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perimental animals (IARC, 2016). Epidemiological studies have 
demonstrated a clear association between lifetime exposure to 
PM and lung cancer (Gharibvand et al., 2017; Hamra et al., 2014). 
This evidence is supported by strong mechanistic data, demon-
strating the induction of mutagenic and genotoxic effects in hu-
mans and experimental systems (IARC, 2016). Moreover, PM  
also can play a role in the non-genotoxic origin of cancer, 
through the induction of oxidative stress-sustained inflammation 
(IARC, 2016).

Difficulties in the risk assessment of human exposure to air pol-
lution arise due to knowledge gaps in identifying multiple compo-
nents of complex mixtures, the lack of toxicological information 
regarding their carcinogenic potential, and the limited approach 
to cumulative risk assessment from multiple exposures via mul-
tiple routes.

1  Introduction

Air pollution is known to increase the risk for a wide range of 
adverse health outcomes (Landrigan et al., 2018; WHO, 2016). 
Studies indicate that exposure levels have increased in recent 
years, particularly in rapidly industrializing countries (Landrigan 
et al., 2018). Management of risks associated with air pollution, 
however, remains challenging, even in countries where advanced 
technologies and environmental policies are in place (Colacci and 
Vaccari, 2017). 

In 2013, the International Agency for Research on Cancer 
(IARC) classified outdoor air pollution and particulate mat-
ter (PM) from outdoor air pollution as carcinogenic to humans 
(Group 1) (Loomis et al., 2013; IARC, 2016). This evaluation is 
based on sufficient evidence of carcinogenicity in humans and ex-
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Abstract
The use of in vitro alternative methods is a promising approach to characterize the hazardous properties of environmental 
chemical mixtures, including urban airborne particulate matter (PM). The aim of this study was to examine seasonal  
differences in the toxic and transforming potential of PM samples by using the in vitro cell transformation assay in Bhas 42 
cells for the prediction of potential carcinogenic effects. Bhas 42 cells are already initiated, and the v-Ha-ras transfection, 
together with genetic modification following the immortalization process, makes them a valuable model to study the late 
steps of cellular transformation leading to the acquisition of the malignant phenotype. Exposure to organic extracts of 
PM1 and PM2.5 induced dose-related effects. The transforming and cytotoxic properties were related to the amount of 
PM collected during the sampling campaign and associated with the concentrations of polycyclic aromatic hydrocarbons 
(PAHs) in the samples. All the samples induced cell transformation following prolonged exposure over 2 weeks. Our 
results support the utility of the in vitro top-down approach to characterize the toxicity of real mixtures, thereby supporting 
regulators in the decision-making process. The results also identify the need for appropriate assay selection within the in 
vitro testing strategy to address the complexity of adverse outcomes.

This is an Open Access article distributed under the terms of the Creative Commons 
Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution and reproduction in any medium, provi-
ded the original work is appropriately cited. 

https://doi.org/10.14573/altex.1812173
mailto:annamaria.colacci@unibo.it
http://creativecommons.org/licenses/by/4.0/


Serra et al.

ALTEX 36(4), 2019       624

not suitable as a stand-alone assay to predict carcinogenesis, it can 
be utilized together with other relevant in vitro assays and exper-
imental results, also including genotoxicity data, structure-activ-
ity analysis, and pharmaco-toxicokinetic information, as part of 
a testing strategy and/or in a weight-of-evidence mode of action 
approach, particularly for the endpoint related to morphological 
transformation (Jacobs et al., 2016).

Among the CTA models, the Bhas 42 CTA has been proposed 
as a sensitive, short-term system for predicting chemical carcino-
genicity. Bhas 42 cells were derived from the mouse embryo fi-
broblast cell line BALB/c 3T3 A31-1-1 by transfection with a 
plasmid containing the v-Ha-ras gene (Sasaki et al., 1988, 1990a; 
Uchio-Yamada et al., 2017). Bhas 42 cells have recently been cor-
rectly identified as originating from Swiss mouse cells (Sasaki 
et al., 1988; Uchio-Yamada et al., 2017; OECD, 2017). After the 
v-Ha-Ras transfection, these cells retain some characteristics of 
the original clone, such as the sensitivity to contact inhibition and 
the susceptibility to chemically-induced transformation. After ex-
posure to carcinogenic agents, they form transformed foci, arising 
from morphologically altered cells, which acquire the ability to 
invade the surrounding non-transformed contact-inhibited mono-
layer (Sasaki et al., 1988). Untransformed Bhas-42 cells are not 
tumorigenic upon transplantation in vivo and grow to confluence, 
forming a contact-inhibited monolayer, in vitro.

