.10.1210/endo.143.2.8627Search in Google Scholar PubMed

136. Yoshida T, Yoshida N, Monkawa T, Hayashi M, Saruta T. Dietary phosphorus deprivation induces 25-hydroxyvitamin D3 1α-hydroxylase gene expression. Endocrinology 2001; 142:1720–6.10.1210/endo.142.5.8119Search in Google Scholar PubMed

137. Wu S, Finch J, Zhong M, Slatopolsky E, Grieff M, Brown AJ. Expression of the renal 25-hydroxyvitamin D-24-hydroxylase gene: regulation by dietary phosphorus. Am J Physiol 1996; 271:F203–8.10.1152/ajprenal.1996.271.1.F203Search in Google Scholar PubMed

138. Nesbitt T, Drezner MC. Insulin-like growth factor-I regulation of renal 25-hydroxyvitamin D1 hydroxylase activity. Endocrinology 1993; 132:133–8.10.1210/endo.132.1.8419119Search in Google Scholar PubMed

139. Murayama A, Takeyama K, Kitanaka S, Kodera Y, Kawaguchi Y, Hosoya T, et al. Positive and negative regulations of the renal 25-hydroxyvitaminD3 1α-hydroxylase gene by parathyroid hormone, calcitonin, and 1α,25(OH)2D3 in intact animals. Endocrinology 1999; 140:2224–31.10.1210/endo.140.5.6691Search in Google Scholar PubMed

140. Shinki T, Ueno Y, DeLuca HF, Suda T. Calcitonin is a major regulator for the expression of renal 25-hydroxyvitamin D3-1α-hydroxylase gene in normocalcemic rats. Proc Natl Acad Sci USA 1999; 96:8253–8.10.1073/pnas.96.14.8253Search in Google Scholar PubMed PubMed Central

141. Wongsurawat N, Armbrecht HJ, Zenser TV, Davis BB, Thomas ML, Forte LR. Dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 production by isolated renal slices is modulated by diabetes and insulin in the rat. Diabetes 1983; 32:302–6.10.2337/diab.32.4.302Search in Google Scholar PubMed

142. Wongsurawat N, Armbrecht HJ. Insulin modulates the stimulation of renal 1,25-dihydroxyvitamin D3 production by parathyroid hormone. Acta Endocrinol 1985; 109:243–8.10.1530/acta.0.1090243Search in Google Scholar PubMed

143. Rosenthal AM, Jones G, Kooh SW, Fraser D. 25-Hydroxyvitamin D3 metabolism in isolated perfused rat kidney. Am J Physiol 1980; 239:E12–20.10.1152/ajpendo.1980.239.1.E12Search in Google Scholar PubMed

144. Tanaka Y, DeLuca HF. Rat renal 25-hydroxyvitamin D3 1-and 24-hydroxylases: their in vivo regulation. Am J Physiol 1984; 246:E168–73.10.1152/ajpendo.1984.246.2.E168Search in Google Scholar PubMed

145. Murayama A, Takeyama K, Kitanaka S, Kodera Y, Kawaguchi Y, Hosoya T, et al. The promoter of the human 25-hydroxyvitamin D3 1α-hydroxylase gene confers positive and negative responsiveness to PTH, calcitonin, and 1α25(OH)2D3. Biochem Biophys Res Commun 1998; 249:11–6.10.1006/bbrc.1998.9098Search in Google Scholar PubMed

146. Kong XF, Zhu XH, Pei YL, Jackson DM, Holick MF. Molecular cloning, characterization and promoter analysis of the human 25-hydroxyvitamin D3-1α-hydroxylase gene. Proc Natl Acad Sci USA 1999; 96:6988–93.10.1073/pnas.96.12.6988Search in Google Scholar PubMed PubMed Central

147. Brenza HL, Kimmel-Jehan C, Jehan F, Shinki T, Wakino S, Anazawa H, et al. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1α-hydroxylase gene promoter. Proc Natl Acad Sci USA 1998; 95:1387–91.10.1073/pnas.95.4.1387Search in Google Scholar PubMed PubMed Central

148. Yoshida T, Yoshida N, Nakamura A, Monkawa T, Hayashi M, Saruta T. Cloning of porcine 25-hydroxyvitamin D3 1α-hydroxylase and its regulation by cAMP in LLC-PK1 cells. J Am Soc Nephrol 1999; 10:963–70.10.1681/ASN.V105963Search in Google Scholar PubMed

149. Yoshida T, Yoshino J, Hayashi M, Saruta T. Identification of a renal proximal tubular cell specific enhancer in the mouse 25-hydroxyvitamin D 1α-hydroxylase gene. J Am Soc Nephrol 2002; 13:1455–63.10.1097/01.ASN.0000013885.23734.CASearch in Google Scholar PubMed

150. Chen KS, DeLuca HF. Cloning of the human 1α,25-dihydroxyvitamin D-3 24-hydroxylase gene promoter and identification of two vitamin D responsive elements. Biochem Biophys Acta 1995; 1263:1–9.Search in Google Scholar

151. Zou A, Elgort MG, Allegretto EA. Retinoid X receptor (RXR) ligands activate the human 25-hydroxyvitamin D3-24-hydroxylase promoter via RXR heterodimer binding to two vitamin D-responsive elements and elicit additive effects with 1,25-dihydroxyvitamin D3. J Biol Chem 1997; 272:19027–34.10.1074/jbc.272.30.19027Search in Google Scholar PubMed

152. Kerry DM, Dwivedi PP, Hahn CN, Morris HA, Omdahl JL, May BK. Transcriptional synergism between vitamin D-responsive elements in the rat 25-hydroxy vitamin D3 24-hydroxylase (CYP24) promoter. J Biol Chem 1996; 271:29715–21.10.1074/jbc.271.47.29715Search in Google Scholar PubMed

153. Dwivedi PP, Hii CS, Ferrantes A, Tan J, Der CJ, Omdahl JL, et al. Role of MAP kinases in the 1,25-dihydroxyvitamin D3-induced transactivation of the rat cytochrome P450C24 (CYP24) promoter. J Biol Chem 2002; 277:29643–53.10.1074/jbc.M204561200Search in Google Scholar PubMed

154. Krishnan AV, Cramer SD, Bringhurst R, Feldman D. Regulation of 1,25-dihydroxyvitamin D3 receptors by parathyroid hormone in osteoblastic cells: role of second messenger pathways. Endocrinology 1995; 136:705–12.10.1210/endo.136.2.7835303Search in Google Scholar PubMed

155. Yang W, Hyllner SJ, Christakos S. Interrelationship between signal transduction pathways and 1,25(OH)2D3 in UMR106 osteoblastic cells. Am J Physiol Endocrinol Metab 2001; 281:E162–70.10.1152/ajpendo.2001.281.1.E162Search in Google Scholar

156. Huening M, Yehia G, Molina CA, Christakos S. Evidence for a regulatory role of inducible cAMP early repressor in protein kinase A-mediated enhancement of vitamin D receptor expression and modulation of hormone action. Mol Endocrinol 2002; 16:2052–64.10.1210/me.2001-0260Search in Google Scholar

157. Armbrecht HJ, Hodam TL. Parathyroid hormone and 1,25-dihydroxyvitamin D synergistically induce the 1,25-dihydroxyvitamin D-24-hydroxylase in rat UMR-106 osteoblast-like cells. Biochem Biophys Res Commun 1994; 205:674–9.10.1006/bbrc.1994.2718Search in Google Scholar

158. Shinki T, Cheng HJ, Nishimura A, Nagai Y, Ohyama Y, Noshiro M, et al. Parathyroid hormone inhibits 25-hydroxyvitamin D3-24-hydroxylase mRNA expression stimulated by 1α,25-dihydroxyviatmin D3 in rat kidney but not intestine. J Biol Chem 1992; 267:13757–62.10.1016/S0021-9258(18)42278-8Search in Google Scholar

159. Henry HL. The 25(OH)D3/1α, 25(OH)2D3-24R-hydroxylase: a catabolic or biosynthetic enzyme? Steroids 2001; 66:391–8.10.1016/S0039-128X(00)00158-6Search in Google Scholar

160. Zierold C, Reinholz GG, Mings JA, Prahl JM, DeLuca HF. Regulation of the porcine 1,25-dihydroxyvitamin D3-24 hydroxylase (CYP24) by 1,25-dihydroxyvitamin D3 and parathyroid hormone in AOK-B50 cells. Arch Biochem Biophys 2000; 381:323–7.10.1006/abbi.2000.1964Search in Google Scholar

161. Zierold C, Mings JA, DeLuca HF. Parathyroid hormone regulates 25-hydroxyvitamin D3-24-hydroxylase mRNA by altering its stability. Proc Natl Acad Sci USA 2001; 98:13572–6.10.1073/pnas.241516798Search in Google Scholar

162. Zierold C, Mings JA, Prahl JM, Reinholz GG, DeLuca HF. Protein synthesis is required for optimal induction of 25-hydroxyvitamin D3-24-hydroxylase, osteocalcin, and osteopontin mRNA by 1,25-dihydroxyvitamin D3. Arch Biochem Biophys 2002; 404:18–24.10.1016/S0003-9861(02)00238-2Search in Google Scholar

163. Zierold C, Mings JA, DeLuca HF. Regulation of 25-hydroxyvitamin D3-24-hydroxylase mRNA by 1,25-dihydroxyvitamin D3 and parathyroid hormone. J Cell Biochem 2003; 88:234–7.10.1002/jcb.10341Search in Google Scholar PubMed

164. Yang W, Friedman PA, Kumar R, Omdahl JL, May BK, Siu-Caldera M, et al. Expression of 25(OH)D324-hydroxylase in distal nephron: coordinate regulation by 1,25(OH)2D3 and cAMP or PTH. Am J Physiol Endocrinol Metab 1999; 276:E793–805.10.1152/ajpendo.1999.276.4.E793Search in Google Scholar PubMed

165. Iida K, Shinki T, Yamaguchi A, DeLuca HF, Kurokawa K, Suda T. A possible role of vitamin D receptors in regulating vitamin D activation in the kidney. Proc Natl Acad Sci USA 1995; 92:6112–6.10.1073/pnas.92.13.6112Search in Google Scholar

166. Barletta F, Dhawan P, Christakos S. Integration of hormone signalling in the regulation of human 25(OH)D324-hydroxylase transcription. Am J Physiol Endocrinol Metab 2004; 286:E598–608.10.1152/ajpendo.00214.2003Search in Google Scholar

167. Raval-Pandya M, Dhawan P, Barletta F, Christakos S. YY1 represses vitamin D receptor-mediated 25-hydroxyvitamin D3 24 hydroxylase transcription: relief of repression by CREB-binding protein. Mol Endocrinol 2001; 15:103–46.10.1210/mend.15.6.0651Search in Google Scholar

168. Christakos S, Dhawan P, Liu Y, Peng X, Porta A. New insights into the mechanisms of vitamin D action. J Cell Biochem 2003; 88:695–705.10.1002/jcb.10423Search in Google Scholar

169. Brown AJ, Dusso A, Slatopolsky E. Vitamin D. Am J Physiol 1999; 277:F157–75.10.1152/ajprenal.1999.277.2.F157Search in Google Scholar

170. Shoback D, Gross C. Metabolic bone disease. In: Humes DH, Dupon HL, Gardener LB, Griffin JW, Harris ED, Hazzard WR, et al., editors. Kelley's textbook of internal medicine. Philadelphia, PA: Lippincott Williams & Wilkins, 2000.Search in Google Scholar

171. Li YC, Pirro AE, Delling G, Baroni R, Bronson R, Demay MB. Targeted ablation of the vitamin D receptor: an animal model of vitamin D-deficient rickets type II with alopecia. Proc Natl Acad Sci USA 1997; 94:9831–5.10.1073/pnas.94.18.9831Search in Google Scholar

172. Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997; 16:391–6.10.1038/ng0897-391Search in Google Scholar

173. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, et al. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 1999; 140:4982–7.10.1210/endo.140.11.7110Search in Google Scholar

174. Beresford JN, Gallagher JA, Russell RG. 1,25-Dihydroxy-vitamin D3 and human bone-derived cells in vitro: effects on alkaline phosphatase, type I collagen and proliferation. Endocrinology 1986; 119:1776–85.10.1210/endo-119-4-1776Search in Google Scholar

175. Prince CW, Butler WT. 1,25-Dihydroxyvitamin D3 regulates the biosynthesis of osteopontin, a bone derived, cell attachment protein. Collagen Relat Res 1987; 7:305–13.10.1016/S0174-173X(87)80036-5Search in Google Scholar

176. Aronow MS, Barone LM, Bettencourt B, Stein GS, Lian JB. Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in normal osteoblast cultures. Endocrinology 1991; 128:1496–504.10.1210/endo-128-3-1496Search in Google Scholar

177. Ishida H, Bellows CG, Aubin JE, Heersche JN. Characterization of the 1,25-(OH)2D3-induced inhibition of bone nodule formation in long-term cultures of fetal rat calvarial cells. Endocrinology 1993; 132:61–6.10.1210/endo.132.1.8419147Search in Google Scholar

178. Marie PJ, Hott M, Garba M. Contrasting effects of 1,25-dihydroxyvitamin D3 on bone matrix and mineral appositional rates in the mouse. Metabolism 1985; 34:777–83.10.1016/0026-0495(85)90030-7Search in Google Scholar

179. Price PA, Baukol SA. 1,25-Dihydroxyvitamin D3 increases synthesis of the vitamin K-dependent bone protein by osteosarcoma cells. J Biol Chem 1980; 255:11660–3.10.1016/S0021-9258(19)70182-3Search in Google Scholar

180. Drissi H, Pouliot A, Koollooos C, Stein JL, Lian JB, Stein GS, et al. 1,25-(OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfa1 gene promoter. Exp Cell Res 2002; 274:323–33.10.1006/excr.2002.5474Search in Google Scholar PubMed

181. Takeda S, Yoshizawa T, Nagai Y, Yamato H, Fukumoto S, Sekine K, et al. Stimulation of osteoclast formation by 1,25-dihydroxyvitamin D requires its binding to vitamin D receptor (VDR) in osteoblastic cells: studies using VDR knockout mice. Endocrinology 1999; 140:1005–8.10.1210/endo.140.2.6673Search in Google Scholar PubMed

182. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998; 95:3597–602.10.1073/pnas.95.7.3597Search in Google Scholar PubMed PubMed Central

183. Suda T, Ueno Y, Fujii K, Shinki T. Vitamin D and bone. J Cell Biochem 2003; 88:259–66.10.1002/jcb.10331Search in Google Scholar PubMed

184. Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, et al. Mutations in TNFRS11A, affecting the signal peptide of rank, cause familial expansile osteolysis. Nat Genet 2000; 24:45–8.10.1038/71667Search in Google Scholar PubMed

185. Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 1997; 234:137–42.10.1006/bbrc.1997.6603Search in Google Scholar PubMed

186. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luth R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89:309–19.10.1016/S0092-8674(00)80209-3Search in Google Scholar

187. Endo K, Katsumata K, Hirata M, Masaki T, Kubodera N, Nakamura T, et al. 1,25-Dihydroxyvitamin D3 as well as its analogue OCT lower blood calcium through inhibition of bone resorption in hypercalcemic rats with continuous parathyroid hormone related peptide infusion. J Bone Miner Res 2000; 15:175–81.10.1359/jbmr.2000.15.1.175Search in Google Scholar

188. Shiraishi A, Higashi S, Ohkawa H, Kubodera N, Hirasawa T, Ezawa I, et al. The advantage of alfacalcidol over vitamin D in the treatment of osteoporosis. Calcif Tissue Int 1999; 65:311–6.10.1007/s002239900704Search in Google Scholar

189. Brown AJ, Zhong M, Finch J, Ritter C, Slatopolsky E. The roles of calcium and 1,25-dihydroxyvitamin D3 in the regulation of vitamin D receptor expression by rat parathyroid glands. Endocrinology 1995; 136:1419–25.10.1210/endo.136.4.7895652Search in Google Scholar

190. Nygren P, Larsson R, Johansson H. 1,25(OH)2D3 inhibits hormone secretion and proliferation but not functional dedifferentiation of cultured bovine parathyroid cells. Calcif Tissue Int 1988; 43:213–8.10.1007/BF02555137Search in Google Scholar

191. McDonnell DP, Mangelsdorf DJ, Pike JW, Haussler MR. Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 1987; 235:1214–7.10.1126/science.3029866Search in Google Scholar

192. Burmester JK, Maeda N, DeLuca HF. Isolation and expression of rat 1,25-dihydroxyvitamin D3 receptor cDNA. Proc Natl Acad Sci USA 1988; 85:1005–9.10.1073/pnas.85.4.1005Search in Google Scholar

193. Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, et al. Cloning and expression of full length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 1988; 85:3294–8.10.1073/pnas.85.10.3294Search in Google Scholar

194. Kamei Y, Kawada T, Fukuwatari T, Ono T, Kato S, Sugimoto E. Cloning and sequencing of the gene encoding the mouse vitamin D receptor. Gene 1995; 152:281–2.10.1016/0378-1119(94)00735-BSearch in Google Scholar

195. Strugnell SA, DeLuca HF. The vitamin D receptor-structure and transcriptional activation. Proc Soc Exp Biol Med 1997; 215:223–8.10.3181/00379727-215-44131Search in Google Scholar PubMed

196. Reinhardt TA, Horst RL. Parathyroid hormone down-regulates 1,25-dihydroxyvitamin D receptors (VDR) and VDR messenger ribonucleic acid in vitro and blocks homologous up-regulation of VDR in vivo. Endocrinology 1990; 127:942–8.10.1210/endo-127-2-942Search in Google Scholar

197. Healy KD, Vanhooke JL, Prahl JM, DeLuca HF. Parathyroid hormone decreases renal vitamin D receptor expression in vivo. Proc Natl Acad Sci USA 2005; 102:4724–8.10.1073/pnas.0501312102Search in Google Scholar

198. Costa EM, Feldman D. Homologous up-regulation of the 1,25(OH)2 vitamin D3 receptor in rats. Biochem Biophys Res Commun 1986; 137:742–7.10.1016/0006-291X(86)91141-1Search in Google Scholar

199. Strom M, Sandgren ME, Brown TA, DeLuca HF. 1,25-Dihydroxyvitamin D3 upregulates the 1,25-dihydroxyviatmin D3 receptor in vivo. Proc Natl Acad Sci USA 1989; 86:9770–3.10.1073/pnas.86.24.9770Search in Google Scholar PubMed PubMed Central

200. Sriussadaporn S, Wong M, Pike JW, Favus MJ. Tissue specificity and mechanism of vitamin D receptor up-regulation during dietary phosphorus restriction in the rat. J Bone Miner Res 1995; 10:271–9.10.1002/jbmr.5650100214Search in Google Scholar PubMed

201. Zineb R, Zhor B, Odile W, Marthe RR. Distinct, tissue specific regulation of vitamin D receptor in the intestine, kidney, and skin by dietary calcium and vitamin D. Endocrinology 1998; 139:1844–52.10.1210/endo.139.4.5903Search in Google Scholar PubMed

202. Healy KD, Zella JB, Prahl JM, DeLuca HF. Regulation of the murine renal vitamin D receptor by 1,25-dihydroxyvitamin D3 and calcium. Proc Natl Acad Sci USA 2003; 100:9733–7.10.1073/pnas.1633774100Search in Google Scholar PubMed PubMed Central

203. Sandgren LE, DeLuca HF. Serum calcium and vitamin D regulate 1,25-dihydroxyvitamin D3 receptor concentration in rat kidney in vivo. Proc Natl Acad Sci USA 1990; 87:4312–4.10.1073/pnas.87.11.4312Search in Google Scholar PubMed PubMed Central

204. Favus MJ, Mangelsdorf DJ, Tempe V, Coc BJ, Haussler MR. Evidence for in vivo upregulation of the intestinal vitamin D receptor during dietary calcium restriction in the rat. J Clin Invest 1988; 82:218–24.10.1172/JCI113574Search in Google Scholar PubMed PubMed Central

205. Goff JP, Reinhardt TA, Beckman MJ, Horst RL. Contrasting effects of endogenous 1,25-dihydroxyvitamin D (1,25(OH)2D) versus endogenous 1,25(OH)2D induced by dietary calcium restriction on vitamin D receptors. Endocrinology 1990; 126:1031–5.10.1210/endo-126-2-1031Search in Google Scholar PubMed

206. Costa EM, Feldman D. Measurement of 1,25-dihydroxyvitamin D3 receptor turnover by dense amino acid labelling: changes during receptor up-regulation by vitamin D metabolites. Endocrinology 1987; 1120:1173–8.Search in Google Scholar

207. Garfia B, Canadillas S, Canalejo A, Luque F, Siendones E, Quesada M, et al. Regulation of parathyroid vitamin D receptor expression by extracellular calcium. J Am Soc Nephrol 2003; 13:2945–52.10.1097/01.ASN.0000037676.54018.CBSearch in Google Scholar

208. Naveh-Many T, Marx R, Keshet E, Pike JW, Silver J. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J Clin Invest 1990; 86:1968–75.10.1172/JCI114931Search in Google Scholar

209. Russell J, Bar A, Sherwood LM, Hurwitz S. Interaction between calcium and 1,25-dihydroxyvitamin D3 in the regulation of preproparathyroid hormone and vitamin D receptor messenger ribonucleic acid in avian parathyroids. Endocrinology 1993; 132:2639–44.10.1210/endo.132.6.8389284Search in Google Scholar

210. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, et al. Cloning and characterisation of an extracellular Ca2+-sensing receptor from bovine parathyroid cells. Nature 1993; 366:575–80.10.1038/366575a0Search in Google Scholar

211. Huang YC, Lee S, Stolz R, Gabrielides C, Pansini-Porta A, Bruns ME, et al. Effect of hormones and development on the expression of the rat 1,25-dihydroxyvitamin D3 receptor gene. Comparison with calbindin gene expression. J Biol Chem 1989; 29:17454–61.10.1016/S0021-9258(18)71516-0Search in Google Scholar

212. Blanco JC, Wang IM, Tsai SY, Tsai MJ, Jurutka PW, Haussler MR, et al. Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription. Proc Natl Acad Sci USA 1995; 92:1535–9.10.1073/pnas.92.5.1535Search in Google Scholar PubMed PubMed Central

213. Onate SA, Tsai SY, Tsai MJ, O'Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995; 270:1354–7.10.1126/science.270.5240.1354Search in Google Scholar PubMed

214. Rachez C, Suldan Z, Ward J, Chang CP, Burakov D, Erdjument-Bromage H, et al. A novel protein complex that interacts with vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell free system. Genes Dev 1998; 12:1787–800.10.1101/gad.12.12.1787Search in Google Scholar PubMed PubMed Central

215. Rachez C, Lemon BD, Suldan Z, Bromleigh V, Gamble M, et al. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 1999; 398:824–8.10.1038/19783Search in Google Scholar PubMed

216. Barletta F, Freedman LP, Christakos S. Enhancement of VDR-mediated transcription by phosphorylation: correlation with increased interaction between VDR and DRIP205, a subunit of the VDR-interacting protein activator complex. Mol Endocrinol 2002; 16:301–14.10.1210/mend.16.2.0764Search in Google Scholar PubMed

217. MacDonald PN, Baudino TA, Tokumaru H, Dowd DR, Zhang C. Vitamin D receptor and nuclear receptor coactivators: crucial interactions in vitamin D-mediated transcription. Steroids 2001; 66:171–6.10.1016/S0039-128X(00)00200-2Search in Google Scholar

218. Rachez C, Freedman LP. Mechanisms of gene action by vitamin D3 receptor: a network of coactivator interactions. Gene 2000; 246:9–21.10.1016/S0378-1119(00)00052-4Search in Google Scholar

219. Dhawan P, Peng X, Sutton AL, MacDonald PN, Croniger CM, Trautwein C, et al. Functional cooperation between CCAAT/enhancer-binding proteins and the vitamin D receptor in regulation of 25-hydroxyvitamin D3 24-hydroxylase. Mol Cell Biol 2005; 25:472–87.10.1128/MCB.25.1.472-487.2005Search in Google Scholar PubMed PubMed Central

220. Christakos S, Dhawan P, Liu Y, Peng X, Porta A. New insights into the mechanisms of vitamin D action. J Cell Biochem 2003; 88:695–705.10.1002/jcb.10423Search in Google Scholar PubMed

221. Darwish HM, DeLuca HF. Analysis of binding of the 1,25-dihydroxyvitamin D3 receptor to positive and negative vitamin D response elements. Arch Biochem Biophys 1996; 334:223–34.10.1006/abbi.1996.0450Search in Google Scholar PubMed

222. Polly P, Herdick M, Moehren U, Baniahmad A, Heinzel T, et al. VDR-Alien: a novel, DNA-selective vitamin D3 receptor-corepressor partnership. FASEB J 2000; 14:1455–63.10.1096/fj.14.10.1455Search in Google Scholar PubMed

223. Crofts LA, Hancock MS, Morrison NA, Eisman JA. Multiple promoters direct the tissue-specific expression of novel N-terminal variant human vitamin D receptor gene transcripts. Proc Natl Acad Sci USA 1998; 95:10529–34.10.1073/pnas.95.18.10529Search in Google Scholar PubMed PubMed Central

224. Sunn KL, Cock TA, Crofts LA, Eisman JA, Gardiner EM. Novel N-terminal variant of human VDR. Mol Endocrinol 2001; 15:1599–609.10.1210/mend.15.9.0693Search in Google Scholar PubMed

225. Wood RJ, Fleet JC. The genetics of osteoporosis: vitamin D receptor polymorphisms. Annu Rev Nutr 1998; 18:233–58.10.1146/annurev.nutr.18.1.233Search in Google Scholar PubMed

226. Eccleshall TR, Garnero P, Gross P, Delmas P, Feldman D. The start codon polymorphisms of the vitamin D receptor gene is not associated with bone mineral density and bone turnover markers in premenopausal women. J Bone Miner Metab 1997; 12:S370.Search in Google Scholar

227. Tocchini-Valentini G, Rochel N, Wurtz JM, Mitscler A, Moras D. Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands. Proc Natl Acad Sci USA 2001; 98:5491–6.10.1073/pnas.091018698Search in Google Scholar PubMed PubMed Central

228. Rochei N, Wurtz JM, Mitschler A, Klahotz B, Moras D. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell 2000; 5:173–9.10.1016/S1097-2765(00)80413-XSearch in Google Scholar

229. Nakajima S, Hsieh J, Jurutka PW, Galligan MA, Haussler CA, Whitfield GK, et al. Examination of the potential functional role of conserved cysteine residues in the hormone binding domain of the human 1,25-dihydroxyvitamin D3 receptor. J Biol Chem 1996; 271:5143–9.10.1074/jbc.271.9.5143Search in Google Scholar

230. Yamada S, Yamamoto K, Masuno H, Choi M. Three-dimensional structure-function relationship of vitamin D receptor and vitamin D receptor model. Steroids 2001; 66:177–87.10.1016/S0039-128X(00)00145-8Search in Google Scholar

231. Le Mellay V, Grosse B, Lieberherr M. Phospholipase C β and membrane action of calcitriol and estradiol. J Biol Chem 1997; 272:11902–7.10.1074/jbc.272.18.11902Search in Google Scholar

232. Vasquez G, De Boland AR, Boland RL. 1α,25-Dihydroxyvitamin-D3-induced store-operated Ca2+ influx in skeletal muscle cells. J Biol Chem 1998; 273:33954–60.10.1074/jbc.273.51.33954Search in Google Scholar

233. Morelli S, Buitrago C, Vasquez G, De Boland AR, Boland R. Involvement of tyrosine kinase activity in 1α,25(OH)2-vitamin D3 signal transduction in skeletal muscle cells. J Biol Chem 2000; 275:36021–8.10.1074/jbc.M002025200Search in Google Scholar

234. Khare S, Bolt MJG, Wali RK, Skarosi SF, Roy HK, Niedziela S, et al. 1,25-Dihydroxyvitamin D3 stimulates phospholipase C-γ in rat colonocytes: role of c-Src in PLC-γ activation. J Clin Invest 1997; 99:1831–44.10.1172/JCI119350Search in Google Scholar

