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Abstract

Programmed cell death, or apoptosis, occurs in nearly all tissues of all multi-cellular organisms. In
order to avoid leakage of intracellular contents, which could generate tissue damaging
inflammation, apoptotic cells are cleared from tissues by phagocytes, which then dispatch the
engulfed dying cell through the lysosomal pathway. Phagocytic clearance of apoptotic cells is
referred to as efferocytosis. One key feature of efferocytosis is the production and release of
wound healing cytokines by the phagocyte, which acts to resolve inflammation, and promote
tissue repair. Phagocytic engulfment of apoptotic cells coupled with cytokine modulation aimed at
immune suppression ensures that physiological programmed cell death does not induce
inflammation and tissue damage. However, cytokines involved in wound healing and immune
suppression are notorious for their role in the tumor microenvironment, increasing tumor cell
motility and promoting evasion of anti-tumor immunity. Therefore, current and future studies
aimed at targeting important players of efferocytosis should reveal new and efficacious therapeutic
approaches for limiting cancer progression and relapse.
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Introduction

Physiological programmed cell death is a critical event in the development of multicellular
organisms and tissue, and contributes to the normal turn-over of aging cells in healthy
tissues, making room for younger healthy cells. In the mammary gland, for example,
apoptosis allows for changes that occur during normal breast development. Apoptosis occurs
in the ductal breast epithelium during puberty, forming hollow lumens in the ducts that
initially develop as solid epithelial cords[]. With each menstrual cycle in humans (estrous
cycle in mice), the alveolar buds of the mammary epithelium undergo modest proliferation
in preparation for pregnancy. In the event of a pregnancy, these epithelial growths continue
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proliferating to generate the milk-producing epithelium, but in the absence of pregnancy,
these alveolar buds will undergo apoptosis[?l. Following pregnancy and lactation, the
alveolar mammary epithelium (which produces milk during lactation) undergoes widespread
synchronized apoptosis, removing up to 90% of the mammary epithelium within only 7-10
days. This involution process returns the mammary epithelium to a quiescent state capable
of future rounds of alveolar budding and pregnancy-induced expansionl3: 41, While the
mammary gland represents a rather dramatic example of physiological cell death, most
tissues harbor some level of cell death at any given time. Some tissues produce dying cells
with regular frequency, such as tissues with environmental exposures (epithelia of the skin,
gut, lungs, retina). Other tissues generate dying cells with cyclical (endometrium, ovaries,
testes) or diurnal (retina) frequency.

The idea that dying cells are removed from multicellular tissues is not a new idea. In fact,
this idea was visited more than 100 years ago, when Metchnikoff discussed “physiological
inflammation’ to describe the removal of dying cells from healthy tissues. Studies in
nematodes demonstrated that cells were capable of engulfing their dying neighbors, but
without inducing inflammation, requiring a revision of the term used to describe this
phenomenon. The word efferocytosis, derived from the Latin root effero-meaning ‘to bury,
or take to the grave,” is relatively new, despite the long history of the concept it describesl®.
Coined in 2003, efferocytosis distinguishes itself from other sub-categories of phagocytosis
(pinocytosis, micropinocytosis, etc.) through unique engulfment of dying cells via distinct
signaling pathways to coordinate recognition, engulfment, and digestion of dying cells, and
the concurrent modulation of cytokines produced by the phagocyte.

