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Summary
Several alternative methods to replace animal experiments have been accepted by legal bodies. An even 
larger number of tests are under development or already in use for non-regulatory applications or for  
the generation of information stored in proprietary knowledge bases. The next step for the use of the 
different in vitro methods is their combination into integrated testing strategies (ITS) to get closer to the 
overall goal of predictive “in vitro-based risk evaluation processes.” We introduce here a conceptual 
framework as the basis for future ITS and their use for risk evaluation without animal experiments.  
The framework allows incorporation of both individual tests and already integrated approaches. Illustrative 
examples for elements to be incorporated are drawn from the session “Innovative technologies” at the  
8th World Congress on Alternatives and Animal Use in the Life Sciences, held in Montreal, 2011. For 
instance, LUHMES cells (conditionally immortalized human neurons) were presented as an example for a 
2D cell system. The novel 3D platform developed by InSphero was chosen as an example for the design  
and use of scaffold-free, organotypic microtissues. The identification of critical pathways of toxicity (PoT)  
may be facilitated by approaches exemplified by the MatTek 3D model for human epithelial tissues  
with engineered toxicological reporter functions. The important role of in silico methods and of modeling 
based on various pre-existing data is demonstrated by Altamira’s comprehensive approach to predicting 
a molecule’s potential for skin irritancy. A final example demonstrates how natural variation in human 
genetics may be overcome using data analytic (pattern recognition) techniques borrowed from computer 
science and statistics. The overall hazard and risk assessment strategy integrating these different examples 
has been compiled in a graphical work flow. 
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tice and solid toxicological experience with new concepts and 
innovative technologies (van Thriel et al., 2012). 

Traditional approaches are rooted mainly in the fields of bi-
ology, medicine, and veterinary sciences (Leist et al., 2012). 
New technologies are emerging from many additional fields 
(Leist et al., 2008a,b). These include computer information 
sciences, statistics, mechanical engineering, molecular biol-
ogy, drug discovery, and many others. Many technologies, 
approaches, and assays have been described individually. Re-
cently, more integrated strategies for using combinations of in 
vitro data and in silico models to predict drug and chemical 

1  Introduction

Current toxicological risk assessment to ensure human health 
or the safety of the environment is still based predominantly 
on animal studies. Besides ethical considerations, there are also 
scientific reasons to stop the use of animals and to switch to 
scientifically validated modern test systems, which may provide 
a deeper insight into the mechanisms of toxicity. 

As science and technology continuously move ahead, and 
new innovations appear on the market daily, we suggest taking 
advantage of this situation by combining good laboratory prac-
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safety have emerged as well. One of the most comprehensive 
strategies to make toxicology largely independent of animal 
studies is “Toxicity testing in the 21st century: a vision and a 
strategy,” as put forward by the National Research Council 
(NRC, 2007). This has triggered the design of new concepts 
and the setup of research programs dedicated to the implemen-
tation of this vision (Hengstler et al., 2012). Some of these pro-
grams, such as ToxCast, focus mainly on high-throughput and 
use mostly technology and methods suitable for this purpose as 
building blocks (Kavlock et al., 2012; Rotroff et al., 2012). For 
example, a high-throughput risk assessment (HTRA) frame-
work was published last year (Judson et al., 2011). A different 
approach makes use of relatively complex models that have 
been established primarily with the purpose of replacing de-
fined animal experiments. 

The approach taken here is to suggest a comprehensive theo-
retical strategy to undertake risk assessment on the basis of avail-
able alternative test systems of differing complexity and with 
varying throughput. This strategy may be used as a framework to 
look for, identify, and employ new technologies. It may also be 
used to incorporate such diverse technologies as high-throughput 
screening of simple biochemical endpoints and the evaluation of 
complex functional endpoints in 3D engineered tissue. The dif-
ferent available and newly emerging methods would then sup-
port individual steps outlined by the strategy and form the basis 
for translating the theoretical framework into practice. Such a 
risk assessment scheme is outlined here, and a heterogeneous set 
of new technologies was chosen as an example of how to apply 
the new approaches within this overall framework.

2  In vitro based risk evaluation approach

The development of suitable in vitro methods for risk assessment 
is an ongoing effort, and many promising methods are available 
already. We suggest a general scheme, which can then be filled in 
with suitable methods according to the individual requirements 
(Fig. 1). The basic idea of the scheme was also discussed in the 
context of biomarker usage (Blaauboer et al., 2012).

Potential starting steps for compound evaluation are based 
on literature review, in silico as well as purely physicochemi-
cal and biochemical methods to define the compound in ques-
tion, its intracellular distribution, and its potential metabolites. 
These steps would be followed by the application of a battery 
of methods to define the biokinetic behavior of the compound 
and metabolites in in vitro systems and to obtain essential data 
for physiology-based pharmacokinetic modeling (PBPK). Some 
of this information would be used immediately for subsequent 
steps, while other information (exposure information) would be 
used later for the final risk assessment.

The core of the strategy is the concept that in silico evalua-
tion and thorough literature research go hand in hand with an 
in vitro-based hazard assessment. These are the cornerstones of 
any type of “in vitro risk assessment.” 