235. Gniadecki R. Nongenomic signalling by vitamin D. A new face of Src. Biochem Pharmacol 1998; 56:1273–7.10.1016/S0006-2952(98)00182-8Search in Google Scholar

236. Buitrago C, Pardo VG, de Boland AR. Nongenomic actions of 1α,25(OH)2-vitamin D3. Activation of muscle PLCγ through the tyrosine kinase cusec and Ptdlns 3-kinase. Eur J Biochem 2002; 269:2506–15.10.1046/j.1432-1033.2002.02915.xSearch in Google Scholar

237. Xie Z, Bikle DD. The role of phospholipase C-γ1 in a 1α,25-dihydroxyvitamin D3 regulated keratinocyte differentiation. Steroids 2001; 66:339–45.10.1016/S0039-128X(00)00163-XSearch in Google Scholar

238. Slater SJ, Kelly MB, Taddeo FJ, Larkin JD, Yeager MD, McLane JA, et al. Direct activation of protein kinase C by 1α,25-dihydroxyvitamin D3. J Biol Chem 1995; 270:6639–43.10.1074/jbc.270.12.6639Search in Google Scholar PubMed

239. Buitrago CG, Pardo VG, de Boland AR, Boland R. Activation of RAF-1 through Ras and protein kinase Cα mediates 1α,25(OH)2-vitamin D3 regulation of the mitogen-activated protein kinase pathway in muscle cells. J Biol Chem 2003; 278:2199–205.10.1074/jbc.M205732200Search in Google Scholar PubMed

240. Nemere I, Yoshimoto Y, Norman AW. Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3. Endocrinology 1984; 115:1476–83.10.1210/endo-115-4-1476Search in Google Scholar PubMed

241. Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP, Norman AW. The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1α,25(OH)2-vitamin D3 in vivo and in vitro. Mol Endocrinol 2004; 18:2660–71.10.1210/me.2004-0116Search in Google Scholar PubMed

242. Erben RG, Soegiarto DW, Weber K, Zeitz U, Lieberherr M, Gniadecki R, et al. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol Endocrinol 2002; 16:1524–37.10.1210/mend.16.7.0866Search in Google Scholar PubMed

243. Zanello LP, Norman AW. Rapid modulation of osteoblast ion channel responses by 1α,25(OH)2-vitamin D3 requires the presence of a functional vitamin D nuclear receptor. Proc Natl Acad Sci USA 2004; 101:1589–94.10.1073/pnas.0305802101Search in Google Scholar PubMed PubMed Central

244. Mizwicki MT, Keidel D, Bula CM, Bishop JE, Zanello LP, Wurtz JM, et al. Identification of an alternative ligand-binding pocket in the nuclear vitamin D receptor and its functional importance in 1α,25(OH)2-vitamin D3 signalling. Proc Natl Acad Sci USA 2004; 101:12876–81.10.1073/pnas.0403606101Search in Google Scholar PubMed PubMed Central

245. Wali RK, Kong J, Sitrin MD, Bissonnette M, Li YC. Vitamin D receptor is not required for the rapid actions of 1,25-dihydroxyvitamin D3 to increase intracellular calcium and activate protein kinase C in mouse osteoblasts. J Cell Biochem 2003; 88:794–801.10.1002/jcb.10432Search in Google Scholar PubMed

246. Nemere I, Ray R, McManus W. Immunochemical studies on the putative plasmalemmal receptor for 1,25(OH)2D3. I. Chick intestine. Am J Physiol Endocrinol Metab 2000; 278:E1104–114.10.1152/ajpendo.2000.278.6.E1104Search in Google Scholar PubMed

247. Nemere I, Safford SE, Rohe B, DeSouza MM, Farach-Carson MC. Identification and characterisation of 1,25D3-membrane-associated rapid response, steroid (1,25D3-MARRS) binding protein. J Steroid Biochem Mol Biol 2004; 89:281–5.10.1016/j.jsbmb.2004.03.031Search in Google Scholar PubMed

248. Nemere I, Farach-Carson MC, Rohe B, Sterling TM, Norman AW, Boyan BD, et al. Ribozyme knockdown functionally links a 1,25(OH)2D3 membrane binding protein (1,25D3-MARRS) and phosphate uptake in intestinal cells. Proc Natl Acad Sci USA 2004; 101:7392–7.10.1073/pnas.0402207101Search in Google Scholar

249. Farach-Carson MC, Xu Y. Microarray detection of gene expression changes induced by 1,25(OH)2D3 and a Ca2+ influx-activating analog in osteoblastic ROS 17/2.8 cells. Steroids 2002; 67:467–70.10.1016/S0039-128X(01)00168-4Search in Google Scholar

250. Fleet C. Rapid, membrane-initiated actions of 1,25-dihydroxyvitamin D: what are they and what do they mean. J Nutr 2004; 134:3215–8.10.1093/jn/134.12.3215Search in Google Scholar PubMed

251. Garrett JE, Capuano IV, Hammerland LG, Hung BC, Brown EM, Hebert SC, et al. Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J Biol Chem 1995; 270:12919–25.10.1074/jbc.270.21.12919Search in Google Scholar PubMed

252. Riccardi D, Park J, Lee WS, Gamba G, Brown EM, Hebert SC. Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation sensing receptor. Proc Natl Acad Sci USA 1995; 92:131–5.10.1073/pnas.92.1.131Search in Google Scholar PubMed PubMed Central

253. Aida K, Koishi S, Tawata M, Onaya T. Molecular cloning of a putative Ca2+-sensing receptor cDNA from human kidney. Biochem Biophys Res Commun 1995; 214:524–9.10.1006/bbrc.1995.2318Search in Google Scholar PubMed

254. Janicic N, Soliman E, Pausova Z, Seldin MF, Riviere M, Szpirer J, et al. Mapping of the calcium-sensing receptor gene (CASR) to human chromosome 3q13.3-21 by fluorescence in situ hybridisation and localization to rat chromosome 11 and mouse chromosome 16. Mamm Genome 1995; 6:798–801.10.1007/BF00539007Search in Google Scholar PubMed

255. Bai M. Structure-function relationship of the extracellular calcium-sensing receptor. Cell Calcium 2004; 35:197–207.10.1016/j.ceca.2003.10.018Search in Google Scholar PubMed

256. Chang W, Chen H, Pratt S, Shoback D. Amino acids in the second and third intracellular loops of the parathyroid Ca2+-sensing receptor mediate efficient coupling to phospholipase C. J Biol Chem 2000; 26:19955–63.10.1074/jbc.M909613199Search in Google Scholar PubMed

257. Chang W, Pratt S, Chen T, Bourguignon L, Shoback D. Amino acids in the cytoplasmic C terminus of the parathyroid Ca2+-sensing receptor mediate efficient cell-surface expression and phospholipase C activation. J Biol Chem 2001; 276:44129–36.10.1074/jbc.M104834200Search in Google Scholar PubMed

258. Ray K, Fan G, Goldsmith PK, Spiegel AM. The carboxyl terminus of the human calcium receptor. J Biol Chem 1997; 272:31355–61.10.1074/jbc.272.50.31355Search in Google Scholar

259. Kos CH, Karaplis AC, Peng J, Hediger MA, Goltzman D, Mohammad KS, et al. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J Clin Invest 2003; 111:1021–8.10.1172/JCI17416Search in Google Scholar

260. Gama L, Baxedale-Cox LM, Breitwieser GE. Ca2+-sensing receptors in intestinal epithelium. Am J Physiol Cell Physiol 1997; 273:C1168–75.10.1152/ajpcell.1997.273.4.C1168Search in Google Scholar

261. Mathias RS, Mathews CH, Machule C, Gao D, Li W, Denbesten PK. Identification of calcium sensing receptor in the developing tooth organ. J Bone Miner Res 2001; 16:2238–44.10.1359/jbmr.2001.16.12.2238Search in Google Scholar

262. Pearce SH, Thakker RV. The calcium sensing receptor: insights into extracellular calcium homeostasis in health and disease. J Endocrinol 1997; 154:371–8.10.1677/joe.0.1540371Search in Google Scholar

263. Kanatani M, Sugimoto T, Kanzawa M, Yano S, Chihara K. High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium sensing receptor existing in osteoclast pre-cursor cells. Biochem Biophys Res Commun 1999; 261:144–8.10.1006/bbrc.1999.0932Search in Google Scholar

264. Kameda T, Mano H, Yamada Y, Takai H, Amizuka N, Kobori M, et al. Calcium sensing receptor in mature osteoclasts which are bone-resorbing cells. Biochem Biophys Res Commun 1998; 245:419–22.10.1006/bbrc.1998.8448Search in Google Scholar

265. Chang W, Tu C, Chen TH, Komuves I, Oda Y, Pratt SA, et al. Expression and signal transduction of calcium sensing receptors in cartilage and bone. Endocrinology 1999; 140:5883–93.10.1210/endo.140.12.7190Search in Google Scholar

266. Pi M, Hinson TK, Quarles L. Failure to detect the extracellular calcium sensing receptors in human osteoblast cell lines. J Bone Miner Res 1999; 14:1310–9.10.1359/jbmr.1999.14.8.1310Search in Google Scholar

267. Ye CP, Yamaguchi T, Chattopadhyay N, Sanders JL, Vassilev PM, Brown EM. Extracellular calcium-sensing receptor mediated opening of an outward K+ channel in murine MC3T3-E1 osteoblastic cells: evidence for expression of a functional CaR. Bone 2000; 27:21–7.10.1016/S8756-3282(00)00288-XSearch in Google Scholar

268. Seuwen K, Boddeke HG, Migliaccio S, Perez M, Taranta A, Teti A. A novel calcium sensor stimulating inositol phosphate formation and [Ca2+]I signalling expressed by GCT23 osteoclast-like cells. Proc Assoc Am Physicians 1999; 111:70–81.10.1046/j.1525-1381.1999.09866.xSearch in Google Scholar

269. Miyauchi A, Hruska KA, Greenfield EM, Duncan R, Alvarez J, Barattolo R, et al. Osteoclast cytosolic calcium, regulated by voltage gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption. J Cell Biol 1990; 111:2543–52.10.1083/jcb.111.6.2543Search in Google Scholar

270. Bennett BD, Alvarez U, Hruska KA. Receptor-operated osteoclast calcium sensing. Endocrinology 2001; 142:1968–74.10.1210/endo.142.5.8125Search in Google Scholar

271. Zaidi M, Shankar VS, Tunwell R, Adebanjo OA, Mackrill J, Pazianas M, et al. A ryanodine receptor-like molecule expressed in the plasma membrane functions in extracellular Ca2+ sensing. J Clin Invest 1995; 96:1582–90.10.1172/JCI118197Search in Google Scholar

272. Zaidi M, Adebanjo OA, Moonga BS, Sun L, Huang CL. Emerging insights into the role of calcium ions in osteoclast regulation. J Bone Miner Res 1999; 14:669–74.10.1359/jbmr.1999.14.5.669Search in Google Scholar

273. Quarles LD. Cation sensing receptors in bone: a novel paradigm for regulating bone remodelling? J Bone Miner Res 1997; 12:1971–4.10.1359/jbmr.1997.12.12.1971Search in Google Scholar

274. Pi M, Garner SC, Flannery P, Spurney RF, Quarles LD. Sensing extracellular cations in CaSR-deficient osteoblasts. Evidence for a novel cation-sensing mechanism. J Biol Chem 2000; 275:3256–63.10.1074/jbc.275.5.3256Search in Google Scholar

275. Cole DE, Peltekova VD, Rubin LA, Hawker GA, Vieth R, Liew CC, et al. A986S polymorphisms of the calcium sensing receptor and circulating calcium concentrations. Lancet 1999; 353:112–5.10.1016/S0140-6736(98)06434-4Search in Google Scholar

276. Tsukamoto K, Orimo H, Hosoi T, Miyao M, Ota N, Nakajima T, et al. Association of bone mineral density with polymorphisms of the human calcium sensing receptor locus. Calcif Tissue Int 2000; 66:181–3.10.1007/PL00005835Search in Google Scholar PubMed

277. Shirai Y, Yoshimura Y, Yawaka Y, Hasegawa T, Kikuiri T, Takeyama S, et al. Effect of extracellular calcium concentrations on osteoclast differentiation in vitro. Biochem Biophys Res Commun 1999; 265:484–8.10.1006/bbrc.1999.1664Search in Google Scholar PubMed

278. Yamaguchi M, Yamaguchi T, Kaji H, Sugimoto T, Chihara K. Involvement of calcium-sensing receptor in osteoblastic differentiation of mouse MC3T3-E1 cells. Am J Physiol Endocrinol Metab 2005; 288:E608–16.10.1152/ajpendo.00229.2004Search in Google Scholar PubMed

279. Canaff L, Hendy GN. Human calcium sensing receptor gene. J Biol Chem 2002; 277:30337–50.10.1074/jbc.M201804200Search in Google Scholar PubMed

280. Brown AJ, Zhong M, Finch J, Ritter C, McCracken R, Morrisey J, et al. Rat calcium-sensing receptor is regulated by vitamin D and not by calcium. Am J Physiol 1996; 270:F454–60.10.1152/ajprenal.1996.270.3.F454Search in Google Scholar PubMed

281. Rogers KV, Dunn CK, Conklin RL, Hadfield S, Petty BA, Brown EM, et al. Calcium receptor messenger ribonucleic acid levels in the parathyroid glands and kidney of vitamin D deficient rats are not regulated by plasma calcium or 1,25-dihydroxyvitamin D3. Endocrinology 1995; 136:499–504.10.1210/endo.136.2.7835282Search in Google Scholar PubMed

282. Emanuel RL, Adler GK, Kifor O, Quinn SJ, Fuller F, Krapcho K, et al. Calcium sensing receptor expression and regulation by extracellular calcium in the AtT-20 pituitary cell line. Mol Endocrinol 1996; 10:555–65.Search in Google Scholar

283. Nielsen PK, Rasmussen AK, Butters R, Feldt-Rasmussen U, Bendtzen K, Diaz R, et al. Inhibition of PTH secretion by interleukin-1β in bovine parathyroid glands in vitro is associated with an up-regulation of the calcium-sensing receptor mRNA. Biochem Biophys Res Commun 1997; 238:880–5.10.1006/bbrc.1997.7207Search in Google Scholar PubMed

