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In this paper, we will address the cyclic scheduling problem with limited WIP (Work-in-process). In these
systems, we have to minimize the cycle time of the production while working with a limited level of WIP.
We consider here production systems with linear jobs (every operation was followed and preceded by only
one operation). Many methods have been proposed to solve the cyclic scheduling problem. Among them,
we focus on the exact approach, and more precisely the mathematical programming. In this paper, we will
propose a Linear Program Model for cyclic scheduling with limited WIP and cycle time minimization.
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1. INTRODUCTION

The job-shop problem is one of the most popu-
lar scheduling problems. The popularity is based
on its wide range of applications. Similarly, cyclic
scheduling problems take place in different appli-
cations areas such as compiler design, automated
manufacturing systems, digital signal processing,
railway scheduling, timetabling, etc. We will focus
here on the cyclic job-job problem. In this domain,
the production consists of cyclic jobs assigned to
machines.

The use of cyclic behavior is justified by the
complexity of this problem. The Scheduling problems
are well known to be highly combinatorial. It has
been shown that project planning problems are of
polynomial complexity and that cyclic scheduling
problems are NP-complete Serafini (1989). Taking
into account transformation tasks, makes the first
problem NP-hard in most cases and keeps the
second one in the NP-complete class. Hence, the
use of heuristics is generally recommended. The
cyclic scheduling allows to avoid the scheduling of
the whole tasks and to handle the combinatorial
explosion of the problem by considering only a small
pattern (cycle). It can be a possible solution to global
scheduling. The answer to the total demand will be
given by the repetition of a sequence known as cyclic

scheduling. However, the optimal scheduling of a
cycle does not guarantee the optimality of the total
production, since “the sum of optimal sub-paths is
not necessarily an optimal path” Bellmann (1957).
That’s why the cyclic behavior is still a heuristic.

We suppose that a production is made by jobs
and a job consists of a set of tasks. These tasks
have to be processed in a given order (precedence
constraints) on the machines and this order may
differ among jobs. Every tasks have one successor
and one predecessor (linear jobs). Parts processed
by these tasks are handled by a transport system
which consists of physical supports called pallets.
These parts, which represent unfinished products,
represent the Work-in-process (WIP). In factories,
WIP levels between machines have a limited
capacity. This is mainly due to the limited physical
space available to store the parts temporarily and the
limited capacity of transport system. The processing
times are deterministic and fixed from the planing
step. No pre-emption is allowed, i.e., once an
operation is started, it must be completed before
another operation can be started on that machine.

In the cyclic context, many works aim to minimize
the ”Cycle Time” criteria, which is the time difference
between two succeeding occurrences of one task for
a given set of constraints. The optimal cycle time is
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equal to the workload of the bottleneck machine(s)1.
However, to reach this optimal value, the bottleneck
machine(s) need(s) to be fed immediately after
performing each tasks. This means that we have to
use enough WIP (parts) in order to avoid waiting
on machines. In the case of a few number of WIP
(one for example), the machines will be pending for
parts (particularly, the bottleneck machine(s)) and
the throughput will not be optimized. On the other
hand, the WIP represents the intermediate stock and
is an economic criterion. Indeed, for each new WIP,
we have to associate a transport pallet. Thus, we
have to minimize, also, the WIP in the system. A
classical result in cyclic scheduling theory is that:
considering that the WIP is always available (with
a sufficient number of WIP) at the input of the
bottleneck machine(s) allows reaching the optimal
cycle time. However, few works in the literature have
addressed the problem of minimizing the cycle time
with a limited level of WIP Seo (2002). Indeed,
Seo considers job shops with overtaking degrees.
In these shops, some operations of a specific job
instance are processed prior to some operations of
the previous instance of the same job. This means
that, if there is an operation x from a job J with
an overtaking degree equals to 1, then there must
be two instances of the job J on each cycle of the
repetitive production command. As a consequence,
two WIP are needed to allow this production case.
By introducing the overtaking notion, Seo looks for
CT minimization. However, he considers that there
must be a trade-off between the WIP and the cycle
time. Hence, he proposes to work with a limited level
of WIP (by fixing the overtaking degree for each
operation).