The process of phagocytosis (and efferocytosis) can be accomplished by most cells, but
macrophages and dendritic cells are considered the professional phagocytes. Macrophages
make up a key component of the innate immune system, but are not limited to the innate
immune response as they are central orchestrators of the adaptive immune response as well.
Regulation of cytokine and chemokine production is mediated by macrophages, with these
cytokines and chemokines instructing the response of the cells in the adaptive immune
system. Efferocytosis is critical to macrophage-mediated suppression of adaptive immune
responses and resolution of inflammation[4 1. Efferocytosis resembles other categories of
phagocytosis in many ways. For example, macrophages will digest engulfed materials and
present them as antigens on their cell surface. When foreign bodies (e.g. pathogens) are
ingested, macrophages will produce pro-inflammatory cytokines (e.g., type | interferons
(IFNs), interleukin (IL)-12 that promote clonal expansion and activation of cytotoxic T-
lymphocytes (CTLs). This ensures that foreign antigens will produce a cytotoxic immune
response to Kill invading pathogens and host cells infected by foreign pathogens. Conversely,
engulfment of cells undergoing programmed cell death are likely to be derived from the
host, and not likely to represent a pathogenic threat to the host. Therefore, macrophages are
equipped to recognize a self-derived dying cell and engulf it, triggering a signaling cascade
that suppresses pro-inflammatory cytokines, and at the same time induces the robust
expression of anti-inflammatory (e.g., IL-10) and wound healing (e.g., transforming growth
factor (TGF)-B) cytokines. When cells of the adaptive immune system (T-lymphocytes, B-
lymphocytes) encounter these antigens presented by macrophages, the anti-inflammatory
cytokines instruct the T- and B-lymphocytes to tolerate this antigen, and any cell expressing
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this antigen, as it is a self-derived antigen. In this manner, efferocytosis results in
suppression of adaptive immune response, promotion of immune tolerance, and wound
healing/remodeling[®!. Interestingly, these same attributes that protect tissues from
autoimmunity following programmed cell death can contribute to pathological events as
well. Recent findings demonstrate that efferocytosis within the tumor microenvironment, a
tissue with high levels of apoptotic cell death, exaggerates the immune suppressive
microenvironment that characterizes aggressive cancers, contributing to evasion of anti-
tumor immunity and increasing the potential for metastatic spread of tumor cells. Targeting
efferocytosis in order to promote an anti-tumor immune response, yet limiting the negative
outcome of tissue damage and auto-immunity, is the subject of current studies.

Efferocytosis: Important Players

Efferocytosis is carefully regulated at several levels. First, cells undergoing programmed cell
death will secrete soluble factors that attract macrophages to the site of death, referred to as
“find me’ signals, which include the chemokines CXCL1, CXCL14, CCL2, CCL6-8, and
CcCL11[7-91. The dying cell will also mark its outer leaflet with the ‘eat me’ signal, allowing
macrophages to recognize and bind to cells undergoing programmed cell death.
Phosphatidlyserine (PS) exposed on the outer leaflet of the plasma membrane of an
apoptotic cell is a hallmark of programmed cell death, and is the most widely recognized
‘eat me’ signal. Healthy cells actively retain PS on the inner leaflet of the plasma membrane.
In contrast, at the onset of apoptosis, PS accumulates on the outer leaflet, marking the dying
cell for engulfment[19-12]. |n response to “find me’ signals, macrophages upregulate cell
surface receptors and bridging molecules. These bridging molecules simultaneously bind to
PS and macrophage cell surface receptors. Macrophages use several cell surface receptors to
directly recognize PS, and several other receptors that bind to bridging molecules to
indirectly bind PS on the apoptotic cell to the macrophage. For example, the PS receptor
(PSR), brain angiogenesis inhibitor 1 (BAI1)[13-13] T cell immunoglobulin and mucin
(TIM)-4, and Stabilin-2 are macrophage cell surface proteins that bind directly to PS and
contribute to efferocytosis!16-231. The bridging ligand MFG-E8 (MilkFat Globule Epidermal
growth factor-like 8) simultaneously binds integrin a,f3 and a5 expressed on
macrophages and PS on dying cells. The bridging ligands growth arrest specific-6 (Gas6)
and protein S (ProS1) bind to receptor tyrosine kinases Tyro3, AxI, and MerTK[24. 23],
Engagement of the bridging molecules with both the dying cells (via PS) and the
macrophage (through the receptor) induces Racl-dependent cytoskeletal changes that drive
apoptotic cell engulfment[26-28] |t is important to note that many of the receptors used by
macrophages to recognize dying cells are also used by other phagocytes. For example,
MerTK is used in retinal pigment epithelial cells (RPECs) and mammary epithelial cells
(MECs) to ingest PS-flagged cells while MFG-ES8, the PS-bridging ligand for integrin a.\p3
and aPs, is required in the mammary gland and in the retina for clearance of PS-labelled
cells.