284. Canaff L, Hendy GN. Calcium-sensing receptor gene transcription is up-regulated by the proinflammatory cytokine-1β. J Biol Chem 2005; 280:14177–88.10.1074/jbc.M408587200Search in Google Scholar PubMed

285. Riccardi D, Traebert M, Ward DT, Kaissling B, Biber J, Hebert SC, et al. Dietary phosphate and parathyroid hormone alter the expression of calcium sensing receptor (CaR) and the Na+ dependent phosphate transported NaPi-2 in the rat proximal tubule. Pflugers Arch 2000; 441:379–87.10.1007/s004240000436Search in Google Scholar PubMed

286. Chattopadhyay N, Baum M, Bai M, Riccardi D, Hebert SC, Harris HW, et al. Ontogeny of the extracellular calcium-sensing receptor in the rat kidney. Am J Physiol Renal Physiol 1996; 271:F736–43.10.1152/ajprenal.1996.271.3.F736Search in Google Scholar PubMed

287. Arthur JM, Collinsworth GP, Gettys TW, Quarles D, Raymond JR. Specific coupling of a cation-sensing receptor to a G protein α-subunits in MDCK cells. Am J Physiol 1997; 273:F129–35.10.1152/ajprenal.1997.273.1.F129Search in Google Scholar PubMed

288. Huang C, Hujer KM, Wu Z, Miller RT. The Ca2+-sensing receptor couples to Gα12/13 to activate phospholipase D in Madin-Darby canine kidney cells. Am J Physiol Cell Physiol 2004; 286:C22–30.10.1152/ajpcell.00229.2003Search in Google Scholar PubMed

289. De Jesus Ferreira MC, Helies-Toussaint C, Imbert-Teboul M, Bailly C, Verbavatz JM, Bellanger AC, et al. Co-expression of a Ca2+-inhibitable adenyl cyclase and of a Ca2+-sensing receptor in the cortical thick ascending limb cell of the rat kidney. J Biol Chem 1998; 24:15192–202.10.1074/jbc.273.24.15192Search in Google Scholar PubMed

290. Kifor O, MacLeod RJ, Diaz R, Bai M, Yamaguchi T, Yao T, et al. Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells. Am J Physiol Renal Physiol 2001; 280:F291–302.10.1152/ajprenal.2001.280.2.F291Search in Google Scholar PubMed

291. Holstein DM, Berg KA, Leeb-Lundberg LM, Olson MS, Saunders C. Calcium-sensing receptor mediated ERK1/2 activation requires Gαi2 coupling and dynamin-independent receptor internalization. J Biol Chem 2004; 279:10060–9.10.1074/jbc.M312039200Search in Google Scholar PubMed

292. Handlogten ME, Huang C, Shiraishi N, Awata H, Miller RT. The Ca2+-sensing receptor activates cytosolic phospholipase A2 via a Gqα-dependent ERK-independent pathway. J Biol Chem 2001; 276:13941–8.10.1074/jbc.M007306200Search in Google Scholar PubMed

293. Huang C, Handlogten ME, Miller RT. Parallel activation of phosphatidylinositol 4-kinase and phospholipase C by the extracellular calcium-sensing receptor. J Biol Chem 2002; 23:20293–300.10.1074/jbc.M200831200Search in Google Scholar PubMed

294. Miki H, Maercklein PB, Fitzpatrick LA. Spontaneous oscillations of intracellular calcium in single bovine parathyroid cells may be associated with the inhibition of parathyroid hormone secretion. Endocrinology 1995; 136:2954–9.10.1210/endo.136.7.7789320Search in Google Scholar PubMed

295. Miedlich S, Gama L, Breitwieser GE. Calcium sensing receptor activation by a calcimimetic suggests a link between cooperativity and intracellular calcium oscillations. J Biol Chem 2002; 277:49691–9.10.1074/jbc.M205578200Search in Google Scholar PubMed

296. Kifor O, Diaz R, Butters R, Kifor I, Brown EM. The calcium sensing receptor (CaR) activates phospholipases C, A2, and D in bovine parathyroid and CaR-transfected human embryonic kidney (HEK293) cells. J Bone Miner Res 1997; 12:715–25.10.1359/jbmr.1997.12.5.715Search in Google Scholar PubMed

297. McNeil SE, Hobson SA, Nipper V, Rodland KD. Functional calcium-sensing receptors in rat fibroblasts are required for activation of Src kinase and mitogen-activated protein kinase in response to extracellular calcium. J Biol Chem 1998; 273:1114–20.10.1074/jbc.273.2.1114Search in Google Scholar PubMed

298. Kifor O, Diaz R, Butters R, Kifor I, Brown EM. The calcium sensing receptor is localised in caveolin-rich plasma membrane domains of bovine parathyroid cells. J Biol Chem 1998; 273:21708–13.10.1074/jbc.273.34.21708Search in Google Scholar PubMed

299. Kifor O, Kifor I, Moore FD Jr, Butters RR Jr, Brown EM. M-calpain colocalizes with the calcium-sensing receptor (CaR) in caveolae in parathyroid cells and participates in degradation of the CaR. J Biol Chem 2003; 278:31167–76.10.1074/jbc.M303377200Search in Google Scholar PubMed

300. Zhang M, Breitwieser GE. High affinity interaction with filamin A protects against calcium-sensing receptor degradation. J Biol Chem 2005; 280:11140–6.10.1074/jbc.M412242200Search in Google Scholar PubMed

301. Riccardi D, Plotkin MD, Lee WS, Segre GV, Brown EM, Hebert SC. Colocalization of the Ca2+ sensing receptor and PTH/PTHrP receptor in the kidney [abstract]. J Am Soc Nephrol 1995; 6:954.Search in Google Scholar

302. Riccardi D, Lee WS, Lee K, Segre GV, Brown EM, Hebert SC. Localization of the extracellular Ca2+-sensing receptor and PTH/PTHrP receptor in the kidney. Am J Physiol 1996; 271:F951–6.10.1152/ajprenal.1996.271.4.F951Search in Google Scholar PubMed

303. Riccardi D, Hall AE, Chattopadhyay N, Xu JZ, Brown EM, Hebert SC. Localization of the extracellular Ca2+/polyvalent cation sensing protein in rat kidney. Am J Physiol Renal Physiol 1998; 274:F611–22.10.1152/ajprenal.1998.274.3.F611Search in Google Scholar PubMed

304. Mandon B, Siga E, Roinel N, de Rouffignac C. Ca2+, Mg2+ and K+ transport in the cortical and medullary thick ascending limb of the rat nephron: influence of transepithelial voltage. Pflugers Arch 1993; 424:558–60.10.1007/BF00374924Search in Google Scholar PubMed

305. Di Stefano A, Roinel N, de Rouffignac C, Wittner M. Transepithelial Ca2+ and Mg2+ transport in the cortical thick ascending limb of Henle's loop of the mouse is a voltage dependent process. Renal Physiol Biochem 1993; 16:157–66.Search in Google Scholar

306. Wittner M, Mandon B, Roinel N, de Rouffignac C, Di Stefano A. Hormonal stimulation of Ca2+ and Mg2+ transport in the thick ascending limb of Henle's loop of the mouse: evidence for a change in the paracellular path permeability. Pflugers Arch 1993; 423:387–96.10.1007/BF00374932Search in Google Scholar PubMed

307. Wittner M, Di Stefano A. A hormonal mosaic modulating the function of the thick ascending limb of Henle's loop. Exp Nephrol 1993; 1:285–91.Search in Google Scholar

308. Paulais M, Baudoin-Legros M, Teulon J. Functional evidence for Ca2+/polyvalent cation sensor in the mouse thick ascending limb. Am J Physiol 1996; 271:F1052–60.10.1152/ajprenal.1996.271.5.F1052Search in Google Scholar PubMed

309. Champigneuelle A, Siga E, Vassent G, Imbert-Teboul M. Relationship between extra and intracellular calcium in distal segments of the renal tubule. Role of the calcium receptor RaKCaR. J Membr Biol 1997; 156:117–29.Search in Google Scholar

310. Desfleurs E, Wittner M, Simeone S, Pajand S, Moine G, Rajerison R, et al. Calcium sensing receptor: regulation of electrolyte transport in the thick ascending limb of Henle's loop. Kidney Blood Press Res 1998; 21:401–12.10.1159/000025892Search in Google Scholar PubMed

311. Wang W, Lu M, Balazy M, Hebert SC. Phospholipase A2 is involved in mediating the effect of extracellular Ca2+ on apical K+ channels in rat TAL. Am J Physiol 1997; 273:F421–9.10.1152/ajprenal.1997.273.3.F421Search in Google Scholar PubMed

312. Motoyama HI, Friedman PA. Calcium sensing receptor regulation of PTH dependent calcium absorption by mouse cortical ascending limbs. Am J Physiol Renal Physiol 2002; 283:F399–406.10.1152/ajprenal.00346.2001Search in Google Scholar PubMed

313. Quamme GA, Dirks JH. Intraluminal and contraluminal magnesium on magnesium and calcium transfer in the rat nephron. Am J Physiol 1980; 238:F187–98.10.1152/ajprenal.1980.238.3.F187Search in Google Scholar PubMed

314. De Jesus Ferreira MC, Bailly C. Extracellular Ca2+ decreases chloride reabsorption in rat CTAL by inhibiting cAMP pathway. Am J Physiol 1998; 275:F198–203.10.1152/ajprenal.1998.275.2.F198Search in Google Scholar PubMed

315. Quamme GA. Effect of hypercalcemia on renal tubular handling of calcium and magnesium. Can J Physiol Pharmacol 1982; 60:1275–80.10.1139/y82-187Search in Google Scholar PubMed

316. Wang WH, Lu M, Hebert SC. Cytochrome P-450 metabolites mediate extracellular Ca2+-induced inhibition of apical K+ channels in the TAL. Am J Physiol Cell Physiol 1996; 271:C103–11.10.1152/ajpcell.1996.271.1.C103Search in Google Scholar PubMed

317. Bapty BW, Dai LJ, Ritchie G, Jirik F, Canaff L, Hendy GN, et al. Extracellular Mg2+ and Ca2+-sensing in mouse distal convoluted tubule cells. Kidney Int 1998; 53:583–92.10.1046/j.1523-1755.1998.00790.xSearch in Google Scholar PubMed

318. Blankenship KA, Williams JJ, Lawrence MS, McLeish KR, Dean WL, Arthur JM. The calcium-sensing receptor regulates calcium absorption in MDCK cells by inhibition of PMCA. Am J Physiol 2001; 280:815–22.10.1152/ajprenal.2001.280.5.F815Search in Google Scholar PubMed

319. Sands JM, Naruse M, Baum M, Jo I, Hebert SC, Brown EM, et al. Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest 1997; 99:1399–405.10.1172/JCI119299Search in Google Scholar PubMed PubMed Central

320. Tu Q, Pi M, Karsentry G, Simpson L, Liu S, Quarles LD. Rescue of the skeletal phenotype in CaSR-deficient mice by transfer onto the Gcm2 null background. J Clin Invest 2003; 111:1029–37.10.1172/JCI200317054Search in Google Scholar

321. Chattopadhyay N, Cheng I, Rogers K, Riccardi D, Hall A, Diaz R, et al. Identification and localization of the extracellular Ca2+-sensing receptor in the rat intestine. Am J Physiol Gastrointest Liver Physiol 1998; 274:G122–30.10.1152/ajpgi.1998.274.1.G122Search in Google Scholar PubMed

322. Brown EM, McLeod RJ. Extracellular calcium sensing and extracellular calcium signalling. Physiol Rev 2001; 81:239–97.10.1152/physrev.2001.81.1.239Search in Google Scholar PubMed

323. Nemeth EF, Fox J. Calcimimetic compounds: a direct approach to controlling plasma levels of parathyroid hormone in hyperparathyroidism. Trend Endocrinol Metab 1999; 10:66–71.10.1016/S1043-2760(98)00119-2Search in Google Scholar

324. Nemeth EF, Steffey ME, Hammerland LG, Hung BC, van Wagenen BC, DelMar EG. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA 1998; 95:4040–5.10.1073/pnas.95.7.4040Search in Google Scholar

325. Bourdeau A, Souberbielle JC, Bonnet P, Herviaux P, Sachs C, Lieberherr M. Phospholipase A2 action and arachidonic acid metabolism in calcium-mediated parathyroid hormone secretion. Endocrinology 1992; 130:1339–44.Search in Google Scholar

326. Caneljo A, Canadillas S, Ballesteros E, Rodriguez M, Almaden Y. Importance of arachidonic acid as a mediator of parathyroid gland response. Kidney Int 2003; 85(Suppl):S10–3.10.1046/j.1523-1755.63.s85.4.xSearch in Google Scholar

327. Yamamoto M, Igarashi T, Muramatsu M, Fukagawa M, Motokura T, Ogata E. Hypocalcemia increases and hypercalcemia decreases the steady-state level of parathyroid hormone mRNA in the rat. J Clin Invest 1989; 83:1053–6.10.1172/JCI113946Search in Google Scholar

328. Ho C, Conner DA, Pollak MR, Ladd DJ, Kifor O, Warren HB, et al. A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet 1995; 11:389–94.10.1038/ng1295-389Search in Google Scholar

329. Li YC, Amling M, Pirro AE, Priemel M, Meuse J, Baron R, et al. Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia but not alopecia in vitamin D receptor-ablated mice. Endocrinology 1998; 139:4391–6.10.1210/endo.139.10.6262Search in Google Scholar

330. Ritter CS, Martin DR, Lu Y, Slatopolsky E, Brown AJ. Reversal of secondary hyperparathyroidism by phosphate restriction restores parathyroid calcium-sensing receptor expression and function. J Bone Miner Res 2002; 17:2206–13.10.1359/jbmr.2002.17.12.2206Search in Google Scholar

331. Martin DR, Ritter CS, Slatopolsky E, Brown AJ. Acute regulation of parathyroid hormone by dietary phosphate. Am J Physiol 2005; 284:E729–34.10.1152/ajpendo.00065.2005Search in Google Scholar