The main purpose to consider limited WIP in
production systems is always for economical
purposes. Indeed some production systems need
sophisticated pallets in order to handle their WIP.
These pallets can be so expensive or even
unavailable (especially for systems that produce
pieces that are relatively large or huge). For
example, because of the parts are expensive, they
are usually processed when there is a need. In the
airplane case, the engine and the electronic parts
are very expensive and are, therefore, manufactured
only when needed. Thus it is of great concern to
these companies to reduce their WIP. Consequently,
the production have to be adapted to this new
constraint, and this by fixing the WIP level as a hard
constraint and then looking for optimizing the cycle
time.
1Machine with the maximum workload, i.e. machine m for which
the sum of the processing time of tasks performed on m is the
greatest

Producing with a limited WIP is frequently used by
systems that use the Just-In-Time production (JIT)
(produce only if there is a customer demand Monden
(1983), Shingo (1981)), like in car production
systems. In JIT production systems, the WIP level
is controlled by the Constant WIP method (ConWIP)
Hopp (1996). It consists in a control strategy that
limits the total number of parts allowed into the
system at the same time. The ConWip can be viewed
as a variant of the Kanban systems Hall (1981).
Note that the ConWIP and the Kanban systems are
applied within JIT production system and we are
interested here on the predictive context since we
deal with deterministic scheduling problems. This
means that all the production data: parts, number
of parts to produce and production sequences
are previously set so that there is no possible
random interaction with the environment during this
process. However, it is always interesting for the
JIT production to have an estimated value on the
maximal throughput of the system while using a fixed
level of WIP.

Another field that deals with the limited WIP is the
Hoist Scheduling Problem (HSP) Che (2010), Manier
(2003). Indeed the HSP deals with the scheduling of
handling devices in electroplating facilities. The parts
are carried and handled by one (in general) hoist.
Due to tight timing process constraints - minimal and
maximal processing time in tanks, it is difficult to deal
with several WIP using only a single hoist. Thus, the
production must be with limited WIP in order to avoid
the loose of parts.

In this work, we will consider that the WIP is limited
and we look for optimizing the cycle time. For the
resolution approach, we have chosen the exact one.
We will model this cyclic scheduling problem with
a mathematical model. In fact, this paper can be
viewed as an extension of the work proposed in Ben
Amar (2009). Obviously, the main objective is not the
same, but both works deals with cyclic scheduling
problems that involves WIP. The objective function
in the mathematical model proposed in this work
consists on minimizing the cycle time. However, the
major difficulty in this mathematical model is that,
while we try to optimize the cycle time, the starting
time of operations is not fixed yet. This involves
ambiguity to compare the current WIP with the fixed
limited level.

The remainder of this paper is organized as follows.
In section 2, we will expose two mathematical
models representing the cyclic scheduling problem
with limited WIP and cycle time minimization. The
first one is non-linear and the second one is
a consequence of the linearization of the non-
linear version. The linearazation process will be
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also presented in the same section. In section
3, we illustrate this approach with an example
from literature. To conclude, we propose several
perspectives to extend this work.

2. MATHEMATICAL MODELS

2.1. Job Shop Notations

In this section, we will de present the notations used
to define a job shop J :

• Machines: The set M = {m1,m2, . . . ,m|M|}
defines the set of machines of J . We denote
by M = |M| the cardinal number of M.
These machines are renewable and not shared
by operations. Which means that, they are
reusable once they have finished the execution
of a task and can only process one task at a
time.

• Production: We define a production as a set of
type of pieces that have to be produced G =
{g1, g2, . . . , g|G|}. We denote by G the cardinal
number of G, and we order the type of pieces
of the production by the formal parameter i ∈
[[1,G]].

• Operating Sequence: We define an operating
sequence (type of piece) gi of the production
system J as a sequence of operations. Ki

denotes the number of operations of gi.

• Operation: We define an operation (or a task)
of J as oij , i ∈ [[1,G]] represents the associated
operating sequence gi and j ∈ [[1,Ki]] is the
index of the operation in gi. We denote by
mij ∈ M the machine used to perform oij .
dij is called the duration of the corresponding
operation.

• In the following, we will denote
by OG =

{
(oi,j)j∈[[1,Ki]]

}
i∈[[1,G]]

≡{(
(mij , dij)

)
j∈[[1,Ki]]

}
i∈[[1,G]]

the set of all

operations of G. We denote by OG the cardinal

number of OG. Then we have:
G∑
i=1

Ki = OG.

• OG
m will denote the operations of OG that have

to be performed on the machine m ∈M, OG
m ={

oi,j ∈ OG, s.t., m = mi,j

}
.