MerTK is required for efferocytosis by macrophages. Once MerTK is engaged by the dying
cell via Gas6 or ProS1, MerTK undergoes dimerization, tyrosine kinase activation, and
tyrosine phosphorylation, activating CRKII/DOCK180/ELMO signaling to the Rac GTPase,
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which enables actin protrusions to completely surround and thus engulf the dying/apoptotic
cell. Once consumed, the cell is processed by lysosomal degradation (Figure 1)[29-34],

In addition to engulfment and clearance of the apoptotic cell, MerTK signaling promotes
expression and release of immune suppressive cytokines (IL-10, IL-13, IL-4 and TGFp1),
and repression of pro-inflammatory cytokines (IL-12, IFN-y). This promotes immune
tolerance and tissue repairl3° 361, Beyond the critical function of efferocytosis in tissue
homeostasis, recent studies suggest that efferocytosis may support a more malignant tumor
microenvironment, in part because of the cytokine signature associated with the process of
efferocytosis[37~49]. Additionally, many of the receptors and ligands that facilitate the
process of efferocytosis are overexpressed in cancer suggesting a specific role in
tumorigenesis[36: 43, 50, 51],

Efferocytosis and Disease States

Dysfunction of efferocytosis is involved in several disease states such as atherosclerosisl®2],
retinal pigmentosal®3], chronic obstructive pulmonary inflammation[®4], and type II
diabetes!5]. While impaired clearance of apoptotic cells can promote disease states, intact
efferocytosis can also lead to some pathophysiological states, primarily cancer. Tyro-3, Axl,
MerTK and their PS-bridging ligand Gas6 and ProS1 are overexpressed in several cancer
types, both in the tumor cells, per se, and in the tumor microenvironment (reviewed in[3¢]
and[56l). AxI activation in tumor cells promotes proliferation and survival through the
P13K/Akt and MAPK/ERK signaling pathways, and it has been implicated in promoting the
epithelial-to-mesenchymal transition[3¢: 571 Overexpression and/or activation of MerTK in
tumor cells increases oncogenic PI3K/Akt, MAPK/ERK, JAK/STAT, and Src/FAK
signaling, thus increasing tumor cell survival, proliferation and metastasis(36: 471, MerTK
expression within macrophages of the tumor microenvironment supports tumor metastasis
and immune suppression through efferocytosis-induced production of wound healing,
immune suppressive cytokines (IL-10, IL-13, IL-4 and TGFP1) and repression of pro-
inflammatory cytokines (IL-12, IFN+y)[3% 361, Numerous studies indicate that targeted
inhibition of MerTK or Axl would improve survival of cancer patients by limiting tumor
growth, survival and metastasis, and/or by promoting an anti-tumor attack on the tumor
cells. Studies of efferocytosis-mediated regulation of the tumor microenvironment is in its
early stages, but results suggest that efferocytosis represents an immune checkpoint that is
exploited by tumors to evade anti-tumor immunity.

Role of Immune Cell and Tumor Microenvironment in Tumor Progression

The efferocytosis receptor MerTK plays a critical role in the delicate balance of innate and
adaptive immunity. Through efferocytosis and subsequent cytokine regulation, MerTK
prevents immune reactions against self-antigens and long-term autoimmune diseasel.
Targeted genomic loss of MerTK in mice results in a hyper-inflammatory phenotype that
progresses with age, resulting in lupus-like auto-immunity with moderate penetrance in aged
micel33]. Disease progression and penetrance is accelerated in the combined absence of
MerTK, Axl, and Tyro3.
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Other ways that immunity can be affected by the TAM family of receptors is through
interactions with macrophages and how they are activated. Macrophages are functionally
adaptable and alter their polarization state in response to different physiological conditions.
The two major types of mds are M1 and M2, although other polarized states have been
characterized®9]. “Classically-activated” M1 macrophages become activated by
inflammatory mediators (GM-CSF and IFN-y) which induce M1 polarization, produce Thl
pro-inflammatory cytokines (CXCL19 and CXCL10, IL-12, IFNYy), participate in antigen
presentation, and promote an anti-tumor responsel®% 611, In MerTK knockout mice, LPS
treatment leads to shock and death at lower levels than wildtype mice due to the increased
cytokine release associated with M1 macrophage polarization[82]. However, ms that carry
out efferocytosis are M2, more specifically M2c, polarized[®3l. M2 macrophages produce
Th2 cytokines (11-10, IL13, IL4, TGFB1, CCL17, CCL22 and CCL24), promote anti-
inflammatory responses, and have pro-tumorigenic functionsl8. M2 polarized macrophages
support tissue repair and angiogenesis through the production of VEGF or EGF thusly
supporting the pro-tumorigenic designation[8]. Tumor associated macrophages are typically
M2 polarized. They are pro-inflammatory and promote cell growth and recruitment through
the production of IL6, TNFa, IL23 and may also promote tumor development through
immune suppressive effects from the release of TGF and 1L10[64-66],