In principle, any point of the circle may be used as starting 
point, as reconsideration and re-iteration is possible and neces-
sary to ensure that all data and aspects are taken into account. 
If new compounds are to be evaluated, it might make sense to 
start with an exposure assessment in order to avoid testing of 
concentrations that are unlikely to occur in real life. “Expo-
sure Assessment is the process of estimating or measuring the 
magnitude, frequency and duration of exposure to an agent, 
along with the number and characteristics of the population 
exposed. Ideally, it describes the sources, pathways, routes, 
and the uncertainties in the assessment” (IPCS, 2004). Risk 
assessment would, for instance, be handled differently if the 
compound under investigation is used only as intermediate in 
a closed chemical production process or if it is part of a cos-
metic product, or if it is an environmental chemical known to 
enter the food chain. Data on exposure may be scarce, of low 
reliability, or not available at all, especially for environmental 
agents. Under such circumstances, the scheme suggests mov-
ing to subsequent steps and evaluating compound hazard first. 
For the risk assessment, exposure would then need to be esti-
mated roughly, classified on the basis of use categories and on 
the knowledge of environmental fate (e.g., transport models, 
persistence, bioaccumulation, and transformation). In the ab-
sence of all information, risk classification would need to be 
heavily based on hazard information and then adapted as more 
exposure information becomes available.

A thorough literature review1 is usually the basis of a suc-
cessful evaluation. Defining a search strategy is necessary to 
ensure coverage of the topic, as the “state-of-the-art” should 
be the starting point. In this sense, the term “literature” is 
meant to cover all kinds of databases that are accessible. The 
literature review would initially focus on the compound, but 
in further iterations it also would cover the methods used for 
hazard assessment, as well as other technologies used for 
evaluation of the compound. In addition, experiments that did 
not work and information on failed tests or compounds might 
be very helpful. Unfortunately, this information is seldom 
freely available. 

Due to progress in science and technology, in silico modeling 
becomes more and more a prerequisite in the risk assessment 
field, and it was specified by Hartung and Hoffmann in 2009 
as “anything that we can do with a computer in toxicology” 
(Hartung and Hoffmann, 2009). These days, it is difficult to 
define “in silico toxicology” exactly, as in silico components 
are present in practically every area of risk assessment (Raunio, 
2011), and non-testing data can be generated by several ap-
proaches, including: grouping approaches, which consist of 
read-across and chemical category formation, structure-activity 
relationship (SAR) and quantitative SAR (QSAR)2. A structural 
physicochemical reactivity characterization of a compound is 
currently done routinely (Valerio, 2009, 2011).

Another very important point is the determination of the bi-
okinetic behavior of the compound in all test systems used. 
This comprises information on the real free concentration in 

1 http://www.ctu.edu.vn/guidelines/scientific/scientific/2.1howliteraturesearch.htm
2 http://echa.europa.eu/web/guest/guidance-documents/guidance-on-information-requirements-and-chemical-safety-assessment
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tal system, similar information is necessary on the different 
metabolites. Such background information on the chemical 
facilitates identification of tests and conditions to set-up an in 
vitro effects battery. 

The in vitro effects battery could include simple model or-
ganisms such as drosophila or zebra fish (Sipes et al., 2011b; 
Padilla et al., 2012), and it would include assays for functional 
changes, to provide broad omics information (e.g., metabo-
lomics, transcriptomics), and to define biochemical targets of 
the chemicals. In addition to the mostly correlative methods, 

the cell culture medium, and ideally also in different cellular 
compartments. The latter often will require information on 
transport processes of the compound across different mem-
branes. To perform an in vitro-in vivo extrapolation (IVIVE), 
the real concentration of a compound has to be determined 
(Coecke et al., 2012). Some compounds may bind to plastic or 
to proteins or they may evaporate; others react quickly or be-
come metabolized. Therefore, the freely available concentra-
tion is not necessarily identical to the nominal concentration. 
In case of metabolism of the compound within the experimen-

Fig. 1: In vitro-based risk evaluation approach
The overall strategy relies on two essential steps: First, important background information on the compound and its in vitro hazard is 
assessed (circle of yellow boxes). Then, an in vitro-in vivo extrapolation (IVIVE) is used to predict relevant human doses. These are then 
related to different exposure scenarios, taking also different human subpopulations into account to arrive finally at a risk evaluation (upper 
part of the scheme). The part of the strategy focusing on in vitro hazard assessment would start with the identification of appropriate 
tests and conditions, based on the information gained from the initial steps. An in vitro test battery with various 2D and 3D models (see 
sections 3-5) would be used to obtain detailed concentration-response information to arrive at a point of departure (POD) for IVIVE. 
In most cases, steps of the cycle may need to be revisited in an iterative process of optimization. All steps would yield information to 
databases, simulations, and new software solutions, and vice versa. Besides these general interactions, the specific hazard evaluation 
of a compound would involve a process of modeling and systems biology approach to use all the data generated for the identification/
mapping of key pathways of toxicity (PoT) and for definition of thresholds of their activation. A combination of such steps is demonstrated 
in section 6. Once a defined POD (= critical concentration of a compound to trigger hazardous effects) has been derived, IVIVE will 
help to define the hazardous dose in humans. This may be affected, e.g., by genetic variability (as outlined in section 7). Combination of 
human hazard information and exposure data will finally support the risk evaluation process.
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encephalic neurons from fetal material from the university of 
Lund.” This cell system allows measurement of functional 
endpoints and demonstrates the usefulness of image-based 
high-content screening in human cells. The cell system can be 
used for disease modeling (Lotharius et al., 2005) and also for 
examining toxicity to developed neurons (Schildknecht et al., 
2009; Pöltl et al., 2012). In addition, it allows developmental 
neurotoxicity to be addressed (Stiegler et al., 2011). LUHMES 
are conditionally-immortalized neuronal precursor cells with 
dopaminergic neuronal features. Differentiation is triggered by 
a tetracycline-mediated inactivation of the v-myc transgene in 
the cells, and it results in uniformly post-mitotic neurons form-
ing a neurite network (Fig. 2) (Scholz et al., 2011). Neurite 
outgrowth can be measured in an imaging-based procedure. 
Live imaging allows the simultaneous evaluation of cell vi-
ability and neurite outgrowth within one culture dish. Some 
compounds can slow the extension of neuronal processes at 
lower concentrations than those causing cell death. Extension-
promoting compounds have been identified as well. To evalu-
ate the specificity of the assay, the actions of unspecific cy-
totoxicants have been tested. Thus described test system may 
be useful for high-throughput screens to identify neurotoxic 
agents and for closer characterization concerning mode of ac-
tion (MoA), compound interactions, or the reversibility of their 
effects (Stiegler et al., 2011). 