Since Bhas 42 cells are transfected with and express the activat-
ed v-Ha-ras oncogene, they are regarded as already initiated cells, 
according to the two-stage paradigm of genotoxic carcinogene-
sis (Sasaki et al., 1990a, 2015). However, the proposed Bhas 42 
CTA protocol includes both an “initiation” assay and a “promo-
tion” assay, which can be performed independently (Sakai et al., 
2010, 2011). The main differences between the two assays are the 
number of plated cells and the treatment schedule (Tab. S11). In 
the “initiation” assay, the cells are inoculated at a low density and 
treated with the test chemical for a short time period (from Day  
1 to 4 after plating) at the beginning of the growth phase (acute 
exposure). During this period, the cells undergo several cell di-
visions before reaching confluence, increasing the likelihood that 
any DNA damage would escape repair and become fixed with-
in the cell. It is also possible that cell division can increase tran-
scription-coupled repair, which may not be active in quiescent 
cells. In the “promotion” assay, the cells are seeded at a higher 
density than in the “initiation” assay; the treatment is started at 
sub-confluence and continued during the stationary phase for a 
longer time period (from Day 4 to 14 after plating), mimicking a 
late and repeated exposure. Thus, the Bhas-42 “initiation/promo-
tion assay” does not completely reflect the initiation/promotion 
stages in the multistep process of human carcinogenesis or the 
initiation/promotion scheme in the experimental animal models. 
However, this is how the Bhas 42 “initiation/promotion assay” is 

Environmental samples are characterized by the simultaneous 
presence of a large number of pollutants, showing different mech-
anisms of action and toxicity profiles. The concentration of the sin-
gle components in the mixture varies according to the emission 
sources and the site of sampling. Besides carcinogenic chemicals, 
mixtures may contain chemicals that are not classified as carcino-
gens but affect biological pathways relevant to the carcinogenesis 
process, resulting in carcinogenic synergies (Goodson et al., 2015). 

In the global regulatory context, the carcinogenic potential of 
chemicals is conventionally explored using the 2-year rodent car-
cinogenicity bioassay (RCB) in an approach that is usually lim-
ited to single chemicals, particularly pesticides. Other industri-
al chemicals are rarely tested in the RCB (Jacobs et al., 2016). 
Currently, several in vitro tests addressing key events related to 
the carcinogenesis process are at different stages of development 
(validation) and regulatory acceptance. To date, however, they 
can only partially replace animal tests used to evaluate the haz-
ard of substances (Corvi et al., 2017). Whilst the Organisation for 
Economic Co-operation and Development (OECD) Test Guide-
line Programme has agreed that validated in vitro test methods 
can be used for chemical mixtures, such mixtures are generally 
not used in validation exercises. 

The in vitro cell transformation assay (CTA) appears to be one 
of the most promising approaches to predict the carcinogenic haz-
ard of chemicals, complex mixtures, and environmental pollut-
ants (Lilienblum et al., 2008; Mascolo et al., 2010; Corvi and Van-
parys, 2012; Vasseur and Lasne, 2012; Corvi et al., 2017). The 
CTA is one of the accepted methods for the evaluation of toxi-
cological properties of chemicals under the Registration, Eval-
uation, Authorisation and Restriction of Chemical Substances 
(REACH) Regulation (EU, 2008). It measures the morphologi-
cal transformation of cells as transformed colonies or foci derived 
from a single cell. It is understood to involve a multistage pro-
cess that closely models some key stages of in vivo carcinogenesis 
(Vanparys et al., 2012; Vasseur and Lasne, 2012).

Various types of CTAs have been developed and are in use. The 
Syrian hamster embryo (SHE) CTA uses primary cells. Other com-
mon CTAs, such as C3H10T1/2, BALB/c 3T3, and Bhas 42 CTAs, 
are based on the use of established cell lines. The international val-
idation studies carried out on CTAs suggest that these assays can 
be considered as scientifically valid for assessing the carcinogenic 
potential of hazardous compounds (Corvi et al., 2012; Sakai et al., 
2011) and may provide suitable alternatives to the RCB when used 
in conjunction with other test methods (Vanparys et al., 2011). 

