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Abstract

This paper studies the robust exponential hedging in a Brownian factor model, giving a

solvable example using a PDE argument. The dual problem is reduced to a standard stochastic

control problem, of which the HJB equation admits a classical solution. The optimal strategy

will be expressed in terms of the solution to the HJB equation.
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1. Introduction

This paper aims to provide a solvable example for the
robust exponential hedging problem studied by [1]:

minimize sup
P∈P

EP [e−α(θ·ST −H)], over θ ∈ Θ. (1)

Here S is a d-dim. càdlàg locally bounded semimartin-
gale on a filtered probability space (Ω,F , (Ft)t∈[0,T ], R),
P is a convex set of probability measures absolutely con-
tinuous w.r.t. R, H is a random variable and Θ is a set of
admissible integrands for S. The set P is a mathematical
expression of model uncertainty, and (1) is equivalent to
the maximization of the robust exponential utility from
the net terminal wealth for the seller of the claim H.

The problem (1) is solved via its dual:

minimize H(Q|P )−αEQ[H], over (Q,P ) ∈ Qf ×P,
(2)

where H( · | ·) denotes the relative entropy, and Qf is the
set of R-absolutely continuous local martingale measures
for S, having finite relative entropy with some P ∈ P.

Assume:

(A1) {dP/dR : P ∈ P} is weakly compact in L1(R).

(A2) Qe
f (S) := {Q ∈ Qf : Q ∼ R} 6= ∅.

(A3) {eα|H|dP/dR : P ∈ P} is uniformly integrable and
supP∈P EP [e(α+ε)|H|] < ∞, for some ε > 0.

Under (A1)–(A3), [1] shows that the dual problem (2)

of (1) admits a solution (Q̂H , P̂H) ∈ Qf × P which is

maximal in that if (Q̃, P̃ ) ∈ Qf ×P is another solution,

then P̃ ≪ P̂H and dQ̃/dP̃ = dQ̂H/dP̂H , P̃ -a.s. This
solution has a kind of martingale representation:

dQ̂H

dP̂H

= ĉ · e−α(θ̂·ST −H), Q̂H -a.s., (3)

where ĉ is a constant, and θ̂ is a predictable (S, Q̂H)-

integrable process such that θ̂ · S is a Q̂H -martingale.
Finally, if we assume additionally:

(A4) Q̂H ∼ R,

the strategy θ̂ is shown to be optimal for (1) with the
admissible class ΘH defined as the set of all (S,R)-
integrable predictable processes θ such that θ · S is a
martingale under all Q ∈ Qf with H(Q|P̂H) < ∞.

In the sequel, we investigate this problem in a specific
setting for which the optimal strategy θ̂ is explicitely rep-
resented, using a standard stochastic control technique.

2. Main results

This section states the main results of this paper. All
proofs are collected in Section 4.

2.1 Setup

Let W = (W 1,W 2) be a 2-dimensional R-Brownian
motion, (Ft)t∈[0,T ] be its augmented natural filtration.
Suppose that the price process S is given by the SDE:

{
dSt = St(b(Yt)dt + σ(Yt)dW 1

t ),

dYt = g(Yt)dt + ρdW 1
t + ρ̄dW 2

t ,
(4)

where ρ ∈ [−1, 1] and ρ̄ =
√

1 − ρ2. The set P of can-
didate models is given as follows. Let C be a convex
compact subset of R

2 containing the origin, and IP be
the set of 2-dimensional predictable C-valued processes.
Then we set

P :=

{
P ν ∼ R :

dP ν

dR
= ET (−ν · W ), ν ∈ IP

}
, (5)

where E(M) := exp(M − 〈M〉/2) denotes the Doléans-
Dade exponential of a continuous local martingale M .
Finally, the claim H is assumed to be of the form H =
h(YT ) for some measurable function h.