As another example for toxicological use, the LUHMES cell 
system was used to examine the effects of methamphetamine 
or 1-methyl-4-phenylpyridinium (MPP+) and the parental com-
pound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 
As expected, cells were sensitive to MPP+, while no reaction 
occurred with MPTP. The high homogeneity and purity of 
the cultures allowed the detection of metabolic changes dur-
ing the degeneration, which is not possible in mixed primary 
human cell populations (Hansson et al., 2000). Cellular ATP 
in LUHMES cells dropped in two phases, cellular glutathione 
(GSH) decreased continuously, paralleled by an increase in li-
pid peroxidation. These events were accompanied by a time-
dependent degeneration of neurites. Blocking the dopamine 
transporter completely abrogated MPP+ toxicity (Schildknecht 
et al., 2009). By applying different inhibitors, the underlying 
mechanisms and pathways have been identified. ATP-deple-
tion, as the initial mitochondrial effect of MPP+, requires fur-
ther downstream processes to result in neuronal death. These 
processes may form self-enhancing signaling loops that aggra-
vate an initial energetic impairment and eventually determine 
cell fate (Pöltl et al., 2012; Schildknecht et al., 2011).

Further investigations are facilitated by genetic engineering 
of the cells. These manipulations can change the susceptibil-
ity to chemicals, test mechanisms of toxicity, or provide ad-
ditional information in the form of reporter assays. Such ap-
proaches are a counterpart to the use of transgenic animals, and 
LUHMES have been used for many such approaches. 

The intention of modeling the real world situation as closely 
as possible makes it necessary to place cells in contact with 
other cell types. Neuronal networks and tissues naturally con-
sist of different cell types. Therefore, to predict reactions in hu-
mans these conditions must be reproduced experimentally, and 

this testing step also would use approaches to define key toxic-
ity events and/or biomarkers more causally, such as reporter 
assays and inhibition of suspected pathways.

Such battery approaches are well known from the field of ge-
notoxicity (Kirkland et al., 2011). They are under active devel-
opment for the area of skin sensitization, and it is expected that 
they will be broadly applied in the future in many other domains, 
such as developmental neurotoxicity (Kadereit et al., 2012). The 
battery should be validated carefully, including appropriate con-
trols. The tests would generate in vitro concentration response 
curves. This should give a first idea of the biological profile of a 
compound. These data and their use in an appropriate integrated 
model should yield a point of departure (POD). The POD is 
defined as the concentration that results in a significant hazard-
related change in the in vitro system, which is considered pre-
dictive for the in vivo situation. Different systems with different 
endpoints, considered also at different incubation times, will 
result in a large set of data on the compound’s effects at differ-
ent concentrations. This will be particularly important, as test 
systems diversify. In addition to the “classical tests,” mimicking 
certain complex modes of action (e.g., inflammatory activation 
of cells, or disturbed differentiation), new test systems will ei-
ther test only the effects of compounds on defined biochemical 
targets (e.g., receptor activation or enzyme inhibition), or they 
will obtain broad information by different omics technologies 
(metabolomics, transcriptomics, proteomics). Moreover, some 
of the test systems will also evaluate compound effects in 3D 
systems and between different cell types, e.g., between micro-
glia and astrocytes (Kuegler et al., 2012; Schildknecht et al., 
2011). Some of the effects measured may not be related to tox-
icity but may be epiphenomena or cellular counter-regulations. 
Sometimes, the effects observed also may depend on the meta-
bolic state of the cells. Modeling such different situations can 
be useful to predict toxicity under greatly varying conditions in 
humans (Latta et al., 2000; Falsig et al., 2004). In most cases, 
extensive modeling will be required to process the data and to 
determine the relevant pathways of toxicity (PoT), as well as 
the threshold concentrations that trigger them. These will then 
be used as POD for IVIVE (Blaauboer, 2010). When, finally, 
the variability and sensitivity of human subpopulations (Bolt et 
al., 2003; Pohl and Scinicariello, 2011; Mirlohi et al., 2011) are 
taken into account, this overall procedure may lead to a risk 
evaluation without the use of animals. 

3  Use of engineered human cells for complex  
2D models of toxicity

To start the risk assessment process, it is necessary to combine 
different biological methods to finally reach a prediction about 
the hazard of a substance. Relatively simple 2D systems may be 
a good starting point. Preferably, human cells should be used, 
but these often require technologically challenging procedures. 
Pluripotent stem cells may be a good general source of different 
cell types (Balmer et al., 2012).