In 2007, the OECD proposed to use the CTA as a second-lev-
el screening tool for carcinogens and as a screening test of choice 
for non-genotoxic carcinogens, which are not detected in the stan-
dard regulatory “mutagenicity assays” (UN, 2017; OECD, 2017). 
Whilst it has since been concluded by the OECD that the CTA is 
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incorrectly described in the Bhas 42 CTA OECD Guidance Docu-
ment (OECD, 2017). Therefore, we will use the more appropriate 
descriptive terms “acute exposure assay” and “late repeated ex-
posure assay” instead of “initiation assay” or “promotion assay” 
throughout this paper.

 Although the Bhas 42 CTA was validated using single chem-
icals (Sakai et al., 2011), the test method is technically applica-
ble to mixtures and has been used to investigate the transforming  
effects of cigarette smoke condensate (Weisensee et al., 2013; 
Han et al., 2016) and PM extracts (Ohmori et al., 2013). Indeed, 
the original source of Bhas 42 cells, BALB/c A31-1-1, can sustain 
the metabolism of PAH to carcinogenic intermediates (Kakunaga 
and Crow, 1980; Lo and Kakunaga, 1982). 

In the present study, the Bhas 42 CTA was performed to high-
light the toxic and carcinogenic potential of urban airborne partic-
ulate matter samples (PM1 and PM2.5) collected during different 
seasons at a site located in the north of Bologna, Italy. The PM  
organic extracts were analyzed with the aim of confirming the 
suitability of the Bhas 42 CTA for testing complex mixtures.

2  Material and methods

2.1  Cells 
The Bhas 42 cell line was purchased from the Hatano Research 
Institute (HRI) (Hadano, Japan). Cells were expanded in Mini-
mum Essential Medium (MEM) supplemented with 10% fetal 
bovine serum (FBS) and 1% 100x penicillin/streptomycin solu-
tion (M10F), and cryopreserved in MEM 10% FBS solution con-
taining 5% dimethylsulfoxide (DMSO). Cells at passage 2 after 
thawing were used for the CTAs. Frozen Bhas 42 cells were rap-
idly thawed and cultured in M10F up to about 70% confluence 
and then cultured in Dulbecco’s modified Eagle’s medium/Ham’s 
F12 supplemented with 100 units/ml of penicillin, 100 µg/ml of 
streptomycin, and 5% FBS (DF5F) to let cells reach about 70% 
confluence again, before seeding them for the CTA.

2.2  Collection, preparation, and characterization  
of PM samples
The PM2.5 fraction was collected using the high-volume air flow 
sampler Air Flow PM2.5-HVS (UNI-EN 14907 compliant, suc-
tion flow 500 l/min, Air Monitoring Systems-Analitica, Pesaro, 
Italy). The PM1 samples were collected using Air Flow poly-

urethane foam (PUF) (suction flow 200 l/min, Air Monitoring 
Systems-Analitica, Pesaro, Italy), which could simultaneously 
collect the gas fraction (using PUF-polyurethane foam). Each 
filter was weighed daily before and after PM collection, in or-
der to obtain gravimetric data. All filters from each season were 
pooled to obtain a single sample that was representative of the 
season. In order to obtain the organic fraction, each pooled sam-
ple was extracted with acetone using a Soxhlet apparatus. It was 
then dried and dissolved in sterile DMSO (CAS number 67-68-
5) at 800 m3 equivalents/ml. 

Aliquots of the organic extracts were analyzed as previously 
described (Bocchi et al., 2016). Briefly, acetone extracts were pu-
rified by solvent elution using solid-phase extraction cartridges 
packed with silica gel adsorbent. PAHs and nitro-PAHs (NPAHs) 
eluted together in the dichloromethane/hexane (1:1) fraction. 
PAHs were identified and quantified by the Thermo Scientific 
DFS™ Magnetic Sector GC-HRMS system. Deuterated PAH 
standards were used for quantification. Measurements of NPAHs 
were carried out by high resolution gas chromatography inter-
faced to a mass spectrometer triple quadrupole at low resolution 
(HRGC/GC/MS/MS). The quantitative analysis was performed 
on the basis of an external calibration using a mixture of refer-
ence standards.

A brief description of the PM samples is reported in Table 1. 
The complete list of the compounds detected and measured in the 
analyzed extracts is reported in Table S21. 