332. Cozzolino M, Brancaccio D, Gallieni M, Galssi A, Slatopolsky E, Dusso A. Pathogenesis of parathyroid hyperplasia in renal failure. J Nephrol 2005; 18:5–8.Search in Google Scholar

333. Deftos LJ. Calcitonin. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. New York: Raven Press, 1993:270–6.Search in Google Scholar

334. Garrett JE, Tamir H, Kifor O, Simin RT, Rogers KV, Mithal A, et al. Calcitonin-secreting cells of the thyroid express an extracellular calcium receptor gene. Endocrinology 1995; 136:5202–11.10.1210/endo.136.11.7588259Search in Google Scholar

335. Nemeth EF, Scarpa A. Cytosolic Ca2+ and the regulation of secretion of parathyroid cells. FEBS Lett 1986; 203:15–9.10.1016/0014-5793(86)81427-2Search in Google Scholar

336. Nemeth EF, Scarpa A. Rapid mobilization of cellular Ca2+ in bovine parathyroid cells evoked by extracellular divalent cations. J Biol Chem 1987; 262:5188–96.10.1016/S0021-9258(18)61172-XSearch in Google Scholar

337. Muff R, Nemeth EF, Haller-Brem S, Fischer JA. Regulation of hormone secretion and cytosolic Ca2+ by extracellular Ca2+ in parathyroid cells and C-cells: role of voltage-sensitive Ca2+ channels. Arch Biochem Biophys 1988; 265:128–35.10.1016/0003-9861(88)90378-5Search in Google Scholar

338. Ridfelt P, Liu Y, Rastad J, Akerstrom G, Gylfe E. Calcium sensing by human medullary carcinoma cells. FEBS Lett 1994; 337:243–7.10.1016/0014-5793(94)80200-9Search in Google Scholar

339. Yamashita N, Hagiwara S. Membrane depolarization and intracellular Ca2+ increase caused by high external Ca2+ in a rat calcitonin-secreting cell line. J Physiol 1990; 431:243–67.10.1113/jphysiol.1990.sp018329Search in Google Scholar PubMed PubMed Central

340. Scherubl H, Kleppisch T, Zink A, Raue F, Krautwurst D, Hescheler J. Major role of dihydropyridine-sensitive Ca2+ channels in Ca2+-induced calcitonin secretion. Am J Physiol 1993; 264:E354–60.10.1152/ajpendo.1993.264.3.E354Search in Google Scholar PubMed

341. McGehee DS, Aldersberg M, Liu K, Hsuing S, Heath MJ, Tamir H. Mechanism of extracellular Ca2+ receptor-stimulated hormone release from sheep thyroid parafollicular cells. J Physiol 1997; 502:31–44.10.1111/j.1469-7793.1997.031bl.xSearch in Google Scholar PubMed PubMed Central

342. Naylor SL, Sakaguchi AY, Szika P, Hendy GN, Kronenberg HM, Rich A, et al. Human parathyroid hormone (PTH) is on short arm of chromosome 11. Somatic Cell Genet 1983; 9:609–16.10.1007/BF01574261Search in Google Scholar PubMed

343. Vasicek TJ, McDevitt BE, Freeman MW, Fennick BJ, Hendy GN, Potts JT, et al. Nucleotide sequence of the human parathyroid gene. Proc Natl Acad Sci USA 1983; 80:2127–31.10.1073/pnas.80.8.2127Search in Google Scholar PubMed PubMed Central

344. Kronenberg HM. Developmental regulation of the growth plate. Nature 2003; 423:332–6.10.1038/nature01657Search in Google Scholar PubMed

345. Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mamm Gland Biol Neoplasia 2002; 7:49–66.10.1023/A:1015770423167Search in Google Scholar

346. VanHouten J, Dann P, McGeoch G, Brown EM, Krapcho K, Neville M, et al. The calcium sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J Clin Invest 2004; 113:598–608.10.1172/JCI200418776Search in Google Scholar

347. Kovacs CS, Lanske B, Hunzelman JL, Guo J, Karaplis AC, Kronenberg HM. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci USA 1996; 26:15233–8.10.1073/pnas.93.26.15233Search in Google Scholar

348. Rodda CP, Kubota M, Heath JA, Ebeling PR, Mosely JM, Care AD, et al. Evidence for a novel parathyroid hormone related protein in fetal lamb parathyroid glands and sheep placenta: comparison with a similar protein implicated in humoral hypercalcemia of malignancy. J Endocrinol 1988; 117:261–71.10.1677/joe.0.1170261Search in Google Scholar

349. Bisello A, Horwitz MJ, Stewart AF. Parathyroid hormone related protein: an essential physiological regulator of adult bone mass. Endocrinology 2004; 145:3551–3.10.1210/en.2004-0509Search in Google Scholar

350. Russell J, Lettieri D, Sherwood LM. Direct regulation by calcium of cytoplasmic messenger ribonucleic acid coding for pre-proparathyroid hormone in isolated bovine parathyroid cells. J Clin Invest 1983; 72:1851–5.10.1172/JCI111146Search in Google Scholar

351. Brookman JJ, Farrow SM, Nicholson L, O'Riordan H, Hendy GN. Regulation by calcium of parathyroid hormone mRNA in cultured parathyroid tissue. J Bone Miner Res 1986; 1:529–37.10.1002/jbmr.5650010607Search in Google Scholar

352. Naveh-Many T, Friedlaender MM, Mayer H, Silver J. Regulation by calcium of parathyroid mRNA, but not calcitonin mRNA in vivo in the rat. Dominant role of 1,25-dihydroxyvitamin D. Endocrinology 1989; 125:275–80.10.1210/endo-125-1-275Search in Google Scholar

353. Silver J, Russell J, Sherwood LM. Regulation by vitamin D metabolites of messenger ribonucleic acid for preproparathyroid hormone in isolated bovine parathyroid cells. Proc Natl Acad Sci USA 1985; 82:4270–3.10.1073/pnas.82.12.4270Search in Google Scholar

354. Cote GJ, Rogers DG, Huang ES, Gagel RF. The effect of 1,25-dihydroxyvitamin D3 treatment on calcitonin and calcitonin gene-related peptide mRNA levels in cultured human thyroid C-cells. Biochem Biophys Res Commun 1987; 149:239–43.10.1016/0006-291X(87)91630-5Search in Google Scholar

355. Okazaki T, Igarashi T, Kronenberg HM. 5′-Flanking region of the parathyroid hormone gene mediates negative regulation by 1,25-(OH)2 vitamin D3. J Biol Chem 1988; 263:2203–8.10.1016/S0021-9258(18)69191-4Search in Google Scholar

356. Silver J, Naveh-Many T, Mayer H, Schmelzer J, Popovtzer MM. Regulation by vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest 1986; 78:1296–301.10.1172/JCI112714Search in Google Scholar

357. Naveh-Many T, Silver J. Regulation of calcitonin gene transcription by vitamin D metabolites in vivo in the rat. J Clin Invest 1986; 81:270–3.10.1172/JCI113305Search in Google Scholar

358. Naveh-Many T, Silver J. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia and vitamin D in the rat. J Clin Invest 1990; 86:1313–9.10.1172/JCI114840Search in Google Scholar

359. Moallem E, Kilav R, Silver J, Naveh-Many T. RNA-protein binding and post-transcriptional regulation of parathyroid hormone gene expression by calcium and phosphate. J Biol Chem 1998; 273:5253–9.10.1074/jbc.273.9.5253Search in Google Scholar

360. Kilav R, Silver J, Naveh-Many T. Parathyroid hormone gene expression in hypophosphatemic rats. J Clin Invest 1995; 96:327–33.10.1172/JCI118038Search in Google Scholar

361. Almaden Y, Hernandez A, Torregrosa V, Canalejo A, Sabate L, Fernandez L, et al. High phosphate level directly stimulates parathyroid hormone secretion and synthesis by human parathyroid tissue in vitro. J Am Soc Nephrol 1998; 10:1845–52.10.1681/ASN.V9101845Search in Google Scholar

362. Naveh-Many T, Almogi G, Livni N, Silver J. Estrogen receptors and biologic response in rat parathyroid tissue and C-cells. J Clin Invest 1992; 90:2434–8.10.1172/JCI116134Search in Google Scholar

363. Demay MB, Kiernan MS, DeLuca HF, Kronenberg HM. Sequences in the human parathyroid hormone gene that binds the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 1992; 89:8097–101.10.1073/pnas.89.17.8097Search in Google Scholar

364. Beckerman P, Silver J. Vitamin D and the parathyroid. Am J Med Sci 1999; 317:363–9.Search in Google Scholar

365. Koszewski NJ, Alimov AP, Park-Sarge O, Malluche HM. Suppression of the human parathyroid hormone promoter by vitamin D involves displacement of NF-Y binding to the vitamin D response element. J Biol Chem 2004; 279:42431–7.10.1074/jbc.M407742200Search in Google Scholar

366. Naveh-Many T, Bell O, Silver J, Kilav R. Cis and trans acting factors in the regulation of parathyroid hormone (PTH) RNA stability by calcium and phosphate. FEBS Lett 2002; 529:60–4.10.1016/S0014-5793(02)03259-3Search in Google Scholar

367. Silver J, Yalcindag C, Sela-Brown A, Kilav R, Naveh-Many T. Regulation of the parathyroid hormone gene by vitamin D, calcium and phosphate. Kidney Int 1999; 56(s73):S2–7.10.1046/j.1523-1755.1999.07310.xSearch in Google Scholar PubMed

368. Kilav R, Silver J, Naveh-Many T. A conserved cis-acting element in the parathyroid hormone 3′-untranslated region is sufficient for regulation of RNA stability by calcium and phosphate. J Biol Chem 2001; 276:8727–33.10.1074/jbc.M005471200Search in Google Scholar PubMed

369. Bell O, Gaberman E, Kilav R, Levi R, Cox KB, Molkentin JD, et al. The protein phosphatase calcineurin determines basal parathyroid hormone gene expression. Mol Endocrinol 2005; 19:516–26.10.1210/me.2004-0108Search in Google Scholar PubMed

370. Rupp E, Mayer H, Wingender E. The promoter of the human parathyroid hormone gene contains a functional cyclic AMP-responsive element. Nucleic Acids Res 1990; 18:5677–83.10.1093/nar/18.19.5677Search in Google Scholar PubMed PubMed Central

371. Kolakowski LF. GCRDb. A G protein-coupled receptor database. Receptor Channels 1994; 2:1–7.Search in Google Scholar

372. Mannstadt M, Juppner H, Gardella TJ. Receptors for PTH and PTHrP: their biological importance and functional properties. Am J Physiol 1999; 277:F665–75.10.1152/ajprenal.1999.277.5.F665Search in Google Scholar PubMed

373. Lee K, Deeds JD, Segre GV. Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acids during fetal development of rats. Endocrinology 1995; 136:453–63.10.1210/endo.136.2.7835276Search in Google Scholar PubMed

374. Urena P, Kong XF, Abou-Samra AB, Juppner H, Kronenberg HM, Potts JT, et al. Parathyroid hormone (PTH)/PTH-related peptide receptor mRNA is widely distributed in rat tissues. Endocrinology 1993; 133:617–23.10.1210/endo.133.2.8393771Search in Google Scholar PubMed

375. Gardella TJ, Juppner H, Wilson AK, Keutmann HT, Abou-Samra A, Segre GV, et al. Determinants of [Arg2]PTH-(1-34) binding and signaling in the transmembrane region of the parathyroid hormone receptor. Endocrinology 1994; 135:1186–94.10.1210/endo.135.3.8070362Search in Google Scholar PubMed

376. Mannstadt M, Luck MD, Gardella TJ, Juppner H. Evidence for a ligand interaction site at the amino-terminus of the parathyroid hormone (PTH)/PTH-related protein receptor from cross-linking and mutational studies. J Biol Chem 1998; 273:16890–6.10.1074/jbc.273.27.16890Search in Google Scholar PubMed

377. Sneddon WB, Barry ELR, Coutermarsh BA, Gesek FA, Liu F, Friedman PA. Regulation of renal parathyroid hormone receptor expression by 1,25-dihydroxyvitamin D3 and retinoic acid. Cell Physiol Biochem 1998; 8:261–77.10.1159/000016288Search in Google Scholar PubMed

378. Amizuka N, Kwan MY, Goltzman D, Ozawa H, White JH. Vitamin D3 differentially regulates parathyroid hormone/parathyroid hormone-related peptide receptor expression in bone and cartilage. J Clin Invest 1999; 103:373–81.10.1172/JCI3265Search in Google Scholar PubMed PubMed Central

379. Abou-Samra AB, Juppner H, Force T, Freeman MW, Kong XF, Schipani E, et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol triphosphates and increases intracellular free calcium. Proc Natl Acad Sci USA 1992; 89:2732–6.10.1073/pnas.89.7.2732Search in Google Scholar PubMed PubMed Central

380. Mahon MJ, Donowitz M, Yun CC, Segre GV. Na+/H+ exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Nature 2002; 417:858–60.10.1038/nature00816Search in Google Scholar PubMed

381. Mahon MJ, Segre GV. Stimulation by parathyroid hormone of a NHERF-1 assembled complex consisting of the parathyroid hormone I receptor, phospholipase Cβ, and actin increases intracellular calcium in opossum kidney cells. J Biol Chem 2004; 279:23550–8.10.1074/jbc.M313229200Search in Google Scholar PubMed

382. Sneddon WB, Syme CA, Bisello A, Magyar CE, Rochdi MD, Parent JL, et al. Activation-independent parathyroid hormone receptor internalisation is regulated by NHERF1 (EBP50). J Biol Chem 2003; 278:43787–96.10.1074/jbc.M306019200Search in Google Scholar PubMed

383. Fujita T, Meguro T, Fukuyama R, Nakamuta H, Koida M. New signaling pathway for parathyroid hormone and cyclic AMP action on extracellular-regulated kinase and cell proliferation in bone cells. J Biol Chem 2002; 277:22191–200.10.1074/jbc.M110364200Search in Google Scholar PubMed

384. Swarthout JT, Doggett TA, Lemker JL, Partridge NC. Stimulation of extracellular signal-regulated kinases and proliferation in rat osteoblastic cells by parathyroid hormone is protein kinase C-dependent. J Biol Chem 2001; 276:7586–92.10.1074/jbc.M007400200Search in Google Scholar PubMed