Natural killer (NK) cells are important players of the innate immune system possessing
potent cytotoxic activity. MerTK expression on NK cells dampens the maturation of NK
cells into a cytotoxic state. Studies have demonstrated the anti-tumor ability of NK cells in
colon, breast, and skin cancers, where NK cells block the seeding capacity of disseminated
tumor initiating cellsl87: 681 Signaling through the efferocytosis receptors Axl and Tyro3 in
dendritic cells activates suppressor of cytokine signaling (SOCS)1/3, dampening expression
of pro-inflammatory cytokines, and inducing expression of anti-inflammatory

cytokines[®9 701 [71] thys having a powerful immune suppressive effect akin to what is seen
upon MerTK-mediated efferocytosis in macrophages[72].

Evasion and suppression of the host immune system plays an important role in malignant
progression (reviewed inl73l). One way of achieving this is by stimulation of
immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs)[74l. MDSCs
are functionally defined as immunosuppressive, immature myeloid cells that function in
response to infection or stress to maintain normal tissue homeostasisl’®]. They infiltrate
developing tumors where they promote tumor vascularizationl”>] and disrupt major
mechanisms of immunosurveillance which include antigen presentation by dendritic cells
(DCs)I76I T cell activationl86. 76. 771 M1 macrophage polarization[78-8%1 and inhibition of NK
cell cytotoxicity[82l. Factors robustly produced in response to efferocytosis, such as I1L-10
and VEGEF, affect the development and regulation of MDSCs, suggesting that this process
may play a role in the immunosuppressive effects of MDSCs[82],

When CD8+ T cell responses are lessened or blunted, it correlates with a poorer patient
prognosis; and recent studies demonstrated that MerTK signaling in the tumor
microenvironment decreased CD8+ T-cells in tumors and tumor-draining lymph

nodes[®3. 841 providing one mechanism in which MerTK contributes to tumor growth and
metastasis. Regulatory T (Treg) cells are another cell type that play a role in cancer(85: 861,

Cancer Cell Microenviron. Author manuscript; available in PMC 2017 December 18.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Vaught et al.

Page 6

Under normal conditions, Treg cells regulate the expansion and activation of T and B
cellsl87], There also exists a strong correlation between tumor progression and the frequency
of Tregs in a variety of cancers[®-921. However, increased levels of Tregs have been shown
to be associated with increased survival in other cancer types, suggesting that, like the m®,
this immune cell type has different phenotypes[93-9°1. The diverse roles Tregs have on
cancer is largely attributed to the dynamic effect TGFp has in the generation and function of
Tregs. TGFP production is heavily dependent upon the surrounding microenvironment[%€],
and widespread clearance of apoptotic cells profoundly upregulates TGFB1 within the local
microenvironment, perhaps contributing to expansion of pro-metastatic and anti-
inflammatory Tregs in the tumor microenvironment.

Inflammation is known to be a hallmark of cancerl®?]. Tissues characterized by chronic
inflammation generally exhibit a high cancer incidencel®8]. This is probably due to the
unresolved chronic immune response that mimics failed wound healing often seen in the
tumor microenvironment where there are many cells with immunosuppressive activity[9]
and the development of a pro-tumorigenic niche develops (reviewed in[190]). Tumors have
often been likened to ‘wounds that do not heal’[101], Expression signatures of chronic
inflammation and expression signatures of wound healing are prominently expressed at
developmental stages in which cell death and efferocytosis are prominent, such as the
mammary gland during post-partum involution. Similarly, wound healing expression
signatures are expressed in the most aggressive tumors.