Remark 1 A typical situation underlying our setup is
as follows. A financial institution sells an option written
on an untradable index Y , and want to maximize her
utility by trading an asset S which is correlated to Y .
However, the probabilistic model of assets (S, Y ) is un-
certain in its expected rate of return (drift, in mathemat-
ical language). Actually, the dynamics under the proba-
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bility P ν is:
{

dSt = St((b(Yt) − ν1
t σ(Yt))dt + σ(Yt)dW 1,ν

t ),

dYt = (g(Yt) − ρν1
t − ρ̄ν2)dt + ρdW 1,ν

t + ρ̄dW 2,ν
t .

In this context, we can know only the range of the drift
through the set C appearing in the definition of P.

In what follows, we assume

(B1) b, σ, g ∈ C2
b (R), where C2

b (R) = {f ∈ C2(R) : f, f ′,
f ′′are bounded}.

(B2) For some k > 0, σ(y) ≥ k for all y.

(B3) h ∈ C2(R), h′ is bounded and h′′ has a polynomial
growth.

Our first task is to check that:

Lemma 2 Under (B1) – (B3), the conditions (A1) –
(A4) of [1] are satisfied.

Once this lemma is established, an optimal strategy θ̂
will be derived via (i) solving the dual problem (2), and

(ii) finding θ̂ satisfying (3).

Remark 3

(I) In this setting, we can show that

H(Q|P ) < ∞ for some P ∈ P ⇔ H(Q|R) < ∞,
(6)

for all local martingale measures Q. In particu-
lar, ΘH is characterized as the class of predictable
(S,R)-integrable processes θ such that θ ·S is a mar-
tingale under all absolutely continuous local martin-
gale measures Q with H(Q|R) < ∞. This condition
is further reduced to “all equivalent martingale mea-
sures with...”. Therefore, the class ΘH is actually
independent of P̂H , hence of H. This point is con-
ceptually important since the dependence of Θ on
P̂H , which is a part of the solution to the dual prob-
lem, implies that we can not specify the admissible
class for the primal problem until we solve the dual
problem.

(II) For our purpose, it suffices to consider Qe
f for the

domain of dual problem since we already know that a
solution to the dual problem is obtained in Qe

f ×P.
Let IM be the set of predictable processes η with

ER[
∫ T

0
η2

t dt] < ∞, and ER[ET (−(λ(Y ), η)·W )] = 1,
where λ := b/σ, and

dQη

dR
:= ET (−(λ(Y ), η) · W ), η ∈ IM . (7)

Then Qe
f = {Qη : η ∈ IM}.

2.2 Dual problem

Let

Jη,ν
t := Eη

[
αh(YT ) − 1

2

∫ T

t

‖νs − (λ(Ys), ηs)
′‖2ds|Ft

]
,

where Eη[ · ] denotes the expectation under Qη, “ ′ ” is
the transpose, and ‖ · ‖ is the Euclidean norm of R

2.
The dual problem (2) is now reduced to the following
stochastic control problems:

maximize Jη,ν
0 among (η, ν) ∈ IM × IP . (8)

For each constant η ∈ R, set

Aη := (g − ρλ − ρ̄η)∂y +
1

2
∂yy

=A0 − ρ̄η∂y, (9)

where ∂y := ∂/∂y and ∂yy := ∂2/∂y2 etc. Then the HJB
equation for (8) is formally given by




vt +sup(η,ν)∈R×C

(
Aηv− 1

2
‖ν− (λ, η)′‖2

)
= 0,

v(T, y) = αh(y).

(10)

Theorem 4 The HJB equation (10) admits a unique
classical solution v ∈ C1,2((0, T ) × R) ∩ C([0, T ] × R)
such that vy := ∂yv is bounded. Then we can choose
measurable functions ν̂ : [0, T ]×R −→ C and η̂ : [0, T ]×
R −→ R so that





ν̂(t, y) ∈ arg inf
ν∈C

(
1

2
(ν1 − λ(y))2 + ν2ρ̄vy(t, y)

)
,

η̂ = ν̂2(t, y) − ρ̄vy(t, y),

and (ν̂·, η̂·) := (ν̂(·, Y·), η̂(·, Y·)) is an optimal control for
(8). In particular, (Qη̂, P ν̂) is a solution to (2).