385. Qin L, Li X, Ko J, Partridge NC. Parathyroid hormone uses multiple mechanisms to arrest the cell cycle progression of osteoblastic cells from G1 to S phase. J Biol Chem 2005; 280:3104–11.10.1074/jbc.M409846200Search in Google Scholar PubMed

386. Di J, Franceschi RT, Boules H, Xiao G. Parathyroid hormone induction of the osteocalcin gene. J Biol Chem 2004; 279:5329–37.10.1074/jbc.M311547200Search in Google Scholar PubMed

387. Syme CA, Friedman PA, Bisello A. Parathyroid hormone receptor trafficking contributes to the activation of extracellular signal-regulated kinases but is not required for regulation of cAMP signalling. J Biol Chem 2005; 280:11281–8.10.1074/jbc.M413393200Search in Google Scholar PubMed

388. Blind E, Bambino T, Nissenson RA. Agonist-stimulated phosphorylation of the G protein-coupled receptor for parathyroid hormone (PTH) and PTH-related protein. Endocrinology 1995; 136:4271–7.10.1210/endo.136.10.7664644Search in Google Scholar PubMed

389. Tawfeek HA, Qian F, Abou-Samra AB. Phosphorylation of the receptor for PTH and PTHrP is required for internalization and regulates receptor signalling. Mol Endocrinol 2002; 16:1–13.10.1210/mend.16.1.0760Search in Google Scholar PubMed

390. Castro M, Dicker F, Vilardaga J, Krasel C, Bernhardt M, Lohse MJ. Dual regulation of the parathyroid hormone (PTH)/PTH related peptide receptor signalling by protein kinase C and β-arrestins. Endocrinology 2002; 143:3854–65.10.1210/en.2002-220232Search in Google Scholar PubMed

391. Pitcher J, Lohse MJ, Codina J, Caron MG, Lefkowitz RJ. Desensitization of the isolated beta 2-adrenergic receptor kinase, cAMP dependent protein kinase and protein kinase C occurs through distinct molecular mechanisms. Biochemistry 1992; 31:3193–7.10.1021/bi00127a021Search in Google Scholar PubMed

392. Dicker F, Quitterer U, Winstel R, Honold K, Lohse MJ. Phosphorylation-independent inhibition of parathyroid hormone receptor signalling by G protein-coupled receptor kinases. Proc Natl Acad Sci USA 1999; 96:5476–81.10.1073/pnas.96.10.5476Search in Google Scholar PubMed PubMed Central

393. Sneddon WB, Magyar CE, Willick GE, Syme CA, Galbiati F, Bisello A, et al. Ligand-selective dissociation of activation and internalization of the parathyroid hormone (PTH) receptor: conditional efficacy of PTH peptide fragments. Endocrinology 2004; 145:2815–23.10.1210/en.2003-1185Search in Google Scholar PubMed

394. Ferrari SL, Behar V, Chorev M, Rosenblatt M, Bisello A. Endocytosis of ligand-human parathyroid hormone receptor 1 complexes is protein kinase C-dependent and involves β-arrestin 2. J Biol Chem 1999; 274:29968–75.10.1074/jbc.274.42.29968Search in Google Scholar PubMed

395. Vilardaga JP, Frank M, Krasel C, Dees C, Nissenson RA, Lohse MJ. Differential conformational requirements for activation of G proteins and regulatory proteins, arrestin and GRK in the protein-coupled receptor for parathyroid hormone (OTH)/PTH related proteins. J Biol Chem 2001; 276:33435–43.10.1074/jbc.M011495200Search in Google Scholar PubMed

396. Vilardaga JP, Krasel C, Chauvin S, Bambino T, Lohse MJ, Nissenson RA. Internalization determinants of the parathyroid hormone receptor differentially regulate β-arrestin/receptor association. J Biol Chem 2002; 277:29968–75.10.1074/jbc.M110433200Search in Google Scholar PubMed

397. Chauvin S, Bencsik M, Bambino T, Nissenson RA. Parathyroid hormone receptor recycling: role of receptor dephosphorylation and β-arrestin. Mol Endocrinol 2002; 16:2720–32.10.1210/me.2002-0049Search in Google Scholar PubMed

398. Tawfeek HA, Abou-Samra AB. Important role for the V-type H+-ATPase and the Golgi apparatus in the recycling of PTH/PTHrP receptor. Am J Physiol Endocrinol Metab 2004; 286:E704–10.10.1152/ajpendo.00404.2003Search in Google Scholar

399. Usdin TB, Gruber C, Bonner TI. Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J Biol Chem 1995; 270:15455–8.10.1074/jbc.270.26.15455Search in Google Scholar

400. Usdin TB, Hoare SR, Wang T, Mezey E, Kowalak JA. TIP39: a new neuropeptide and PTH2-receptor agonist from hypothalamus. Nat Neurosci 1999; 2:941–3.10.1038/14724Search in Google Scholar

401. Ross G, Engel P, Abdallah Y, Kummer W, Schluter KD. Tuberoinfundibular peptide of 39 residues: a new mediator of cardiac function via nitric oxide production in the rat heart. Endocrinology 2005; 146:2221–8.10.1210/en.2004-1180Search in Google Scholar

402. Bringhurst FR, Stern AM, Yotts M, Mizrahi N, Segre GV, Potts JT. Peripheral metabolism of [35S]parathyroid hormone in vivo: fate of biologically active amino terminus in vivo. Am J Physiol 1988; 255:E886–93.10.1152/ajpendo.1988.255.6.E886Search in Google Scholar

403. D'Amour P, Brossard JH, Rousseau L, Roy L, Gao P, Cantor T. Amino-terminal form of parathyroid hormone (PTH) with immunologic similarities to hPTH(1-84) is overproduced in primary and secondary hyperparathyroidism. Clin Chem 2003; 49:2037–44.10.1373/clinchem.2003.021592Search in Google Scholar

404. Tregear GW, van Rietschoten J, Greene E, Keutmann HT, Niall HD, Reit B, et al. Bovine parathyroid hormone: minimum chain length of synthetic peptide required for biological activity. Endocrinology 1973; 93:1349–53.10.1210/endo-93-6-1349Search in Google Scholar

405. Rosenblatt M, Callahan EN, Mahaffey JE, Pont A, Potts JT. Parathyroid hormone inhibitors. Design synthesis and biologic evaluation of hormone analogues. J Biol Chem 1977; 252:5847–51.10.1016/S0021-9258(17)40100-1Search in Google Scholar

406. Goltzmann D, Peytremann A, Callahan E, Tregear GW, Potts JT. Analysis of the requirements for parathyroid hormone action in renal membranes with the use of inhibiting analogues. J Biol Chem 1975; 250:3199–203.10.1016/S0021-9258(19)41611-6Search in Google Scholar

407. Berson SA, Yalow RS. Immunochemical heterogeneity of parathyroid hormone in plasma. J Clin Endocrinol Metab 1968; 28:1037–47.10.1210/jcem-28-7-1037Search in Google Scholar PubMed

408. Habener JF, Powell D, Murray TM, Mayer GP, Potts JT. Parathyroid hormone: secretion and metabolism in vivo. Proc Natl Acad Sci USA 1971; 68:2986–91.10.1073/pnas.68.12.2986Search in Google Scholar PubMed PubMed Central

409. Habener JF, Segre GV, Powell D, Murray TM, Potts JT. Immunoreactive parathyroid hormone in circulation of man. Nat New Biol 1972; 238:152–4.10.1038/newbio238152a0Search in Google Scholar PubMed

410. D'Amour P. Effects of acute and chronic hypercalcemia on parathyroid function and circulating parathyroid hormone molecular forms. Eur J Endocrinol 2002; 146:407–10.10.1530/eje.0.1460407Search in Google Scholar PubMed

411. Daugaard H, Egfjord M, Olgaard K. Metabolism of intact parathyroid hormone in isolated perfused rat liver and kidney. Am J Physiol 1988; 254:E740–8.10.1152/ajpendo.1988.254.6.E740Search in Google Scholar PubMed

412. Daugaard H, Egfjord M, Olgaard K. Metabolism of parathyroid hormone in isolated perfused rat kidney and liver combined. Kidney Int 1990; 38:55–62.10.1038/ki.1990.166Search in Google Scholar PubMed

413. Kau ST, Maack T. Transport and catabolism of parathyroid hormone in isolated rat kidney. Am J Physiol 1977; 233:F445–54.10.1152/ajprenal.1977.233.5.F445Search in Google Scholar PubMed

414. Divieti P, Inomata N, Chapin K, Singh R, Juppner H, Bringhurst FR. Receptors for the carboxyl-terminal region of PTH(1-84) are highly expressed in osteocytic cells. Endocrinology 2001; 142:916–25.10.1210/endo.142.2.7955Search in Google Scholar PubMed

415. Murray TM, Rao LG, Muzaffar SA. Dexamethasone-treated ROS 17/2.8 rat osteosarcoma cells are responsive to human carboxylterminal parathyroid hormone peptide hPTH(53-84): stimulation of alkaline phosphatase. Calcif Tissue Int 1991; 49:120–3.10.1007/BF02565133Search in Google Scholar PubMed

416. Nasu M, Sugimoto T, Kaji H, Kano J, Chihara K. Carboxy-terminal parathyroid hormone fragments stimulate type-1 procollagen and insulin-like growth factor-binding protein-5 mRNA expression in osteoblastic UMR-106 cells. Endocr J 1998; 45:229–34.10.1507/endocrj.45.229Search in Google Scholar PubMed

417. Takasu H, Baba H, Inomata N, Uchiyama Y, Kubota N, Kumaki K, et al. The 69–84 amino acid region of the parathyroid hormone molecule is essential for the interaction of the hormone with the binding sites with carboxyl-terminal specificity. Endocrinology 1996; 137:5537–43.10.1210/endo.137.12.8940381Search in Google Scholar PubMed

418. Erdmann S, Burkhardt H, von der Mark K, Muller W. Mapping of a carboxy terminal-active site of parathyroid hormone by calcium imaging. Cell Calcium 1998; 23:413–21.10.1016/S0143-4160(98)90098-7Search in Google Scholar

419. Inomata N, Akiyama M, Kubota N, Juppner H. Characterization of a novel parathyroid hormone (PTH) receptor with specificity for the carboxyl-terminal region of PTH(19-84). Endocrinology 1995; 136:4732–40.10.1210/endo.136.11.7588200Search in Google Scholar

420. Kaji H, Sugimoto T, Kanatani M, Fukase M, Chihara K. Carboxyl-terminal peptides from parathyroid hormone-related protein stimulate osteoclast-like cell formation. Endocrinology 1995; 136:842–8.10.1210/endo.136.3.7867592Search in Google Scholar

421. Erdmann S, Muller W, Bahrami S, Vornehm SI, Mayer H, Bruckner P, et al. Differential effects of parathyroid hormone fragments on collagen gene expression in chondrocytes. J Cell Biol 1996; 135:1179–91.10.1083/jcb.135.4.1179Search in Google Scholar

422. Divieti P, Geller AI, Suliman G, Juppner H, Bringhurst FR. Receptors specific for the carboxyl-terminal region of parathyroid hormone on bone derived cells: determinants of ligand binding and bioactivity. Endocrinology 2005; 146:1863–70.10.1210/en.2004-1262Search in Google Scholar

423. Slatopolsky E, Finch J, Clay P, Martin D, Sicard G, Singer G, et al. A novel mechanism for skeletal resistance in uraemia. Kidney Int 2000; 58:753–61.10.1016/S0085-2538(15)47156-XSearch in Google Scholar

424. Nguyen-Yamamoto L, Rousseau L, Brossard JH, Lepage R, D'Amour P. Synthetic carboxyl-terminal fragments of parathyroid hormone (PTH) decrease ionized calcium concentration in rats by acting on a receptor different from the PTH/PTH-related peptide receptor. Endocrinology 2001; 142:1386–92.10.1210/endo.142.4.8093Search in Google Scholar PubMed

425. Divieti P, John MR, Juppner H, Bringhurst FR. Human PTH(7-84) inhibits bone resorption in vitro via actions independent of the type 1 PTH/PTHrP receptor. Endocrinology 2002; 143:171–6.10.1210/endo.143.1.8575Search in Google Scholar PubMed

426. Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 2000; 289:1508–14.10.1126/science.289.5484.1508Search in Google Scholar PubMed

427. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001; 344:1434–41.10.1056/NEJM200105103441904Search in Google Scholar PubMed

428. Miao D, He B, Karaplis AC, Goltzman D. Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest 2002; 109:1173–82.10.1172/JCI0214817Search in Google Scholar

429. Guo CY, Thomas WE, al-Dehaimi AW, Assiri AM, Eastell R. Longitudinal changes in bone mineral density and bone turnover in postmenopausal women with primary hyperparathyroidism. J Clin Endocrinol Metab 1996; 81:3487–91.Search in Google Scholar

430. Jiang D, Franceschi RT, Boules H, Xiao G. Parathyroid hormone induction of the osteocalcin gene. J Biol Chem 2004; 279:5329–37.10.1074/jbc.M311547200Search in Google Scholar

431. Isogai Y, Akatsu T, Ishizuya T, Yamaguchi A, Hori M, Takahashi N. Parathyroid hormone regulates osteoblast differentiation positively or negatively depending on the differentiation stages. J Bone Miner Res 1996; 11:1384–93.10.1002/jbmr.5650111003Search in Google Scholar

432. Nishida S, Yamaguchi A, Tanizwaw T, Endo N, Mashiba T, Uchiyama Y, et al. Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proliferation and differentiation of osteoprogenitor cells in the bone marrow. Bone 1994; 15:717–23.10.1016/8756-3282(94)90322-0Search in Google Scholar

433. Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 1999; 104:439–46.10.1172/JCI6610Search in Google Scholar

434. McCarthy TL, Centrella M, Canalis E. Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast enriched cultures from fetal rat bone. Endocrinology 1989; 124:1247–53.10.1210/endo-124-3-1247Search in Google Scholar