2.3  Rationale for dose selection and dosing regime
PM1 and PM2.5 samples were collected at an urban site in Re-
gion Emilia Romagna, Italy (WGS84, longitude 44.524, latitude 
11.34) during two different monitoring campaigns performed in 
autumn (October 23 - November 12, 2012) and summer (May 
6 - May 28, 2013). The PM organic extracts were tested in the  
Bhas 42 CTA according to the validated protocol (OECD, 2017). 
The experimental design is sketched in Figure 1. 

Due to the limited amount of PM extracts, dose-range finding 
cytotoxicity assays were not performed, but prior experimen-
tal knowledge was used to guide dose selection (Vaccari et al., 
2015). Cells were treated with concentrations selected to corre-
spond to a volume of air ranging from 2 m3 to 8 m3, as this is 
representative of realistic exposures during human outside activ-
ity, calculated on the basis of standard US Environmental Pro-
tection Agency guidance regarding the daily average inhalation 

Tab. 1: Description of PM samples  
PAHs were identified and quantified by the Thermo Scientific DFS TM Magnetic Sector GC-HRMS system. Deuterated PAH standards 
were used for quantification. The measurements of NPAHs were carried out by high resolution gas chromatography interfaced to a mass 
spectrometer triple quadrupole at low resolution (HRGC/GC/MS/MS). The quantitative analysis was performed with an external calibration, 
using a mixture of reference standards. 

	 Autumn 2012		  Summer 2013

 	 PM1	 PM2.5	 PM1	 PM2.5

PM [µg/m3]	 19.86	 27.27	 7.24	 9.47

Σ PAH + Σ NPAH* [ng/m3]	 3.87	 3.89	 0.27	 0.26

* total amount of PAHs and nitro-PAHs measured in the PM organic extracts
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For cell growth evaluation, cells were fixed with 10% formalin 
and stained with 0.1% crystal violet on Day 7. Then the dye was 
extracted and optical density (OD) was measured at 540-570 nm. 
The relative cell growth was calculated as relative cell growth 
(%) = [(treatment – blank)/(control – blank)] x 100.

Schedule 2 – Late repeated exposure assay 
Cells were plated at a density of 14 x 103 cells/well and cultured 
for 4 days without replacing medium. On Days 4, 7, and 10, treat-
ment solutions in DF5F were delivered. The treatment was contin-
ued until Day 14. Cells were then maintained in DF5F until Day 
21. Solvent-treated controls were represented by DMSO-treated 
cells. TPA (tetradecanoylphorbol-13-acetate, CAS number 16561-
29-8, 50 ng/ml) served as the positive control. The concurrent cell 
growth assay plates were fixed and stained on Day 7.

Counting of transformed foci and statistical analysis
Foci were classified as fully malignant type III foci when more 
than 100 cells contributed to the formation of the focus and cells 
showed the following morphological characteristics: (a) spin-
dle-shaped morphology that is distinctly different from the con-
tact-inhibited monolayer cells; (b) deeply basophilic staining;  
(c) random orientation; (d) dense multilayering; (e) invasion of 
the monolayer of surrounding contact-inhibited cells. The num-
ber of type III foci in each well was recorded. 

rates for long-term exposure of the general population (US-EPA, 
2011), where ranges are from maximal exposure (adults during 
8h of outside activity, 95% percentile) to minimal exposure (1-3  
month old children). In order to highlight the seasonal differ-
ences between realistic exposures, the experimental assay treat-
ments were carried out using equal volumetric concentrations of 
air (m3) for all the samples, even if the amount of PM differed. 
The working solutions for the cell treatment were prepared by 
diluting the DMSO stock solutions in DF5F immediately before 
use, at final concentrations ranging from 2 m3 to 8 m3 equiva-
lents/well in 6-well microplates (1- 4 m3 equivalents/ml). The  
final concentration of the solvent vehicle DMSO was 0.5%.

2.4  Cell transformation assay 
Schedule 1 – Acute exposure assay 
Cells were seeded at 4 x 103 cells/well (Day 0). Cell treatment 
started 24 h later (Day 1) and continued for 72 h. DF5F medium 
was replaced on Days 4, 7, 10, and 14. On Day 21, cells were fixed 
with methanol and stained with 5% Giemsa solution. Nine wells 
were prepared for each concentration, of which 6 wells were re-
served for the transformation assay, and three for the cell growth 
assay. Negative controls were represented by DMSO-treated 
cells (vehicle/solvent controls). 3-Methylcholanthrene (3-MCA, 
CAS number 56-49-5, 1 µg/ml) served as the positive control, as 
prescribed in the CTA protocol (OECD, 2017).