Here, the LUHMES cell system is presented as alternative 
example. The acronym of these cells stands for “human mes-



Leist et al.

Altex 29, 4/12 377

The future of this cell culture system lies in the combination 
of cell culture techniques and innovative analytical approach-
es. Metabolomics and transcriptomics are especially promis-
ing tools for providing a richer set of data. Combination with 
other cells and 2D or 3D structuring of the cultures appear 
very attractive. The lack of functional N-methyl-D-aspartate 
receptors is, however, a disadvantage compared to several 
primary neuron cultures (Volbracht et al., 2006). Thus, it is 

possibly further refined by in silico modeling. One first step are 
co-cultures, as described already by Schildknecht et al. (2012). 
As astrocytes serve numerous functions, such as nutrient sup-
ply of neurons, regulation of cerebral blood flow, orchestration 
of neuronal growth and differentiation, maintenance of extra-
cellular glutamate levels, and ion and liquid balance (Ketten-
mann and Ransom, 2005), they seem to be the right partners to 
support neurons in their biological function. 

Fig. 2: LUHMES differentiation and neurite outgrowth during differentiation
Proliferating LUHMES cells can be amplified and easily converted into post-mitotic neurons. (A) Schematic representation of the 2-step 
differentiation procedure, initiated by withdrawal of the cytokine basic fibroblast growth factor (bFGF) and addition of tetracycline. 
(B) Representative scanning electron microscopy (SEM) images of undifferentiated (day 0) and differentiated (day 5) LUHMES cells. 
Marked squares indicate areas that are shown at higher magnification to the right. (C) Neurite outgrowth was documented by time-lapse 
microscopy from day 3 to day 5. A representative sequence of merged phase contrast and GFP channel images, recorded for 8 h on  
day 4 is shown. Expanding neurites with active growth cones are indicated by arrows, retracting neurites are marked by arrowheads.  
(D) GFP-over-expressing “mature” day 5 LUHMES cell with a typical neurite length of 800 µm and an ending without growth cone  
(no further neurite growth). Insert shows neurite ending at higher magnification. Adapted from (Scholz et al., 2011).
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vitro cultures. As an example of a 3D liver microtissue model, 
the InSphero system was chosen, as this technology platform 
allows relatively high throughput and adaptation to many dif-
ferent cell types and requirements.

A novel automation-compatible 96-well platform based on 
hanging drops to produce organotypic microtissues has been 
developed (Kelm and Fussenegger, 2004), and spherical mi-
crotissues can be produced in a scalable production process. 
This is achieved by a well design where a microfluidic chan-
nel connects an inlet funnel at the top and an outlet funnel at 
the bottom of the plate, allowing for hanging drop formation 
without turning the plate upside down. At the well outlet a 
hanging drop is formed by a combination of capillary and sur-
face-tension forces. In this the cells assemble into a tissue-like 
arrangement (Fig. 3). Microtissues can be initiated with low 
cell numbers resulting in excellent size uniformity with vari-
ations below 10% in diameter (Drewitz et al., 2011). The size 
is defined by the initial cell number. In contrast to tumorigenic 
and ES cells, primary cells are contact inhibited and do not 
proliferate (Drewitz et al., 2011).

Complementing the manufacturing platform for reproducible 
production of single and multi-cell type microtissues, a sphe-
roid-specific culture plate allows more convenient long-term 

important to know both the advantages and the limitations of 
LUHMES cells. 

4  Automation-compatible organotypic microtissues 
for drug and substance testing

Physiological tissue-like culture systems seem to improve the 
relevance of in vitro testing of substances tremendously. Al-
though the advantages of organotypic 3D cell culture models 
to increase the performance of in vitro compound assessment 
have been known for years (Pampaloni et al., 2007; Justice et 
al., 2009), complex production and elevated readout processes 
impeded the industrial implementation. Microtissue models 
can be derived either from cell lines, primary cells, or stem 
cells. They are spherical in shape and devoid of artificial bio-
materials such as hydrogels or scaffold materials. The cells 
produce their own, cell type-specific extracellular matrix envi-
ronment, mimicking native tissues in vitro. Often, they display 
some morphological tissue-like features, but they do not nec-
essarily reflect the overall histology as seen in vivo. Neverthe-
less, biochemical functions of cells in 3D microtissues can be 
closer to the in vivo situation than to the one observed in 2D in 

Fig. 3: Microtissue (MT) formation in hanging drops: overview of different microtissue models produced with the hanging  
drop technology 
(A) The cells accumulate at the bottom of the drop, form cell-cell contacts and extracellular matrix and assemble to spherical 
microtissues. Formation of microtissues requires between 2-7 days depending on the model. (B) Automated production of microtissues in 
the GravityPLUS™ platform. After the formation process, microtissues are transferred into the microtissue assay plate (GravityTRAP™) 
for further cultivation and assay. (C) Overview of different microtissue models produced with the hanging drop technology. 
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–	X enobiotic metabolizing capabilities
–	 Co-culture models for epithelial-stromal interactions 
3D human skin (e.g., EpiDerm™) and corneal tissue (e.g., 
EpiOcular™) models have become increasingly important as 
replacements for traditional animal-based toxicology testing 
in the area of cosmetics, personal care products, household 
cleaning products, and in the chemical and pharmaceutical 
industries. Two EpiDerm™-based test methods for assessing 
skin irritation and dermal corrosion potential are now formally 
validated as alternative methods in the European Union (EU). 
Several other EpiDerm™ and EpiOcular™ test methods con-
tinue through the validation process as defined by regulators in 
the EU (ECVAM) and the United States (ICCVAM).