435. Watson P, Lazowski D, Han V, Fraher L, Steer B, Hodsman A. Parathyroid hormone restores bone mass and enhances osteoblast insulin-like growth factor I gene expression in ovariectomized rats. Bone 1995; 16:357–65.10.1016/8756-3282(94)00051-4Search in Google Scholar

436. Canalis E. Insulin like growth factors and local regulation of bone formation. Bone 1993; 14:273–6.10.1016/8756-3282(93)90151-YSearch in Google Scholar

437. Demiralp B, Chen H, Koh AJ, Keller ET, McCauley LK. Anabolic actions of parathyroid hormone during bone growth are dependent on c-fos. Endocrinology 2002; 143:4038–47.10.1210/en.2002-220221Search in Google Scholar

438. Ducy P, Zhabg R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997; 89:747–54.10.1016/S0092-8674(00)80257-3Search in Google Scholar

439. Krishnan V, Moore TL, Ma Y, Helvering LM, Frolik CA, Valasek KM, et al. Parathyroid hormone anabolic action requires Cbfa1/Runx2-dependent signalling. Mol Endocrinol 2003; 17:423–35.10.1210/me.2002-0225Search in Google Scholar

440. Swarthout JT, D'Alonzo RC, Selvamurugan N, Partridge NC. Parathyroid hormone-dependent signalling pathways regulating genes in bone cells. Gene 2002; 281:1–17.10.1016/S0378-1119(01)00798-3Search in Google Scholar

441. Qin L, Ping Q, Wang L, Li X, Swarthout JT, Soteropoulos P, et al. Gene expression profiles and transcription factors involved in parathyroid hormone signalling in osteoblasts revealed by microarray and bioinformatics. J Biol Chem 2003; 278:19723–31.10.1074/jbc.M212226200Search in Google Scholar PubMed

442. Ma YL, Cain RL, Halladay DL, Yang X, Zeng Q, Miles RR, et al. Catabolic effects of continuous human PTH(1-38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegrin and gene associated bone formation. Endocrinology 2001; 142:4047–54.10.1210/endo.142.9.8356Search in Google Scholar PubMed

443. Locklin RM, Khosla S, Turner RT, Riggs BL. Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone. J Cell Biochem 2003; 89:180–90.10.1002/jcb.10490Search in Google Scholar PubMed

444. Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone 2005; 37:148–58.10.1016/j.bone.2005.03.018Search in Google Scholar PubMed

445. Friedman PA. Basal and hormone activated calcium absorption in mouse renal thick ascending limbs. Am J Physiol Renal Fluid Electrolyte Physiol 1988; 254:F62–70.10.1152/ajprenal.1988.254.1.F62Search in Google Scholar PubMed

446. Kawashima H, Torikai S, Kurokewa K. Localization of 25-hydroxyvitamin D3 1α-hydroxylase and 24-hydroxylase along the rat nephron. Proc Natl Acad Sci USA 1981; 78:1199–203.10.1073/pnas.78.2.1199Search in Google Scholar PubMed PubMed Central

447. Murer H. Cellular mechanisms in proximal tubular Pi reabsorption: some answers and more questions. J Am Soc Nephrol 1992; 2:1649–65.10.1681/ASN.V2121649Search in Google Scholar PubMed

448. Lee K, Brown D, Urena P, Ardaillou N, Ardaillou R, Deeds J, et al. Localization of parathyroid hormone/parathyroid hormone related peptide receptor mRNA in kidney. Am J Physiol 1996; 270:F186–91.10.1152/ajprenal.1996.270.1.F186Search in Google Scholar PubMed

449. Yang T, Hassan S, Huang YG, Smart AM, Briggs JP, Schnermann JB. Expression of PTHrP, PTH/PTHrP receptor, and Ca2+-sensing receptor mRNAs along the rat nephron. Am J Physiol 1997; 272:F751–8.10.1152/ajprenal.1997.272.6.F751Search in Google Scholar

450. Bindels RJ, Hartog A, Timmermans J, van Os CH. Active Ca2+ transport in primary cultures of rabbit kidney CCD: stimulation by 1,25-dihydroxyvitamin D3 and PTH. Am J Physiol 1991; 261:F799–807.10.1152/ajprenal.1991.261.5.F799Search in Google Scholar

451. Pizzonia JH, Gesek FA, Kennedy SM, Coutermarsh BA, Bacskai BJ, Friedman PA. Immunomagnetic separation, primary culture and characterization of cortical thick ascending limb plus distal convoluted tubule cells from mouse kidney. In Vitro Cell Dev Biol 1991; 27A:409–16.10.1007/BF02630961Search in Google Scholar

452. Lajeunesse D, Bouhtiauy I, Brunette MG. Parathyroid hormone and hydrochlorothiazide increase calcium transport by the luminal membrane of rabbit distal nephron segments through different pathways. Endocrinology 1994; 134:35–41.10.1210/endo.134.1.7506210Search in Google Scholar

453. Friedman PA, Coutermarsh BA, Kennedy SM, Gesek FA. Parathyroid hormone stimulation of calcium transport is mediated by dual signaling mechanisms involving protein kinase A and protein kinase C. Endocrinology 1996; 137:13–20.10.1210/endo.137.1.8536604Search in Google Scholar

454. Backsai BJ, Friedman PA. Activation of latent Ca2+ channels in renal epithelial cells by parathyroid hormone. Nature Lond 1990; 347:388–91.10.1038/347388a0Search in Google Scholar

455. Friedman PA, Gesek FA. Hormone-responsive Ca2+ entry in distal convoluted tubules. J Am Soc Nephrol 1994; 4:1396–404.10.1681/ASN.V471396Search in Google Scholar

456. Tsukamoto Y, Saka S, Saitoh M. Parathyroid hormone stimulates ATP-dependent calcium pump activity by a different mode in proximal and distal tubules of the rat. Biochem Biophys Acta 1992; 1103:163–71.10.1016/0005-2736(92)90070-3Search in Google Scholar

457. Ba J, Brown D, Friedman PA. Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport. Am J Physiol Renal Physiol 2003; 285:F1233–43.10.1152/ajprenal.00249.2003Search in Google Scholar PubMed

458. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Ten House HS. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 1998; 95:5372–7.10.1073/pnas.95.9.5372Search in Google Scholar PubMed PubMed Central

459. Murer H, Hernando N, Forster I, Biber J. Molecular aspects in the regulation of renal inorganic phosphate reabsorption: the type IIa sodium/inorganic phosphate co-transporter as the key player. Curr Opin Nephrol Hypertens 2001; 10:555–61.10.1097/00041552-200109000-00002Search in Google Scholar

460. Traebert M, Volkl H, Biber J, Murer H, Kaissling B. Luminal and contraluminal action of 1-34 and 3-34 PTH peptides on renal type IIa Na-Pi cotransporter. Am J Physiol Renal Physiol 2000; 278:F792–8.10.1152/ajprenal.2000.278.5.F792Search in Google Scholar

461. Cunningham R, Xiaofei E, Steplock D, Shenolikar S, Weinman EJ. Defective PTH regulation of sodium-dependent phosphate transport in NHERF-1–/– renal proximal tubular cells and wild type cells adapted to low-phosphate media. Am J Physiol Renal Physiol 2005; 289:F933–8.10.1152/ajprenal.00005.2005Search in Google Scholar

462. Deliot N, Hernando N, Horst-Liu Z, Gisler SM, Capuano P, Wagner CA, et al. Parathyroid hormone treatment induces dissociation of type IIa Na+-Pi cotransporter-Na+/H+ exchanger regulatory factor-1 complexes. Am J Physiol Cell Physiol 2005; 289:C159–67.10.1152/ajpcell.00456.2004Search in Google Scholar

463. Nemere I, Szego CM. Early actions of parathyroid hormone and 1,25-dihydroxycholecalciferol on isolated epithelial cells from rat intestine: I. Limited lysosomal enzyme release and calcium uptake. Endocrinology 1981; 108:1450–62.10.1210/endo-108-4-1450Search in Google Scholar

464. Nemere I, Szego CM. Early actions of parathyroid hormone and 1,25-dihydroxycholecalciferol on isolated epithelial cells from rat intestine: II. Analyses of additivity, contribution of calcium and modulatory influence of indomethacin. Endocrinology 1981; 109:2180–7.10.1210/endo-109-6-2180Search in Google Scholar

465. Picotto G, Massheimer V, Boland R. Parathyroid hormone stimulates calcium influx and the cAMP messenger system in rat enterocytes. Am J Physiol 1997; 273:CC1349–53.10.1152/ajpcell.1997.273.4.C1349Search in Google Scholar

466. Nemere I, Norman AW. Parathyroid hormone stimulates calcium transport in perfused duodena of normal chicks: comparison with the rapid (transcaltachic) effect of 1,25-dihydroxyvitamin D3. Endocrinology 1986; 119:1406–8.10.1210/endo-119-3-1406Search in Google Scholar

467. Gentili C, Picotto G, Morelli S, Boland R, de Boland AR. Effect of ageing in the early biochemical signals elicited by PTH in intestinal cells. Biochem Biophys Acta 2003; 1593:169–78.10.1016/S0167-4889(02)00387-7Search in Google Scholar

468. Massheimer V, Picotto G, Boland R, de Boland AR. Effect of ageing on the mechanisms of PTH-induced calcium influx in rat intestinal cells. J Cell Physiol 2000; 182:429–37.10.1002/(SICI)1097-4652(200003)182:3<429::AID-JCP14>3.0.CO;2-SSearch in Google Scholar

469. Gentili C, Morelli S, Boland R, de Boland AR. Parathyroid hormone activation of map kinase in rat duodenal cells is mediated by 3′,5′-cyclic AMP and Ca2+. Biochem Biophys Acta 2001; 1540:201–12.10.1016/S0167-4889(01)00134-3Search in Google Scholar

470. Nemere I, Larsson D. Does PTH have a direct effect on intestine. J Cell Biochem 2002; 86:29–34.10.1002/jcb.10199Search in Google Scholar PubMed

471. Becker KL, Muller B, Nylen ES, Rohen R, White JC, Snider RH. Calcitonin gene family of peptides. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology, 2nd ed. San Diego, CA: Academic Press, 2002.Search in Google Scholar

472. Friedman J, Raisz LG. Thyrocalcitonin: inhibitor of bone resorption in tissue culture. Science 1965; 150:1465–7.10.1126/science.150.3702.1465Search in Google Scholar PubMed

473. Holtrop ME, Raisz LG, Simmons HA. The effects of parathyroid hormone, colchicines, and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture. J Cell Biol 1974; 60:346–5.10.1083/jcb.60.2.346Search in Google Scholar PubMed PubMed Central

474. Baylink D, Morey E, Rich C. Effect of calcitonin on the rates of bone formation and resorption in the rat. Endocrinology 1976; 84:261–9.10.1210/endo-84-2-261Search in Google Scholar PubMed

475. Hoff AO, Catala-Lehnen P, Thomas PM, Priemel M, Rueger JM, Nasonkin I, et al. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene. J Clin Invest 2002; 110:1849–57.10.1172/JCI200214218Search in Google Scholar

476. Roos BA, Fischer JA, Pignar W, Alander CB, Raisz LG. Evaluation of the in vivo and in vitro calcium regulating actions of non-calcitonin peptides produced via calcitonin gene expression. Endocrinology 1986; 118:46–51.10.1210/endo-118-1-46Search in Google Scholar PubMed

477. Zaidi M, Bax BE, Shankar VS, Moonga BS, Simon B, Alam AS, et al. Dimensional analysis of osteoclastic bone resorption and the measurement of biologically active calcitonin. Exp Physiol 1994; 79:387–99.10.1113/expphysiol.1994.sp003773Search in Google Scholar PubMed

478. Moonga BS, Alam AS, Bevis PJ, Aaldi F, Soncini R, Huang CL, et al. Regulation of cytosolic free calcium in isolated rat osteoclasts by calcitonin. J Endocrinol 1992; 132:241–9.10.1677/joe.0.1320241Search in Google Scholar PubMed

479. Alam AS, Bax CM, Shankar VS, Bax BE, Bevis PJ, Huang CL, et al. Further studies on the mode of action of calcitonin on isolated rat osteoclasts: pharmacological evidence for a second site mediating extracellular Ca2+ mobilization and cell retraction. J Endocrinol 1993; 136:7–15.10.1677/joe.0.1360007Search in Google Scholar PubMed

480. Juppner H, Abou-Samra A, Freeman M, Kong XF, Schipani E, Richards J, et al. A G-protein-linked receptor for parathyroid hormone and parathyroid hormone related peptides. Science 1991; 254:1024–6.10.1126/science.1658941Search in Google Scholar PubMed

481. Ishihara T, Nakamura S, Kazino Y, Takahashi T, Takahashi K, Nagata S. Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J 1991; 10:1635–41.10.1002/j.1460-2075.1991.tb07686.xSearch in Google Scholar PubMed PubMed Central

482. Lin YH, Harris TL, Flannery MS, Aruffo A, Kaji EH, Gorn AH, et al. Expression cloning of an adenylate cyclase-coupled calcitonin receptor. Science 1991; 254:1022–4.10.1126/science.1658940Search in Google Scholar PubMed

483. Galson DL, Goldring SR. Structure and molecular biology of the calcitonin receptor. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology, 2nd ed. San Diego, CA: Academic Press, 2002.Search in Google Scholar

484. Kuestner RE, Elrod RD, Grant FJ, Hagen FS, Kuijper JL, Mathewes S, et al. Cloning and characterization of an abundant subtype of the human calcitonin receptor. Mol Pharmacol 1994; 46:246–55.Search in Google Scholar

485. Force T, Bonventre JV, Flannery MR, Gorn AH, Yamin M, Goldring SR. A cloned porcine renal calcitonin receptor couples to adenyl cyclase and phospholipase C. Am J Physiol 1992; 262:F1110–5.10.1152/ajprenal.1992.262.6.F1110Search in Google Scholar PubMed

486. Teti A, Paniccia R, Goldring SR. Calcitonin increases cytosolic free calcium concentration via capacitative calcium influx. J Biol Chem 1995; 270:16666–70.10.1074/jbc.270.28.16666Search in Google Scholar PubMed