Fig. 1: Experimental design
PM1 and PM2.5 samples were collected at 
an urban site during two different campaigns 
performed in autumn 2012 and summer 
2013. The PM2.5 fraction was collected by 
a high-volume air flow sampler, Air Flow 
PM2.5-HVS (UNI-EN 14907 compliant, 
suction flow 500 l/min). The PM1 samples 
were collected by Air Flow polyurethane 
foam (PUF) (suction flow 200 l/min), which 
could simultaneously collect the gas fraction 
(using PUF-polyurethane foam). Each filter 
was weighed daily before and after PM 
collection. All the filters from each season 
were pooled to obtain a single sample, 
which was representative of the season. In 
order to obtain the organic fraction, each 
pooled sample was extracted with acetone 
using a Soxhlet apparatus. It was then dried 
and dissolved in DMSO at 800 m3  
equivalents/ml. Organic extracts were 
purified by solvent elution using solid-phase 
extraction cartridges packed with silica gel 
adsorbent. PAHs and nitro-PAHs (NPAHs) 
eluted together in the dichloromethane/
hexane (1:1) fraction. The analytes were 
identified and quantified. The PM organic 
extracts were tested in the Bhas 42 CTA. 
Cells were treated for 72 h (acute exposure) 
or 10 days (late repeated exposure). 
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The statistical analysis was performed by multiple compar-
isons using the one-sided Dunnett test (p < 0.05). The results 
from the Bhas 42 cell transformation assays were judged posi-
tive when there were two or more sequential concentrations that 
induced statistically significant increases in the number of trans-
formed foci, and negative when there was no statistically signif-
icant increase of transformed foci at any of the tested concen-
trations.

3  Results

3.1  Evaluation of cytotoxicity of PM1 and PM2.5 
The acute treatment with PM1 or PM2.5 organic extracts derived 
from the autumn campaign induced a concentration-related cyto-
toxic effect. The reduction in cell viability was about 50% at the 
highest concentrations (6 m3/well and 8 m3/well) (Fig. 2). The 
late repeated exposure assay was conducted only for the PM2.5 
autumn extract. No cytotoxic effects were observed at the end of 
the treatment period, even at the highest applied concentration. 

The lower content of PM1 and PM2.5 summer extracts (Tab. 1) 
did not induce cytotoxic effects in either the acute or the late re-
peated exposure assay (Tab. S31, Fig. 2). 

 The observed toxicity was related to the tested sample and was 
mainly associated with the season of sampling (Fig. 2). This as-
sociation was confirmed by comparison of the results from the 
cell growth assay with the amount of particulate (PM, µg/well), 
or the total amount of PAHs and nitro-PAHs (∑PAHs + ∑NPAHs, 
ng/well) corresponding to the m3-equivalents present in the treat-
ment solutions (Fig. 3). 

Fig. 2: Cytotoxic effects induced by organic extracts of PM1 
and PM2.5 (m3/well) in the acute exposure assay 
Cells were seeded at 4 x 103 cells/well (Day 0), incubated for  
24 h, and then exposed to the PM2.5 and PM1 organic extracts at 
concentrations ranging from 2 to 8 m3 equivalent/well (1-4 m3/ml). 
Three wells were prepared for each treatment group. The exposure 
duration lasted 72 h. On Day 4, the medium containing the test 
chemical was replaced with fresh DF5F medium. On Day 7, cells 
were fixed with 10% formalin and stained with a 0.1% crystal violet 
solution for 15 min. The dye was extracted from the stained  
cells with 2 ml of dye extraction solution (containing 0.02 mol/l HCl  
and 50% ethanol). Cytotoxicity was determined by measuring  
the OD at 540-570 nm. SD, standard deviation; *, p < 0.05 vs 
controls (solvent-treated cells); one-sided Dunnett test. 