2.2. Mixed Integer Non-Linear Program

In this section, we will start by presenting a
Mathematical Programming Model with non-
linear constraints for the cyclic scheduling
problem with limited WIP and cycle time
minimization (“Figure.1”). This model is based

on works developed earlier (Ben Amar (2009)
and Bourdeaud’huy (2006)), which propose a
Mixed Integer Linear Program (MILP) modeling
the Cyclic Scheduling problems with WIP
minimization. Indeed, this MILP has been
adapted in order to model Cyclic scheduling
problem with limited WIP. Therefore, the
objective function changed from minimizing the
WIP to minimizing the CT and inequality 9 has
been added to constraint the total number of
WIP in the system to be less or equal to a
specific value. In the following, the variables
and the constraints used in “Figure.1” will be
explained:

Minimize: CT s.t. (1)

• ∀i ∈ [[1,G]],∀j ∈ [[1,Ki]],

tij ∈ [[0, C∗max − 1]](2)

αij ∈ {0, 1} (3)

βij ∈ {0, 1} (4)

tij − ti,(j %Ki)+1 −B · αij ≥ 1−B − dij (5)

tij − ti,(j %Ki)+1 −B · αij ≤ −dij (6)

tij − ti,(j %Ki)+1 −B · βij − CT ≥ 1−B − dij (7)

tij − ti,(j %Ki)+1 −B · βij − CT ≤ −dij (8)∑
oij∈OG

(αij + βij) ≤ M (9)

• ∀m ∈ M, ∀oij , okl ∈ OG
m

δklij ∈ {0, 1} (10)

tij − tkl + CT.δklij − CT ≤ −dij (11)

tkl − tij − CT.δklij ≤ −dkl (12)

Figure 1: Non-Linear Program Model for the Cyclic Job
Shop with Limited WIP and Cycle Time Minimization

• CT represents the Cycle Time variable, CT ∈
N. The lower bound of CT is C∗max =
max
m∈M

(
∑

oi,j∈OG
m

(di,j)). This bound is presented in

the mathematical model by the constraint 2. In
fact, if there is sufficiently WIP in the system,
the cycle time will be fixed by the bottleneck
machine(s). In this case, the throughput will
be at his maximum level, since the critical
machine work at 100% of its capacity.

• Variables ti,j ∈ [0, CT − 1] correspond to the
activation date of the operation oi,j within the
considered cycle. We consider here discrete
systems and we suppose that ti,j ∈ N and
dij ∈ N∗.

• The variables δklij ∈ {0, 1} are the binary
variables corresponding to the order between
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operations performed on the same machine.
Let oi,j and ok,l, with (i, j) 6= (k, l), two
operations that must be performed on the
same machine. If ok,l starts after the end of oi,j ,
then δk,li,j = 1, else, if oi,j starts after the end of
ok,l then δk,li,j = 0. Formally:

δk,li,j =

{
1 if ti,j + di,j 6 tk,l

0 if tk,l + dk,l 6 ti,j

• The αi,sJi,j and βi,sJi,j correspond to binary
variables used to compute the WIP. Within a
production system, jobs consist of operations
which have to be processed in a given order
(precedence constraints) on the machines
and this order may differ among jobs. If
the precedence constraints between two
operations are not respected in a schedule,
this means that the system will need extra WIP.
In this case, the decision variable α related to
these two operations is fixed to 1. Formally:

– αi,j = 1 if oi,(j%Ki)+1 is executed
before the completion time of oi,j , where
oi,(j%Ki)+1 stands for the successor of
operation oi,j within the job;

– βi,j = 1 if oi,j overlaps two cycles and
completes after the activation time of
oi,(j%Ki)+1 on the next cycle;

More explanations for α and β can be found
in Ben Amar (2009), since these two variables
keep the same meaning for systems with or
without assembly/disassembly tasks.

• B ∈ N is a constant used to constrain the
discrimination variables αi,j and βi,j in a linear
way. It has to be “big enough” (lower bound:
2 ·CT − 1) in order to make the inequalities (5)
to (8) valid. This lower bound was computed as
follow:

In order to consider (5) as a valid inequality, we
must have: ti,j − ts(i,j)−B ·αi,j ≤ −di,j , and if
we consider αi,j = 1 then: ti,j−ts(i,j)+di,j ≤ B
. In addition, we know that ti,j ≤ CT − 1 and
di,j ≤ CT then B must respect the following
inequality:

B ≥ 2 · CT − 1 (13)

• The objective function of this mathematical
model is to minimize the CT (1). Note that
inequalities (5) and (6), constraint the decision
variables α according to their meanings
presented previously. Similarly, inequalities (7),
(8) constraint the variables β and (11), (12)
constraint the variables δ.