Normal human 3D (NHu-3D) epithelial models with the 
added feature of engineered toxicological reporter functions are 
currently being developed (Hayden et al., 2011). These mod-
els represent a further advance that will allow development of 
mechanistic toxicity screening assays. Initial experiments have 
produced promising results.

Early passage normal human epidermal keratinocytes, der-
mal fibroblasts, tracheobronchial epithelial cells, and fibrob-
lasts were transduced with lentiviral vectors containing NFκB 
reporters linked to either GFP or luciferase. Stably transduced 

cultures, medium exchanges, optical analysis, and biochemical 
assays. The lack of artificial biomaterials ensures compatibility 
with most biochemical assays used to assess cell viability and 
toxicity. The whole system can be combined with robotic liq-
uid-handling devices equipped with a 96-multichannel pipette 
head, with similar volumetric precision as in standard multi-
well plates (Drewitz et al., 2011). Future developments may 
include the combination of periportal and perivenous types of 
hepatocytes and closer modeling of the liver lobule structure, 
while at present the focus of the platform is on robustness, 
throughput and improved overall biochemical function.

An example application is the use of liver microtissues 
from primary rat hepatocytes or cryopreserved human hepato-
cytes, both in co-culture with non-parenchymal cells (Godoy, 
in preparation; Messner et al., submitted) for toxicity testing. 
In standard sandwich culture systems, liver-specific function-
ality decreases rapidly with prolonged culture time. The 3D 
environment already improves the functionality, whereas het-
erotypic cell populations incorporating NPCs further increase 
liver-specific functions as shown for urea secretion over time 
(Fig. 4). Actually, levels of secreted albumin are close to val-
ues detected for human native liver (Meng, 2010; Uygun et al., 
2010). Incorporation of liver-derived macrophages enables the 
detection of indirect liver toxic effects such as inflammation-
mediated toxicity (Messner et al., submitted).

Microtissues are a versatile 3D cell culture concept to create 
a wide variety of different tissue models, which are designed 
for high-throughput data generation and easy implementation 
in current drug development processes to foster drug de-risk-
ing.

The key advantages of microtissue models are:
–	L ong term maintenance of tissue structure and functionality
–	 Multi-cell type models
–	 No scaffold requirements (no impact of batch to batch varia-

tions from biomaterials and hydrogels)
–	 Production of endogenous cell type-specific extracellular ma-

trix
–	 Direct cell-cell and cell-ECM interactions
–	 Standard 96-well format enables automation and high-

throughput compatibility
–	 Same tissue format for efficacy and safety assessment

5  Use of genetically engineered 3D models  
for identification of toxicity pathways

3D organotypic in vitro human epithelial models are impor-
tant advances over traditional monolayer cell culture models. 
For toxicology applications, these models provide a number 
of important features (Kandárová et al., 2009; Kaluzhny et al., 
2011).

Specific advantages of 3D organotypic human epithelial 
models include:
–	 Normal (non-immortal) human cells
–	 Organotypic structure 
–	 Barrier function
–	 Real-life exposure options

Fig. 4: Urea secretion of primary rat hepatocytes
Rat hepatocytes were grown in 2D sandwich cultures, or as 3D 
microtissues. The microtissues either contained non-parenchymal 
liver cells (NPC) as additional cell populations or they were formed 
from hepatocyte monocultures. The cells were kept in culture for 
10 days, and the urea production was measured every second 
day, starting from day 4. The data were normalized to the number 
of cells in culture, and are given as production per day. 
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tified with a microplate luminometer (Fig. 6). Production of 
models containing other reporters of toxicological significance 
(e.g., for DNA damage, oxidative stress, heavy metal stress, 
ER stress, etc.) by the same process will provide a suite of hu-
man epithelial reporter models that can be utilized to provide 
mechanistic toxicity screening assays.

6  Prediction of skin irritancy using  
mechanism-based integration of in vitro and  
in silico methods

In the field of skin irritation, numerous test models have been 
developed over the years, some of which have been validated 
and accepted by OECD as stand-alone alternative methods to 
the Draize rabbit skin test (OECD, 2010). In silico methods 
also are available, including rule-based expert systems and 
QSAR prediction of binary classification of skin irritancy. For 
example, ToxTree implemented a decision tree for skin irrita-
tion rules (Hulzebos et al., 2005) that requires users to provide 
physicochemical properties as exclusion rules prior to applying 
inclusion rules based on structural alerts. 

cells were selected by puromycin resistance, expanded over 
several passages and cryopreserved to produce large pools of 
reporter-expressing cells (Fig. 5). Reporter-expressing cells 
were then utilized to produce NHu-3D skin and airway epithe-
lial models. 