Fig. 3: Relationships between 
cytotoxic effects and the total 
amount of PM or PAHs and NPAHs 
present in each treatment extract
Cells were treated with 2-8 m3/well  
of PM extracts for 72 h (acute 
exposure assay, Schedule 1).  
A, B = PM (µg/well); C, D= Σ PAHs 
+ Σ NPAHs (ng/well); A, C = PM1 
extracts; B, D = PM2.5 extracts. Data 
are expressed as cell growth (% vs 
solvent control) ±SD.
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The increase in cell transformation induced by the autumn 
PM extracts was directly related to the amount of PM collect-
ed during the sampling campaign (Fig. 5A,C). Moreover, the in-
crease of transformed foci induced by the autumn samples was 
associated with the overall amount of PAHs and NPAHs (ΣPAHs 
+ ΣNPAHs) measured in the extracts (Fig. 5A,C). 

When cells were treated with the summer samples according to 
the acute exposure schedule, concentrations of PM in either PM1 
and PM2.5 up to 80 µg/well did not induce cell transformation. 
However, the late repeated administration of the summer sam-
ples significantly enhanced the onset of type III foci (Fig. 5B,D) 
in both PM1 and PM2.5.               

4  Discussion

For environmental monitoring, the evaluation of hazard and the 
prediction of the health risks associated with complex mixtures 
of pollutants usually rely on the measured concentrations of sin-
gle components of the mixture, in order to ensure that the legal 

3.2  Evaluation of the transforming potential  
of PM1 and PM2.5 
The detailed results of the CTAs are reported in Table S31. Un-
treated cells (negative controls) and solvent controls did not show 
formation of type III foci. The positive control 3-MCA (1 µg/ml) 
induced a statistically significant increase in the number of trans-
formed foci, thus ensuring the validity of the study (Tab. S31). 

In the acute exposure assay with the autumn samples, the foci 
number increased linearly with the tested concentrations (p < 0.05,  
Dunnett test) (Fig. 4A,B). The late repeated exposure assay was 
conducted only for the PM2.5 autumn extract. A significant and 
concentration-dependent increase of transformed foci was in-
duced at concentrations of 4, 6, and 8 m3/well (p < 0.05, Dunnett 
test) (Fig. 4D).

In the acute exposure assay performed with the summer ex-
tracts, no statistically significant increase of transformed foci was 
observed (Fig. 4A,B). In the late repeated exposure assay, the 
number of transformed foci increased concentration-dependent-
ly after repeated treatment with both PM1 and PM2.5 summer ex-
tracts at doses 4, 6, and 8 m3/well (p < 0.05) (Fig. 3C,D).

Fig. 4: Graphic representation of data from the transformation assays and the concurrent cell growth assays 
In the acute exposure assays, the cells were inoculated at a low density (4 x 103 cells/well, Day 0) and treated with the test chemical for 
a short period (from Day 1 to 4 after plating) at the beginning of the growth phase. In the late repeated exposure assays, the cells were 
seeded at high density (14 x 103 cells/well, Day 0); the treatment is started at sub-confluence (Day 4) and continued during the stationary 
phase for a longer period (from Day 4 to 14 after plating). A, C = PM1; B, D = PM2.5. A, B = Acute exposure assay, Schedule 1; C, D = late 
repeated exposure assay, Schedule 2. Dashed line = cell growth assay; data are expressed as cell growth (% vs solvent control) ±SD. 
Straight line = CTA; data are expressed as mean number of type III foci/plate ±SD; *, p < 0.05; one-sided Dunnett test.
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chemical mixtures to support regulators in the decision-making 
process. 

Most of the current validated in vitro assays are able to identi-
fy genotoxic chemicals but fail to recognize non-genotoxic car-
cinogenic compounds. Even though the CTA cannot be used as a 
stand-alone test for predicting carcinogenesis, it can address both 
genotoxic and some non-genotoxic carcinogenic modes of ac-
tion. CTA models already have been successfully used to analyze 
complex mixtures and environmental contaminants (Vanparys et 
al., 2012; Corvi et al., 2012; Vasseur and Lasne, 2012)

In a previous study, we evaluated the transforming potential of 
PM2.5 by using the BALB/c 3T3 CTA in combination with tran-
scriptomics (Vaccari et al., 2015). This approach allows the iden-
tification of pathway-based toxicity profiles, which are associated 
with exposure to PM2.5 organic extracts, providing mechanistic 
information and highlighting the early key events in the path-
way that lead to malignant transformation. Indeed, analysis of 
the modulated KEGG pathways suggested the induction of ear-
ly events in the multistep process, leading to cellular transforma-
tion, including p53 and MAPK signaling pathway and the T-cell 

limit of each hazardous chemical is not exceeded. This approach 
has several limitations due to the presence in the mixtures of un-
known chemicals and the lack of information concerning the pos-
sible interactions among components that may modify the toxico-
logical outcome. In vivo testing of mixtures is not a feasible solu-
tion to address regulatory needs, not least due to the feasibility 
constraints to performing such resource-demanding assays for all 
possible mixture combinations. 