Postpartum Involution and the Pro-Metastatic Landscape: Potential

Therapeutic Targets

During pregnancy, the mammary gland undergoes many changes which result in an
expanded tissue capable of supporting milk production. While it is possible that the elevated
growth hormone levels and enriched blood supply of the breast during pregnancy and
lactation could provide a fertile environment for breast cancers to progress. However, breast
cancers diagnosed during pregnancy do not correlate with a worse overall survival when
compared to breast cancer diagnosed in age-matched women without a previous
pregnancyl’l. In contrast, post-partum breast cancers (ppBCs), those diagnosed 2-5 years
following a full-term pregnancy, are more invasive, more likely to be diagnosed as metastatic
disease, and are associated with decreased disease free survival when compared to age
matched women who have never been pregnantl192-1041_ Collectively, these studies indicate
that post-partum events within the breast are driving forces for the aggressive nature of
ppBCs. Seminal studies by Schedin and colleagues demonstrated that human breast cancer
cells grow and invade more rapidly within mammary fatpads of post-partum mice as
compared to nulliparous mice. The post-partum mammary microenvironment was rich in
cyclooxygenase 2 (COX-2) and fibrillar collagen. Importantly, inhibition of COX-2 using
non-steroidal anti-inflammatory drugs (NSAIDs) reduced invasion and metastasis in a
mouse model of ppBCI38: 431, While NSAIDs have produced inconsistent results in studies
examining breast cancer risk and relapse[105-108] nostpartum status was not included as a
variable in these studies.
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The profound scale of efferocytosis occurring in the post-partum breast supports the idea
that efferocytosis-induced expression of immune suppressive wound healing cytokines could
amplify the pro-metastatic landscape of tumors existing therein. This notion was supported
by results demonstrating that MerTK- dependent efferocytosis in the post-partum mammary
gland promotes production of wound healing cytokines which stimulate tumor cell
metastatic spread to the lungs. Genetic models of MerTK loss displayed impairment of
efferocytosis during postpartum involution in mammary epithelia and in tumors existing
thereinl39, and a stark reduction in the levels of immune suppressive and wound healing
cytokine signature seen during involution[3%: 1091 |mportantly, blockade of post-partum
TGFpB1 reduced lung metastases in mouse models of ppBC to levels seen in tumor-bearing
virgin mice. A similar study targeting IL-10 resulted in reduced tumor growth in postpartum
mice when compared to nulliparous mice, although metastasis was not evaluated110],

In considering the potential risks associated with blocking efferocytosis as a potential tumor
treatment strategy, it is important to weigh the risks associated with necrotic cell lysis of
dying cells, inflammation, tissue damage, and autoimmunity[3%: 1091, As an illustration of
this point, failure of post-partum efferocytosis in the mammary gland causes inflammation
and scarring that interferes with future lactation[19%]. With this in mind, it will be critical to
identify the optimal therapeutic window for targeting for blockade of efferocytosis. Since
blocking MerTK lowers expression levels of wound healing cytokines, similar to what is
seen in the non-pregnant population, this would create an environment where the tumor cell
is less likely to metastasize and escape immune targeting. Furthermore, MerTK promotes
expression of programmed cell death ligand 1(PD-L1)[47], an immune checkpoint ligand
commonly expressed on tumor cells to antagonize CD8+ T cells. Thus, blocking MerTK
could also play a more direct role in promoting an anti-tumor immune attack by reversing
the immunosuppressive capabilities of the tumor cell itself. Several MerTK inhibitors have
been designed and show promise in treating diseases, including cancer. These drugs include
UNC2025, UNC569, and UNC2881[111-113],

Future Directions & Concluding Remarks

While the postpartum mammary gland serves as an excellent model for studying the role of
efferocytosis in tumor progression, it is limited as it primarily addresses the aggressive and
metastatic nature of postpartum breast cancers. Nonetheless, this model has revealed that
clearance of dying cells creates a tumor microenvironment that supports metastatic spread.
Expanding this idea beyond the breast, it is plausible that the process of efferocytosis may
reveal the limitations of using cytotoxic therapies, such as chemotherapy, to treat cancer.
Since cytotoxic therapies result in widespread cell death and subsequent efferocytosis, it is
possible that the immune response might support tumor recurrence and metastasis.

It is evident that understanding all aspects of the immune response will be important for
finding innovative and effective ways to prevent, treat, and cure cancer. Efferocytosis will
need to be considered as immunotherapies are expanded and utilized.
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Figure 1.
Important players in efferocytosis.
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Figure 2.
Immune cells in tumor progression.
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