Important considerations for the development of organotypic 
reporter models are: 
–	 Stable integration of reporter into cells
–	 Attainment of normal organotypic development
–	 Attainment of adequate reporter activity
–	 Generation of adequate number of cells to support commer-

cial production
–	 Simple, robust assays for HTP screening
Organotypic structure and barrier properties of models pro-
duced from reporter-expressing cells were found to be similar 
to models produced from untransduced cells, as determined by 
histological and barrier assessment. NFκB reporters linked to 
either GFP or luciferase were found to be activated approxi-
mately 5-fold above background by treatment of the orga-
notypic models with tumor necrosis factor (TNF)α. GFP was 
detected in formalin fixed paraffin sections by epifluorescence 
microscopy, and luciferase activity in tissue extracts was quan-

Fig. 5: 3D organotypic reporter models from normal human cells
Schematic representation of the process for creation of organotypic reporter models from normal human cells. Normal cells are isolated 
from human explants (e.g., skin or lung) and kept in culture (shown in red). They are transduced with lentiviruses containing reporter 
constructs and an antibiotic resistance. The successfully transduced cells (shown in green) are selected with puromycin, expanded and 
cryopreserved for long-term storage. After recovery, cryopreserved cells are utilized for production of organotypic reporter models.
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assessment. Levels in between may include cellular changes 
and responses of tissues or organ systems. Before AOPs were 
defined, the related concept of mode-of-action (MoA) was in 
use for a long time. It also describes the chain of events, ex-
plaining how a chemical leads to functional effects on a higher 
level of complexity (cellular or organism level). In many cases, 
the term MoA is used to describe the initial parts of an AOP at 
a level of high biochemical resolution.

A MoA QSAR modeling approach may be useful to reflect 
mechanisms when constructing training sets and selecting 
model descriptors. The MoA QSAR approach includes the 
preparation of mechanistic training sets by identifying MoA 
categories that are linked to the phenotypic effects. MoA cat-
egories are defined based on chemical groups that initiate the 
molecular interactions in putative toxicity pathways and result 
in biological events that lead to phenotypic effects. The chemi-
cal groups that initiate this chain of events and therefore link 

Here we present an automated workflow algorithm devel-
oped and implemented to predict a molecule’s potential for 
skin irritancy (including severity grading). In vivo Draize lega-
cy data (OECD, 2002) have been used as learning and training 
data for the model. 

MoA QSAR modeling approach 
A theoretical framework to link initial interactions of a chemi-
cal with its target site to toxicologically relevant endpoints on 
the level of the organism or the population are the adverse out-
come pathways (AOP), defined initially in the field of ecotoxi-
cology (Ankley et al., 2010). The concept has been taken up 
by several authorities dealing more broadly with environmental 
and chemical risk assessment, and it is further elaborated and 
applied to case studies, for instance by the OECD. An AOP is 
identified by a causal linkage between a molecular initiating 
event (MIE) and in vivo endpoint of regulatory value for risk 

Fig. 6: Activation of EpiDerm-FT™ NFκB reporter by TNFα or Poly(I:C)
The human EpiDerm-FT™ skin model is shown as an example for reporter tissues. EpiDerm tissue was generated from cells containing 
reporter constructs for NFκB (green fluorescent protein expression under the control of NF-κB for microscopic assays; luciferase 
expression for quantitative biochemical assays). Control tissue (A) displayed typical cornified squamous epithelial morphology, and 
only the basal membrane showed a fluorescence signal (autofluorescence, B). After stimulation with 50 ng/ml TNFα for 48 h, tissue 
morphology appeared normal (C). Visualization of the reporter signal by fluorescence microscopy showed the activation of the NFκB 
reporter in TNFα treated tissue (D). (E) For quantitative assessment of EpiDerm-FT™ NFκB reporter activity, tissue was generated with 
fibroblasts (FB) containing reporter constructs, or with keratinocytes (KC) containing reporter constructs or with both cell types containing 
reporter constructs. The tissues were then stimulated either with TNFα or with the toll-like receptor agonist polyinosinic acid (Poly(I:C)). 
After 48 h, the tissue was harvested, homogenized and used for determination of luciferase (luc) activity.
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Modeling procedure
Molecular descriptors were used to relate aspects of chemi-
cal structures to biological responses. Structural features were 
represented as fingerprints from a fragment library of generic 
features, as well as structural alerts for skin irritation. Physi-
cochemical properties included calculated LogP (lipophilicity), 
water solubility, polarizability, polar surface area, and dipole 
moment. Further parameters that were used include molecu-
lar shape descriptors (e.g., diameter, moment of inertia) and 
surfactant-specific parameters, such as HLB (hydrophilic-li-
pophilic balance) and molecular packing factors (Israelachvili, 
1994). Based on the structural features and properties, in the 
first part of the approach, a binary classification of non-irritants 
vs. irritants was performed for each MoA group as well as the 
global dataset. This was done using a combination of partial 
least squares (PLS) and logistic regression. The probabilities of 
being an irritant were then combined from the different models 
into one overall outcome using a quantitative weight of evidence 
(WoE) approach. Each model is assigned a weight to optimize 
the prediction of the non-irritants during the training stage. 

where wi is the weight of each model and pi is the probability of 
being an irritant for a given chemical. The sensitivity was 95% 
and the specificity was 84%. 

biological event pathways to phenotypic effects are defined 
as chemical MoA categories. These are identified from indi-
vidual, highly resolved MoA pathways by aggregating several 
pathways into one category. The purpose of this “pooling” step 
was to build large groups of chemicals containing both posi-
tives and negatives in the training set. These chemical groups 
include surfactants, acids and bases (alkali and bleaches), or-
ganic solvents, and reactive groups. From a L’Oréal internal 
source and the ECETOC report (ECETOC, 1995), a collection 
of 269 chemical structures were selected as the global data-
set. This global set was then partitioned into individual MoA 
groups: alcohols (98 structures), alkenes (68), amines (50), 
carboxylic acids/esters (93), reactive groups (135), and sur-
factants (84) (Fig. 7).