The need to identify simple, fast, and robust hazard assessment 
tools for unknown pollutant matrices and for UVCBs (substanc-
es of unknown or variable composition, complex reaction prod-
ucts or biological materials) is acknowledged by regulatory au-
thorities and industry. For example, in Europe UVCBs require 
regulation under REACH and Classification, Labeling and Pack-
aging (CLP) Regulations by the European Chemicals Agency 
(ECHA). Therefore, the study reported here will have potential 
applications in characterizing the propensity of UVCBs to trig-
ger promotion of carcinogenesis, and so can fill a key in vitro as-
say endpoint gap to provide carcinogenicity-relevant toxicologi-
cal information regarding environmental pollutants and industrial 

Fig. 5: Relationships between the number of type III foci and the total amount of PM or PAHs and NPAHs present in each 
treatment extract
A, B = PM (µg/well); C, D = Σ PAHs + Σ NPAHs (ng/well). Straight line = acute exposure assay, Schedule 1. Dashed line = late repeated 
exposure assay, Schedule 2. Data are expressed as mean number of type III foci/plate ±SD. *, p < 0.05; one-sided Dunnett test 
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pyrene have been recently included in IARC Group 2A (IARC, 
2013b). NPAHs were present in PM extracts at very low concen-
trations, often below the limit of detection. Only 1-nitropyrene 
was detected in the autumn PM samples. The samples were test-
ed for mutagenicity and genotoxicity, giving inconclusive results, 
according to the UN Globally Harmonised System for classifica-
tion and labelling of chemicals (GHS) criteria for mutagenicity 
classification (Bocchi et al., 2016; UN, 2017).

Here we have demonstrated that in the Bhas 42 CTA the trans-
forming potential of the tested PM extracts is related to the overall 
amounts of PAHs and NPAHs (ΣPAHs + ΣNPAHs) that were mea-
sured in the extracts (Fig. 5). Several PAHs have been reported 
to be effective in the Bhas 42 CTA as single chemicals (Tab. S41) 
(Sakai et al., 2010, 2011; Tanaka et al., 2009; Asada et al., 2005; 
Misaki et al., 2016). Our results suggest that the adverse effects 
induced in Bhas 42 cells by a mixture containing PAHs could be 
the consequence of complex interactions among PAHs, duration 
of exposure, and variable activation of multiple mechanisms of 
action (Mascolo et al., 2018), which may be greater than the sum 
of the effects elicited by single chemicals. Indeed, the transform-
ing properties of the tested samples were much higher than those 
of single chemicals. However, the possible presence of unidenti-
fied compounds, which could also contribute to the overall trans-
forming activity of the analyzed mixtures, cannot be excluded. 

In the experimental carcinogenesis models, the initiation/pro-
motion process is conventionally represented by the application 
of subtransforming concentrations of a genotoxic chemical that 
are able to initiate the cells but not to sustain the tumor growth, 
followed by the chronic administration of a non-genotoxic chem-
ical to promote the proliferation of initiated cells. In the Bhas 42 
CTA protocol, only the promoting effects are highlighted by the 
chronic application of the tested chemical. This treatment would 
be sufficient to yield the foci formation from initiated cells in the 
cell population. Our results appear to provide confirmatory evi-
dence regarding the initiated state of Bhas 42 cells (Sasaki et al., 
2015). Indeed, the number of malignant foci at each concentra-
tion in the late repeated treatment schedule was double the num-
ber of foci obtained by treating the cells with the autumn samples 
according to the acute exposure protocol, suggesting that the pro-
longed treatment is able to select a significant number of already 
initiated cells, promoting the growth of malignant foci. The cel-
lular transformation after a single chemical treatment in the acute 
exposure schedule may be due to the presence of multiple cop-
ies of the v-Ha-ras gene, which makes Bhas 42 cells prone to ac-
quire a fully malignant phenotype. It may also be responsible for 
the high sensitivity of this assay to the chemical treatment and the 
short latency period preceding the expression of the transformed 
phenotype (Sasaki et al., 2015; OECD, 2017).