• Inequality (9) constraints the total number of
WIP in the system to be less or equal to

M , which represents the maximum number
of WIP allowed in the production system. Let
suppose that WIPopt represents the minimal
WIP computed in the case of CT = C∗max.
WIPopt represents the minimal WIP level
which allows to the cycle time to be equal to the
workload of the critical machine (C∗max). This
miminimal level of WIP can be computed using
the Mixed Integer Linear Program proposed in
Ben Amar (2007) and Bourdeaud’huy (2006).
After defining M and WIPopt, two case can be
considered:

– If M < WIPopt: this means that the WIPs
available for the production system does
not allow working with the speed of the
critical machine. In this case, CT will be
necessary greater than C∗max. In fact, due
to the lack of WIP, the critical machine will
be pending for input pieces, and this delay
make CT > C∗max. As a consequence:

if M < WIPopt then CT > C∗max (14)

In this case, our objective will be to
minimize the CT .

– If M ≥WIPopt: this means that the WIPs
are sufficiently available in order to work
at the speed of bottleneck machine. In this
case:

CT = C∗max (15)

• Note that the inequalities (11) and (12), are
used to guarantee that machines will not per-
form more than one operation, simultaneously,
within the cycle time. These two inequalities
have a non-linear term. Indeed, (CT.δklij ) rep-
resents the multiplication of two variables that
have to be computed by the resolution of the
mathematical model. This made the mathe-
matical program (proposed in “Figure.1” a non-
linear one.

In the following, we will present how we have
linearized these constraints and highlight the related
changes that we have made to guarantee that
variables will preserve their meaning and nature.

2.3. Linearization of the Non-Linear Program

The mean idea here is to change variables by
introducing CTi = 1/CT since CT 6= 0. As a
consequence, all other variables will be changed and
divided by CT . The resulting mathematical model is
a Rational Linear Program presented in “Figure.2”.

• Within the first model, we look for minimizing
the Cycle Time (CT ). In the second model,
after using CTi, our objective will be to
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Maximize: CTi s.t. (16)

• ∀i ∈ [[1,G]],∀j ∈ [[1,Ki]],

t′ij ∈ [0, 1[ (17)

α′ij ∈
[
0,

1

C∗max

]
(18)

β′ij ∈
[
0,

1

C∗max

]
(19)

t′ij − t′i,(j %Ki)+1 −B · α′ij − (1−B − dij) · CTi ≥ 0 (20)

t′ij − t′i,(j %Ki)+1 −B · α′ij + dij · CTi ≤ 0 (21)

t′ij − t′i,(j %Ki)+1 −B · β′ij − (1−B − dij) · CTi ≥ 1 (22)

t′ij − t′i,(j %Ki)+1 −B · β′ij + dij · CTi ≤ 1 (23)∑
oij∈OG

(α′ij + β′ij)−M · CTi ≤ 0 (24)

CTi− α′ij ≥ 0 (25)

CTi− β′ij ≥ 0 (26)

α′ij − C · yij ≤ 0 (27)

CTi− α′ij − C · (1− yij) ≤ 0 (28)

β′ij − C · zij ≤ 0 (29)

CTi− β′ij − C · (1− zij) ≤ 0 (30)∑
oij∈OG

(yij + zij) ≤ M (31)

• ∀m ∈ M, ∀oij , okl ∈ OG
m

δklij ∈ {0, 1} (32)

t′ij − t′kl + δklij + dij · CTi ≤ 1 (33)

t′kl − t′ij − δklij + dij · CTi ≤ 0 (34)

Figure 2: Linear Program Model for the Cyclic Job Shop
with Limited WIP and Cycle Time Minimization

maximize this last variable (16). We have to
mention that:

0 < CTi ≤ 1

C∗max

(35)

• t′ij =
tij
CT ∈ [0, 1[. Indeed, 0 ≤ tij ≤ CT − 1,

then, after dividing by CT > 0, we will have
0 ≤ tij

CT ≤ 1 − 1
CT . However, 1

CT > 0, then we
have the inequality (17).

• α′ij =
αij

CT ∈
[
0, 1

C∗
max

]
. Indeed, αij is a binary

variable, then α′ij can take only two values: 0
or 1

CT . However, 1
CT ≤

1
C∗

max
, then the higher

bound of α′ij is 1
C∗

max
.

• β′ij =
βij

CT ∈
[
0, 1

C∗
max

]
. Similarly to α′ij , the

higher bound β′ij is 1
C∗

max
.

• Constraints (20) to (24) and (33) , (34) keep the
same meaning cited in the previous section.
The only difference is that all variables are
divided by CT .