Here the surfactant group is selected as an example and 
treated in detail. Surfactants can act in a number of ways, 
including the triggering of inflammation and/or cell death (De 
Jongh et al., 2006), altering signaling pathways (Torma and 
Berne, 2009), or enhancing the loss of barrier function by dis-
rupting lipid bilayer structures (Welss et al., 2004). While the 
former are widely studied by in vitro assays and gene/mRNA 
expressions, the membrane damaging can be investigated by 
applying colloid chemistry and in physico assays (Yang et al., 
2001). Surfactant molecules can disrupt lipid bilayers in two 
ways, and the purpose of these in physico assays is to develop 
descriptors to be used in our MoA modeling process.

Fig. 7: Distribution of skin irritation severity effects in the training set
Distribution of the severity of skin irritation in the training set according to L’Oréal criteria: non-irritant (87 structures), well tolerated (42), 
slight (45), moderate (68), and strong (8).
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dictates much of the ongoing preference for inbred animals in 
controlled laboratory environments as tools to understand hu-
man health and disease, both from “quality science” and ex-
perimental control perspectives. This approach largely neglects 
the problem of species differences (Olson et al., 2000; Hartung, 
2008), when the main purpose of toxicological research is the 
extrapolation to humans. In modern toxicological test systems, 
this issue is not fully resolved when conclusions for humans are 
drawn from zebra fish, drosophila, or cultures of non-human 
cells. The species extrapolations are made particularly difficult, 
as “man” is not one genetically defined entity. Large varia-
tions, relevant for toxicological and disease outcome, are being 
mapped by the ENCODE project, for instance. A different ap-
proach is taken by the example technology presented here: im-
proved pattern recognition in heterogeneous human data sets, 
in order to more sharply define human responses on a broad 
population level.

Variation issues associated with the data produced from human 
studies are a significant challenge in developing human models 
suitable as replacement alternatives for animals in biomedical, 

Next, irritant chemicals are further ranked for severity ef-
fects using ordinal partial least squares regression. The ap-
plicability domain of the model was evaluated based on both 
structural features and physicochemical properties used in the 
models (Fig. 8).

As part of L’Oréal’s integrated testing strategy, a workflow 
system (Fig. 9) was designed for easy and transparent access 
to the decision tree of structural alerts and MoA QSAR models 
for in vivo skin irritation.

7  Human variability: Solutions through the 
application of in silico pattern recognition and 
knowledge discovery methods to human data

Research undertaken with human subjects and samples suffers 
from large inter-individual variations, and therefore encour-
ages the view that the science is potentially of poorer quality 
since predictions emanating from such human research will be 
less reliable and repeatable. Therefore, the issue of variation 

Fig. 8: Decision tree for the MoA QSAR
The applicability domain of the model is evaluated based on both structural features and physicochemical properties used in the models. 
MoA: mode of action; WOE: weight of evidence.
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2002), so the application of machine learning has precedent in 
the medical knowledge domain. A decision tree is a data clas-
sification method generated by asking serial questions on the 
features associated with data items. This can be simple “yes or 
no” questions contained within a node, with each node compris-
ing a distinct yes or no outcome. From the top node (the root) 
a hierarchical path based on yes/no answers continues until a 
node without further outcomes (a “leaf”) is reached; a data item 
is thereafter assigned to this class (i.e., the terminal classifica-
tion outcome) (Kingsford and Salzberg, 2008). 

Also popular with in silico pattern recognition studies are 
SVM. SVM are very powerful for data classification and nov-
elty detection, and they can be used for regression modeling. 
SVM have the advantage of a simple input space for data entry, 
with analysis occurring in a high-dimension feature space (Φ) 
defined by a kernel function. The basis of modeling is the ker-
nel, the simplest example being the linear kernel, which repre-
sents the images of two data points (x, x´) in the high-dimension 
feature space (1):

(1) k(x, x´) = <Φ x), Φ (x´)> (Karatzoglou et al., 2006)
Depending on prior knowledge of the data (e.g., distribution, 

structure) and application, other kernel functions are available 
(Karatzoglou et al., 2006; Smola and Scholkopf, 2004).

The application of decision trees in tandem with SVMs is be-
ing developed to overcome the difficulty of human variability as 
a barrier to replacement alternatives for animal studies in bio-
medical research. This approach provides a pattern recognition 
tool for large multi-parameter (up to thirty predictor variables) 
data collections containing thousands of individual cases (i.e., 
patient results). Decision trees have the advantage of multiple 
decision boundaries that, when combined with SVMs, provide a 
powerful means to identify meaningful patterns in complex hu-
man health data, either prospectively or retrospectively, which 
can guide further investigations into a disease mechanism or 
toxic drug response.

toxicological, and other health research and investigations. Ad-
ditional impetus for considering alternatives to animals comes 
through an increasing focus on the unreliability of translation 
from some animal models to human disease, and thereafter the 
development of vaccines and therapeutics (Pound et al., 2004; 
Hackam and Redelmeier, 2006; Khanna and Burrows, 2011).