The Bhas 42 cell line is directed toward transformation by the 
transfection of the v-Ha-ras oncogene into the parental cell line 
(Sasaki et al., 1988, 1990b). The Ras family comprises three dis-
tinct genes (N-Ras, K-Ras, and H-Ras) and four distinct proteins. 
Whilst the expression of Ras wild-type isoforms varies depend-
ing on the cell lineage, tissue, or developmental stage, all three 
isoforms are regularly expressed in mouse and human tissues  
(Castellano and Santos, 2011). Wild-type isoforms play a role in 
different functions in a complex network of signaling pathways 

receptor mediated pathway, all playing a central role in inflam-
mation and apoptosis-mediated steps leading to cancer (Vacca-
ri et al., 2015). However, the organic extracts of PM2.5 failed to 
induce cell transformation in the 3T3 CTA. The concentration of 
pollutants in the mixtures and the time of exposure were probably 
sufficient to highlight toxic effects, but not to achieve oncotrans-
formation in the 3T3 model (Vaccari et al., 2015). 

In this study, we applied an in vitro top-down approach us-
ing the Bhas 42 CTA to highlight the overall toxicity of the envi-
ronmental samples as well as their ability to induce in vitro cell 
transformation. Airborne PM2.5 and PM1 samples were collect-
ed at a site that is regarded as representative of the urban back-
ground of a city located in the southeast of the Po valley in Ita-
ly. This region is considered one of the most polluted areas in the 
European Union, with peak levels during winter that often exceed 
European air quality standards. The high concentrations of PM 
are the result of the high level of anthropogenic emissions com-
bined with stagnant meteorological conditions, such as thermal 
inversion, which typically occurs in the cold season and leads to 
the local accumulation of air pollutants.

The effects of PM samples were evaluated in both an acute 
and a repeated exposure schedule in the Bhas 42 CTA model. 
Transforming and cytotoxic properties were related to the high-
er content of PM in the autumn samples and strictly associated 
with the concentrations of PAHs (Fig. 3, 4). A clear concentra-
tion-response relationship was observed for both cytotoxic and 
transforming effects. However, it should be noted that, according 
to the validated protocol, the cytotoxicity assay was performed 
on proliferating cells in the acute exposure schedule and on qui-
escent cells in the late repeated exposure schedule. Cytotoxic-
ity is an important parameter and confounder in the evaluation 
of the effects of chemicals in in vitro assays (Riss and Moravec, 
2004; Judson et al., 2016; OECD, 2018) as well as in the possi-
ble mechanisms leading to cell transformation as a consequence 
of cell proliferation, in response to chemical toxicity (Jacobs et 
al., 2016). Therefore, the observed effects may be the result of 
a different response to the intrinsic toxicity of the treatment. No 
differences were observed that could be attributed to the different 
aerodynamic diameter of the collected PM. 

The association between adverse health outcomes, including 
cancer, respiratory and cardiovascular diseases, and the exposure 
to complex mixtures containing pollutants, such as PAHs and 
NPAHs, has been deeply explored (IARC, 2010, 2013a,b; Pope 
et al., 2002; WHO, 2016). Several PAHs as well as PAH mixtures 
have been classified as possible or probable human carcinogens 
by IARC (IARC, 2010). Individual PAHs show a large variability 
in their carcinogenic potency. The co-presence of PAHs in binary 
chemical mixtures can result in more than additive effects at low 
and very low doses, whereas high doses exhibit an additive be-
havior (IARC, 2010). 

The PM extracts were characterized with regard to their PAH 
and NPAH content (Tab. S21). They contained, among oth-
ers, PAHs that are classified by IARC as Group 1 “Carcinogen-
ic to humans” such as benzo[a]pyrene (IARC, 2012), as well as 
Group 2A “Probably carcinogenic to humans” such as cyclopen-
ta[cd]pyrene, dibenz[a,h]anthracene, dibenzo[a,l]pyrene (IARC, 
2010). Also, the nitro derivatives 6-nitrochrysene and 1-nitro-
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ity of the experimental results. The integrative use of in vitro as-
says targeting different endpoints, such as morphological trans-
formation, also combined with omics-based approaches (Masco-
lo et al., 2018), could further help to enhance the accuracy of the 
evaluation of the carcinogenic potential of chemical mixtures, ul-
timately leading to the development of more targeted strategies 
in the mitigation and regulation of environmental airborne pol-
lution.
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