2.3 Optimal strategy

We now give a representation of an optimal strategy
θ̂ via Theorem 4 and the duality result of [1].

Theorem 5 An optimal strategy for the problem (1) is
given by

θ̂t =
ρvY (t, Yt) + λ(Yt) − ν̂1(t, Yt)

ασ(Yt)St

. (11)

Remark 6 Here we give a brief review of related liter-
ature. In the case without uncertainty i.e., P = {R} (⇔
C = {(0, 0)} in our setup), explicit solutions to expo-
nential hedging through duality are studied by [2] using
BSDE arguments with the help of Malliavin calculus, and
by [3] using PDE arguments close to ours.

There are also a few recent works deriving explicit
form of optimal strategies for robust utility maximiza-
tion. Our setup and idea for the proof of Theorem 4 are
due to [4], where robust power utility maximization is
considered. See also [5] for the case of logarithmic util-
ity.

3. Explicit examples

This section provides two explicit examples which may
be reduced to linear PDEs, hence can be computed via
both elementary numerical schemes and the Feynman-
Kac formula. Recall that our model is characterized by
the compact set C, and the HJB equation takes the form:





vt + A0v +
ρ̄2v2

y

2
− l(y, vy) = 0,

v(T, y) = αh(y),

where

l(y, p) := inf
ν∈C

(
1

2
(ν1 − λ(y))2 + ρ̄ν2p

)
.

Thus, if l(y, p) can be explicitly calculated, then we can
expect an explicit solution.
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3.1 The case of disk

We first consider the case where the set C is a disk in
R

2 with radius r:

C = {x ∈ R
2 : ‖x‖ ≤ r}. (12)

But due to a technical difficulty, we assume the drift
b of S under R is identically zero, or equivalently, λ is
identically zero. In this case,

l(y, p) = inf
‖ν‖≤r

(
ν2
1

2
+ ρ̄ν2p

)

= −rρ̄|p|,
and ν̂(y, p) = (0,−r · sgn(p)) is a minimizer. Then the
HJB equation is written as:

vt + A0v +
ρ̄2v2

y

2
+ rρ̄|vy| = 0.

Now suppose that the payoff function h is non-
increasing. Then noting that the 1-dimensional stochas-
tic flow associated to Y is order-preserving under (B1)
and (B2), the value function is also decreasing in y vari-
able, hence vy ≤ 0. Therefore the term rρ̄|vy| in the
equation is replaced by −rρ̄vy. Moreover, changing the
drift, the equation becomes:

vt + Arρ̄v +
ρ̄2v2

y

2
= 0.

Here Arρ̄ is the generator of Y under Qrρ. Note that a
simple calculation using the Itô formula yields:

deρ̄2v(t,Yt) = ρ̄2eρ̄2v(t,Yt)vy(t, Yt)dW̄ rρ̄
t .

Thus eρ̄2v(t,Yt) is a martingale, and since v(T, y) = αh(y),

v(t, y) =
1

ρ̄2
log Erρ̄

[
eαρ̄2h(YT )

∣∣∣ Yt = y
]

=:
1

ρ̄2
ṽ(t, y).

Now the Feynman-Kac formula yields:

Corollary 7 Suppose that C is given by (12), λ ≡ 0
and h is non-increasing. Then the value function is rep-
resented as

v(t, y) =
1

ρ̄2
log ṽ(t, y),

where ṽ is the solution to the Cauchy problem:
{

ṽt + Arρ̄ṽ = 0,

ṽ(T, y) = eαρ̄2h(y).
(13)

Furthermore, (η̂, ν̂)=(r−ρ̄(ṽy/ṽ)(·, Y ),0, r) is an optimal
control, and an optimal portfolio strategy is given by

θ̂t =
ρ

αρ̄2

ṽy(t, Yt)

ṽ(t, Yt)σ(Yt)St

. (14)

Remark 8 The case of non-decreasing h can be treated
in a symmetric way.