Human variability 
An advantage from modern medical and health systems is the 
generation of enormous volumes of data. Large data sets lend 
themselves to modern computational approaches, such as ma-
chine learning and sophisticated multi-dimensional statistical 
techniques that together comprise the bioinformatics field of 
pattern recognition. Machine learning methods, for example 
recursive partitioning (decision trees) and support vector ma-
chines (SVM), are particularly attractive, since algorithms like 
these can be trained to identify patterns in highly variable data 
associated with a response (e.g., test for a viral infection, drug 
side-effects), allowing more accurate predictions from com-
plex data in the subsequent testing phase. These techniques, 
borrowed from computer science and statistics and combined 
with access to vast human data sets, provide another avenue 
through which to approach biological variation and provide 
an alternative to mice with experimenter-defined genetics and 
living environment. In short, to overcome the diversity of hu-
man subjects that can confound interpretation, sophisticated 
in silico pattern recognition methods can identify data profiles 
for sub-populations represented by the predictor variables 
analyzed and based on a biological or toxicological response 
of interest.

Machine learning examples: Decision trees and support  
vector machines (SVM)
Decision trees have been applied to clinical decision-making 
involving diverse and complex patient data (Crowley et al., 

Fig. 9: Workflow implementation of “Skin Irritation Predictor”
Essential components of the system configured and aligned through a chemistry-aware pipelining technology. 
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when tethered to modern knowledge of human cell culture sys-
tems for mechanistic studies.

8  Conclusion

Each of the technical approaches and model systems presented 
here has been developed as a stand-alone method. Most have 
been developed for a specific purpose and to solve defined 
problems. Dozens, if not hundreds, of such technologies are al-
ready available, and only a few have been picked to exemplify 
the progress in the field. We have put forward the hypothesis 
here that added value may be generated by a combination of 
such approaches. The approach taken here may, at first glance, 
look different from or in competition with other new strategies. 
For instance, the ToxCast program, or different approaches that  
follow the “Tox21” vision take a different starting point. In  
their extreme form, they rid themselves of the old patchwork 

A pattern recognition system, using only human data, is cen-
tral to a new system that employs interaction of the wet labora-
tory for biological validation with computational pattern mod-
els and linkage to modern genetic analytical techniques and 
databases to further explore the basis of physiological clues 
detected in the in silico pattern recognition phase of investiga-
tions on aggregated pathology data (Fig. 10).

Natural variation in human genetics and environment need 
not be a barrier to fundamental biomedical research, toxicology 
studies, or any other aspect of human health research. With the 
massive accumulation of human data, whether through pathol-
ogy testing, social and psychological analyses, or epidemiol-
ogy, data analytic techniques borrowed from computer science 
and statistics make it possible to expose relevant and unique 
patterns within highly variable human populations. With such 
variation successfully harnessed and linked to biological vali-
dation strategies and sophisticated human genetic knowledge, 
viable alternatives to animal studies will emerge, particularly 

Fig. 10: Extraction of patterns from clinical/epidemiologic data despite large human variability
A strategy to overcome natural human variation based on in silico pattern recognition studies, linked to biological validation investigations 
as a replacement alternative for inbred animals in biomedical research and toxicology assessments. Further validation through genetic 
investigations also assists the identification of mechanisms that can be further explored by human cell 2D and 3D culture systems, such 
as those described elsewhere in this review. The individual phases of this strategy include (1) Data preparation and in silico pattern 
recognition modeling of complex bulk human data by data mining and machine learning, in tandem with biological validation of data 
patterns associated with a defined response (e.g., infection, drug toxicity); (2) Identification of data patterns associated with important 
physiological, cellular, or biochemical processes associated with disease or toxicity response, which will (3) guide the choice of gene 
expression chip/panel for deeper bioinformatics analysis and comparison; (4) Investigation of response mechanisms through human cell 
culture investigations, guided by findings from phase 3. Figure adapted from Lidbury et al. (2012).
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of different toxicological models, be they in vivo or in vitro 
(Hartung and BcBride, 2011; NRC, 2007; Leist et al., 2008a), 
and put forward a new homogeneous framework, based, for 
instance, on PoT and systems biology modeling. It is not yet 
clear, which role assays play that use endpoints that are toxico-
logically apparently simple but (systems-) biologically highly 
complex, e.g., cell death, neurite degeneration, or albumin se-
cretion.

Here we take an alternative approach to define an overall 
scaffold of what information would contribute to an animal-
free risk assessment. This scaffold is used to recruit a largely 
heterogeneous group of assays, providing information at dif-
ferent levels of complexity, with different throughput rates, 
and possibly with different information value. Combined in 
a scheme, these assays can fill knowledge gaps and improve 
the overall risk assessment of chemicals for which little is 
known. 

The framework suggested here is also suited to the incorpo-
ration of individual tests and in silico methods developed for 
Tox21, or even to incorporation of testing strategies at a higher 
level of integration, as shown by the Altamira example of skin 
irritancy modeling. Thus, this approach may represent a practi-
cal solution for high production volume risk assessment in the 
intermediate future, while many tests are still under develop-
ment and no complete test platform on the basis of PoT testing 
is available. The future will then bring higher throughput as-
says, better systems biology modeling, better integration of data 
from omics technologies, and better cell sources. For instance, 
we envisage that testing in non-transformed cell models, of 
murine (Sipes et al., 2011a) or preferentially of human origin, 
will require a further development of stem cell technology, to 
provide reliable cell sources (Leist et al., 2008c; Zimmer et al., 
2011a,b, 2012; Weng et al., 2012; Balmer et al., 2012). 
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