487. Chakroborty M, Chatterjee D, Gorelick FS, Baron R. Cell cycle dependent and kinase specific regulation of the apical Na/H exchanger and the Na, K-ATPase in the kidney cell line LLC-PK1 by calcitonin. Proc Natl Acad Sci USA 1994; 91:2115–9.10.1073/pnas.91.6.2115Search in Google Scholar PubMed PubMed Central

488. Naro F, Perez M, Migliaccio S, Galson DL, Orcel P, Teti A, et al. Phospholipase D and protein kinase C isoenzyme-dependent signal transduction pathways activated by the calcitonin receptor. Endocrinology 1997; 139:3241–8.10.1210/endo.139.7.6112Search in Google Scholar PubMed

489. Chakraborty M, Chatterjee D, Kellokumpu S, Rasmussen H, Baron R. Cell cycle-dependent coupling of the calcitonin receptor to different G proteins. Science 1991; 251:1078–82.10.1126/science.1847755Search in Google Scholar PubMed

490. Orcel P, Tajima H, Murayama Y, Fujiat T, Krane SM, Ogata E, et al. Multiple domains interacting with Gs in the porcine calcitonin receptor. Molecular Endocrinology 2000; 14:170–82.10.1210/mend.14.1.0401Search in Google Scholar PubMed

491. Zaidi M, Datta HK, Moonga BS, MacIntyre I. Evidence that the action of calcitonin on rat osteoclasts is mediated by two G-proteins acting via separate post-receptor pathways. J Endocrinol 1990; 126:473–81.10.1677/joe.0.1260473Search in Google Scholar PubMed

492. Su Y, Chakraborty M, Nathanson M, Baron R. Differential effects of the 3′,5′-cyclic adenosine monophosphate and protein kinase C pathways on the response of isolated rat osteoclasts to calcitonin. Endocrinology 1992; 131:1497–502.10.1210/endo.131.3.1324163Search in Google Scholar PubMed

493. Chen Y, Shyu J, Santhanagopal A, Inoue D, David JP, Dixon SJ, et al. The calcitonin receptor stimulates Shc tyrosine phosphorylation and Erk1/2 activation. J Biol Chem 1998; 273:19809–16.10.1074/jbc.273.31.19809Search in Google Scholar PubMed

494. Evdokiou A, Raggatt L, Atkins GJ, Findlay DM. Calcitonin receptor-mediated growth suppression of HEK-293 cells is accompanied by induction of p21WAF1/CIP1 and G2/M arrest. Mol Endocrinol 1999; 13:1736–50.10.1210/mend.13.10.0359Search in Google Scholar PubMed

495. Raggatt LJ, Evdokiou A, Findlay DM. Sustained activation of Erk1/2 MAPK and cell growth suppression by the insert-negative, but not insert-positive is form of the human calcitonin receptor. J Endocrinol 2000; 176:93–105.10.1677/joe.0.1670093Search in Google Scholar PubMed

496. Zhang Z, Baron R, Horne WC. Integrin engagement, the actin cytoskeleton and c_Src are required for the calcitonin-induced tyrosine phosphorylation of paxillin and HEF1, but not for calcitonin-induced Erk1/2 phosphorylation. J Biol Chem 2000; 275:37219–23.10.1074/jbc.M001818200Search in Google Scholar PubMed

497. Seck T, Baron R, Horne WC. Binding of filamin to the C-terminal tail of the calcitonin receptor controls recycling. J Biol Chem 2003; 278:10408–16.10.1074/jbc.M209655200Search in Google Scholar PubMed

498. Silva OL, Becker KL. Salmon calcitonin in the treatment of hypercalcemia. Arch Intern Med 1973; 132:337–9.10.1001/archinte.1973.03650090019004Search in Google Scholar

499. Wener JA, Gorton SJ, Raisz LG. Escape from inhibition or resorption in cultures of fetal bone treated with calcitonin and parathyroid hormone. Endocrinology 1972; 90:752–9.10.1210/endo-90-3-752Search in Google Scholar PubMed

500. Inoue D, Shih C, Galson DL, Goldring SR, Horne WC, Baron R. Calcitonin-dependent down regulation of the mouse C1a calcitonin receptor in cells of the osteoclast lineage involves a transcriptional mechanism. Endocrinology 1999; 140:1060–8.10.1210/endo.140.3.6551Search in Google Scholar PubMed

501. Wada S, Udagawa N, Akatsu T, Nagata N, Martin TJ, Findlay DM. Regulation by calcitonin and glucocorticoids of calcitonin receptor gene expression in mouse osteoclasts. Endocrinology 1997; 138:521–9.10.1210/endo.138.2.4905Search in Google Scholar PubMed

502. Yasuda S, Wada S, Arao Y, Kogawa M, Kayama F, Katayama S. Interaction between 3′-untranslated region of calcitonin receptor messenger ribonucleic acid (RNA) and adenylate/uridylate (AU)-rich element binding proteins (AU-rich RN-binding factor 1 and HU Antigen R). Endocrinology 2004; 145:1730–8.10.1210/en.2003-0862Search in Google Scholar

503. Samura A, Wada S, Suda S, Iitaka M, Katayama S. Calcitonin receptor regulation and responsiveness to calcitonin in human osteoclast-like cells prepared in vitro using receptor activator of nuclear factor-κB ligand and macrophage colony-stimulating factor. Endocrinology 2000; 141:3774–82.10.1210/endo.141.10.7715Search in Google Scholar

504. Chakraborty M, Chatterjee D, Kellokumpu S, Rasmussen H, Baron R. Cell cycle-dependent coupling of the calcitonin receptor to different G proteins. Science 1991; 251:1078–82.10.1126/science.1847755Search in Google Scholar

505. Adinoff AD, Hollister JR. Steroid induced fractures and bone loss in patients with asthma. N Engl J Med 1983; 309:265–8.10.1056/NEJM198308043090502Search in Google Scholar

506. Cushing H. The basophil adenomas of the pituitary and their clinical manifestations. Bull Johns Hopkins Hosp 1932; 50:137–95.Search in Google Scholar

507. Tenenbaum HC, Heersche JN. Dexamethasone stimulates osteogenesis in chick periosteum in vitro. Endocrinology 1985; 117:2211–7.10.1210/endo-117-5-2211Search in Google Scholar

508. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. J Clin Invest 1998; 102:274–82.10.1172/JCI2799Search in Google Scholar

509. Hsueh AJ, Erickson GF. Glucocorticoid inhibition of FSH induced estrogen production in cultured rat granulossa cells. Steroids 1978; 32:639–48.10.1016/0039-128X(78)90074-0Search in Google Scholar

510. MacAdams MR, White RH, Chipps BE. Reduction in serum testosterone levels during glucocorticoid therapy. Ann Intern Med 1986; 104:639–48.10.7326/0003-4819-104-5-648Search in Google Scholar PubMed

511. Reid IR, Ibbertson HK, France JT, Pybus J. Plasma testosterone concentrations in asthmatic men treated with glucocorticoids. Br Med J 1985; 291:574.10.1136/bmj.291.6495.574Search in Google Scholar PubMed PubMed Central

512. Goulding A, Gold E. Effects of chronic prednisolone treatment on bone resorption and bone composition in intact and ovariectomized rats and in ovariectomized rats receiving β-estradiol. Endocrinology 1988; 122:482–7.10.1210/endo-122-2-482Search in Google Scholar PubMed

513. Crilly R, Cawood M, Marshall DH, Nordin BE. Hormonal status in normal, osteoporotic, and corticosteroid-treated postmenopausal women. J R Soc Med 1978; 71:733–6.10.1177/014107687807101006Search in Google Scholar

514. Pereira RC, Blanquaert F, Canalis E. Cortisol enhances the expression of mac25/insulin-like growth factor-binding protein-related protein-1 in cultured osteoblasts. Endocrinology 1999; 140:228–32.10.1210/endo.140.1.6411Search in Google Scholar PubMed

515. Pereira RC, Durant D, Canalis E. Transcriptional regulation of connective tissue growth factor by cortisol in osteoblasts. Am J Physiol Endocrinol Metab 2000; 279:E570–6.10.1152/ajpendo.2000.279.3.E570Search in Google Scholar PubMed

516. Sasaki N, Kusano E, Ando Y, Yano K, Tsuda E, Asano Y. Glucocorticoid decreases circulating osteoprotegerin (OPG): possible mechanism for glucocorticoid induced osteoporosis. Nephrol Dial Transplant 2001; 16:479–82.10.1093/ndt/16.3.479Search in Google Scholar PubMed

517. Bonadonna S, Burattin A, Nuzzo M, Bugari G, Rosei EA, Valle D, et al. Chronic glucocorticoid treatment alters spontaneous pulsatile parathyroid hormone secretory dynamics in human subjects. Eur J Endocrinol 2005; 152:199–205.10.1530/eje.1.01841Search in Google Scholar PubMed

518. Rubin MR, Bilezikian JP. The role of parathyroid hormone in the pathogenesis of glucocorticoid-induced osteoporosis: a reexamination of the evidence. J Clin Endocrinol Metab 2002; 87:4033–41.10.1210/jc.2002-012101Search in Google Scholar PubMed

519. Rickard D, Harris SA, Turner R, Khosla S, Spelsberg TC. Estrogens and progestins. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology, 2nd ed. San Diego, CA, Academic Press, 2002:655–75.10.1016/B978-012098652-1/50139-6Search in Google Scholar

520. Pacifici R. Mechanism of estrogen action in bone. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology, 2nd ed. San Diego, CA: Academic Press, 2002:693–705.Search in Google Scholar

521. Young MM, Nordin BE. Effects of natural and artificial menopause on plasma and urinary calcium and phosphorus. Lancet 1967; 2:118–20.Search in Google Scholar

522. Nordin BE, Need AG, Morris HA, Horowitz M, Robertson WG. Evidence for a renal leak in postmenopausal women. J Clin Endocrinol Metab 1991; 72:401–7.10.1210/jcem-72-2-401Search in Google Scholar PubMed

523. Prince RL, Smith M, Dick IM, Price RI, Webb PG, Henderson NK, et al. Prevention of postmenopausal osteoporosis: a comparative study of exercise, calcium supplementation, and hormone replacement therapy. N Engl J Med 1991; 325:1189–95.10.1056/NEJM199110243251701Search in Google Scholar PubMed

524. Dick IM, Devine A, Beilby J, Prince RL. Effects of endogenous estrogen on renal calcium and phosphate handling in elderly women. Am J Physiol Endocrinol Metab 2005; 288:E430–5.10.1152/ajpendo.00140.2004Search in Google Scholar PubMed

525. Van Cromphaut SJ, Rummens K, Stockmans I, van Herck E, Dijcks FA, Ederveen AGH, et al. Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through vitamin D receptor-independent mechanisms. J Bone Miner Res 2003; 18:1725–36.10.1359/jbmr.2003.18.10.1725Search in Google Scholar

526. Stern PH. Thyroid hormone and bone. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology, 2nd ed. San Diego, CA: Academic Press, 2002:707–21.Search in Google Scholar

527. Kumar V, Prasad R. Molecular basis of renal handling of calcium in response to thyroid hormone status of rat. Biochem Biophys Acta 2002; 1586:331–43.10.1016/S0925-4439(01)00111-9Search in Google Scholar

528. Kumar V, Prasad R. Thyroid hormones stimulate calcium transport systems in rat intestine. Biochem Biophys Acta 2003; 1639:185–94.10.1016/j.bbadis.2003.09.006Search in Google Scholar PubMed

529. Van Baal J, Raber G, de Slegte J, Pieters R, Bindels RJ, Willems PH. Vasopressin-stimulated Ca2+ reabsorption in rabbit cortical collecting system: effects on cAMP and cytosolic Ca2+. Pflugers Arch 1996; 433:109–115.10.1007/s004240050255Search in Google Scholar PubMed

530. Van Baal J, de Jong MD, Zijlstra FJ, Willems PH, Bindels RJ. Endogenously produced prosatanoids stimulate calcium reabsorption in the rabbit cortical collecting system. J Physiol 1996; 497:229–39.10.1113/jphysiol.1996.sp021763Search in Google Scholar PubMed PubMed Central

531. Hoenderop JG, Hartog A, Willems PH, Bindels RJ. Adenosine-stimulated Ca2+ reabsorption is mediated by apical A1 receptors in rabbit cortical collecting system. Am J Physiol Renal Physiol 1998; 274:F736–43.10.1152/ajprenal.1998.274.4.F736Search in Google Scholar PubMed

532. Van Baal J, Hoenderop JG, Groenendijk M, Van Os CH, Bindels RJ, Willems PH. Hormone-stimulated Ca2+ transport in rabbit kidney: multiple sites of inhibition by exogenous ATP. Am J Physiol Renal Physiol 1999; 277:F899–906.10.1152/ajprenal.1999.277.6.F899Search in Google Scholar PubMed

533. Hoenderop JG, Vaandrager AB, Dukink L, Smolenski A, Gambaryan S, Lohmann SM, et al. Atrial natriuretic peptide-stimulated Ca2+ reabsorption in rabbit kidney requires membrane-targeted, cGMP-dependent protein kinase type I. Proc Natl Acad Sci USA 1999; 96:6084–9.10.1073/pnas.96.11.6084Search in Google Scholar PubMed PubMed Central

534. Tfelt-Hansen J, Brown EM. The calcium sensing receptor in normal physiology and pathology: a review. Crit Rev Clin Lab Sci 2005; 42:35–70.10.1080/10408360590886606Search in Google Scholar PubMed

535. Qin L, Raggatt LJ, Partridge NC. Parathyroid hormone: a double-edged sword for bone metabolism. Trends Endocrinol Metab 2004; 15:60–5.10.1016/j.tem.2004.01.006Search in Google Scholar PubMed

536. Silverberg SJ, Bone HG, Marriott TB, Locker FG, Thys-Jacobs S, Dziem G, et al. Short term inhibition of parathyroid hormone secretion by a calcium receptor agonist in patients with primary hyperparathyroidism. New Engl J Med 1997; 337:1506–10.10.1056/NEJM199711203372104Search in Google Scholar PubMed

Received: 2005-10-3
Accepted: 2005-12-1
Published Online: 2006-3-7
Published in Print: 2006-3-1

©2006 by Walter de Gruyter Berlin New York

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/CCLM.2006.046/html
Scroll to top button