3.2 The case of rectangle

Let C be a rectangle in R
2, that is:

C = {x ∈ R
2 : |x1| ≤ m1, |x2| ≤ m2}. (15)

In this case,

l(y, p) =
1

2
(ν̂1(y) − λ(y))2 + ρ̄ν̂2(p)p

=
k(y;m1)

2
− ρ̄m2|p|,

where

ν̂1(y) = sgn(λ(y))(|λ(y)| ∧ m1),

ν̂2(p) = −m2sgn(p), k(y;m1) := {(|λ(y)| − m1)
+}2.

Therefore, the HJB equation is written as:

vt + A0v +
ρ̄2v2

y

2
+ ρ̄m2|vy| −

k(y;m1)

2
= 0. (16)

As in the case of disk, if the value function is mono-
tone (e.g., h is non-increasing and λ is constant), the lin-
earization procedure as in the previous subsection yields
a linear PDE and a Feynman-Kac representation.

4. Proofs

Proof of Lemma 2 (A1) is guaranteed by [4, Lemma
3.1] and [6, Lemma 3.2]. The function b/σ =: λ is
bounded by the assumptions (B1) and (B2). Therefore
dQ0/dR := ET (−(λ(Y ), 0) ·W ) defines an equivalent lo-
cal martingale measure. Since R ∈ P and H(Q0|R) =

ER[
∫ T

0
λ(Ys)

2ds]/2 < ∞, (A2) is satisfied. Also, (B3)
implies that h is globally Lipschitz continuous, hence
admits a constant Kh such that |h(y)| ≤ Kh(1 + |y|) for
all y ∈ R. Then (A3) will be verified by checking that
{eγ|h(YT )|ET (−ν ·W ) : ν ∈ IP} is bounded in L2(R) for
any γ > α. By the Cauchy-Schwarz inequality,

ER

[(
eγ|h(YT )|ET (−ν · W )

)2
]

≤ ER
[
e4γ|h(YT )|

] 1

2

ER
[
e−4ν·WT

] 1

2 . (17)

Introducing another R-Brownian motion W̄ = ρW 1+
ρ̄W 2,

e4γ|h(YT )| ≤ e4γKh(1+|YT |)

≤ e4γKh(1+|Y0|+‖g‖∞T+|W̄T |).

Therefore, the first component in the RHS of (17) is
bounded by

√
2e2γKh(1+|Y0|+(‖g‖∞+2γKh)T . For the sec-

ond, we can apply [7, Th. III 39] to get an upper bound

e8T (diamC)2 . Thus (A3) is verified, and the dual problem

admits a maximal solution (Q̂H , P̂H). Finally, (A4) is
trivially satisfied since all P ∈ P are equivalent.

(QED)

For the proof of Theorem 4, we first consider a family
of auxiliary control problems, restricting the domain of
η. For each closed interval I ⊂ R, set II

M := {η ∈ IM :
ηt ∈ I ∀t, a.s.}, and consider the equation:




∂tv
I+ sup

η∈I,ν∈C

{
AηvI− 1

2
‖ν−(λ(y), η)′‖2

}
= 0,

vI(T, y) = αh(y).

(18)

If I is compact, then so is I × C, hence we can apply
Theorem VI.4.1 and VI.6.2 of [8] to get:
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Lemma 9 For each compact I ⊂ R, (18) admits a
unique classical solution vI ∈ C1,2

p ((0, T )×R)∩C([0, T ]

×R). Then taking (ηI(t, y), νI(t, y)) ∈ arg supη∈I,ν∈C{
AηvI − ‖ν − (λ(y), η)′‖2/2

}
, we have

vI(t, Yt) = ess sup
η∈II

M
,ν∈IP

Jη,ν
t = J

ηI(·,Y ),νI(·,Y )
t .

Lemma 10 There exists a constant Kv such that |vI
y | ≤

Kv for all compact I.

Proof Let Jη,ν
t (y) := Eη[αh(Yt,T (y))− (1/2)

∫ T

t
‖νs −

(λ(Yt,s(y), ηs)
′‖2ds], where Yt,T denotes the stochastic

flow associated to Y . Then noting that | supx f(x) −
supx g(x)| ≤ supx |f(x)−g(x)|, it suffices to show the ex-
istence of a constant Kv such that |Jη,ν

t (y)−Jη,ν
t (y′)| ≤

Kv|y−y′| for all t ∈ [0, T ], y, y′ ∈ R and (η, ν) ∈ IM×IP .
Since h, g, λ ∈ C2

b , a simple computation yields that

|Jη,ν
t (y) − Jη,ν

t (y′)|
≤ αKhEη [|Yt,T (y) − Yt,T (y′)|]

+ K̃Kλ

∫ T

t

Eη[|Yt,s(y) − Yt,s(y
′)|]ds,

where Kh,Kλ are Lipschitz constants for h, λ, respec-
tively, and K̃ = diam(C) + max λ. Also, ∀s ∈ [t, T ],

Eη [|Yt,s(y) − Yt,s(y
′)|]

≤ |y − y′| + Eη

[∫ s

t

|g(Yt,u(y) − g(Yt,u(y′))|du

]

≤ |y − y′| + Kg

∫ s

t

Eη[|Yt,u(y) − Yt,u(y′)|]du,

where Kg is a Lipschitz constant for g. Then the Gron-
wall inequality shows that Eη[|Yt,s(y) − Yt,s(y

′)|] ≤
eKg(s−t)|y − y′| ≤ eKgT |y − y′| for any t ≤ s ≤ T . Hence

we get the result with Kv = eKgT (αKh + K̃KλT ).
(QED)

Proof of Theorem 4 The inside of the bracket in
(18) is written as:

A0vI + ρ̄(vI
y)2 − 1

2

{
η − (ν2 − ρ̄vI

y)
}2

−
{

1

2
(λ(y) − ν1)

2 + ν2ρ̄vI
y

}
.

Here the third term attains the global maximum at
ηI = ν2 − ρ̄vI

y , which is bounded by diam(C) + Kv

independently of I. Thus taking I0 := [−diam(C) −
Kv,diam(C) + Kv], we have

−∂tv
I0 = sup

η∈I0,ν∈C

{
AηvI0 − 1

2
‖ν − (λ(y), η)′‖2

}

= sup
η∈R,ν∈C

{
AηvI0 − 1

2
‖ν − (λ(y), η)′‖2

}
.

Hence v := vI0 is a desired classical solution to (10).
The rest of the proof is a standard verification argu-

ment, and we omit this.
(QED)

Proof of Theorem 5 By the duality, it suffices to

show that θ̂ ∈ Θ and

dQη̂

dP ν̂
=

e−α(θ̂·ST −h(YT ))

EP ν̂

[
e−α(θ̂·ST −h(YT ))

] .

Since v satisfies the HJB equation (10), the Itô formula
yields:

αh(YT ) = v(0, Y0) +

∫ T

0

(
∂t + Aη̂

)
v(s, Ys)ds

+

∫ T

0

vy(s, Ys)dW̄ η̂
s

= v(0, Y0) + log
dQη̂

dP ν̂

+

∫ T

0

(ρvy + λ − ν̂1)(s, Ys)dW 1,η̂
s

= v(0, Y0) + log
dQη̂

dP ν̂
+ αθ̂ · ST .

Therefore we get dQη̂/dP ν̂ = ev(0,Y0)e−α(θ̂·ST −h(YT )).
Finally,

∫ T

0

θ̂2
sd〈S〉s =

1

α2

∫ T

0

{(ρvy + λ − ν1)(s, Ys)}2ds

is bounded, hence θ̂ · S is a martingale under every Q ∈
Qe

f . This concludes the proof.
(QED)
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