• Note that, for the linear program we have
added more constraints (from (25) to (31))
compared to the non-linear one. These
additional constraints are used to guarantee
that:

If α′ij is not null, then α′ij =
1

CT
(36)

If β′ij is not null, then β′ij =
1

CT
(37)

Indeed, without the added constraints, α′ij and
β′ij could be non null and their values are not
equal to 1

CT = CTi. That’s why, we have
to take into account the two conditions cited
below (36) and (37).
In fact, when we have to test if α′ij is not null,
then this means that we must verify if (α′ij > 0)
or (α′ij < 0). However, since we have α′ij ∈[
0, 1

C∗
max

]
, then, the case (α′ij < 0) will not be

taking into account as a valid constraint. Thus,
in our case, (α′ij 6= 0) is equivalent to (α′ij > 0).
In addition, the statement (α′ij = CTi) means
that (α′ij ≥ CTi) and (α′ij ≤ CTi). This last
statement is always since true since α′ij ∈[
0, 1

C∗
max

]
. That’s why we have added this

property to the model through constraints (25).
This entails that, (α′ij = CTi) is equivalent, in
our case, to (α′ij ≥ CTi). Finally, the condition
cited in (36) is equivalent to:

If (α′ij > 0) then (α′ij −
1

CT
) ≥ 0 (38)

Note that we have used in (38) the “If/then”
constraint: If A then B. This last constraint is
equivalent to the logical statement (∼A ∪ B).
The (∼A) represents the negation of A.
In the context of linear programming, a
constraint can be viewed as a statement.
Specifically, constraints (α′ij > 0) and (CTi −
α′ij ≤ 0) are viewed as statements A and B,
respectively.
The negation of (α′ij > 0) is (α′ij ≤ 0).
Therefore, (38) is equivalent to:

Either (α′ij ≤ 0) or (CTi− α′ij ≤ 0) (39)

Either/or constraints can be replaced by two
simultaneous constraints (Bajalinov (2003),
Chen (2010)):

α′ij ≤ C · yij (40)
CTi− α′ij ≤ C · (1− yij) (41)
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yij is a binary variable and C is a very big
number such that C ≥ max(α′ij , CT i − α′ij).
In fact, if yij = 0, then α′ij = 0. Otherwise, if
yij = 1, then α′ij = CTi.
As a conclusion, through inequalities (25), (27)
and (28), we have used new binary variables to
ensure that:

If α′ij 6= 0, then α′ij = CTi (42)

• Similarly, through inequalities (26), (29) and
(30),we have used new binary variables zij to
ensure that:

If β′ij 6= 0, then β′ij = CTi (43)

In the next section, we will use an illustrative example
and we will resolve it using our approach.

3. ILLUSTRATIVE EXAMPLE

In this section we will assess the relevance of our
approach using an illustrative example cited in Seo
(2002). We will resolve this example by using the
linear program proposed in the previous section.

We will use the Petri net formalism Murata (1989)
in order to represent the illustrative example. This
formalism allows us to model, in the same time,
the precedence constraints between operations, the
resource needed to perform these operations and
the limited level of WIP.

The illustrative example (“Figure.3”) consists of three
machining centers m1, m2, m3 and three set-up
stations s1, s2, s3 (that can be also considered as
machines). Three types of parts are produced: A, B
and C.

Seo (2002) considers that o1,1 and o2,1 have an
overtaking degree equals to 1. This means that he
fixes the WIP of the system to:

• 2 WIP for the job A.

• 2 WIP for the job B.

• 1 WIP for the job C.

As a result, the production system must works with
a limited WIP equals to 5. Under this fixed level
of WIP, Seo founds a cyclic schedule with a cycle
time equals to 16 t.u. With our approach, we begin
by fixing the value of the different constants (M ,
WIPopt and, C∗max. As explained in the previous
section (using the condition 14) we have to compare
M and WIPopt to have an idea about the value
of CT . However, WIPopt = 6 (computed using
the mathematical model proposed in Bourdeaud’huy
(2006)), M = 5 and C∗max = 14 (the workload of the

o1,1(2) s1

o1,2(8) m1

o1,3(4) s1

o1,4(6) m2

o1,5(2) s1

tf1

o1,1(2) s2

o1,2(10) m3

o1,3(4) s2

o1,4(4) m1

o1,5(2) s2

tf2

o1,1(2) s3

o1,2(4) m2

o1,3(4) s3

o1,4(4) m3

o1,2(2) s3

tf3

1

Figure 3: Illustrative example Seo (2002)

critical machine wich is m3).
Since M > WIPopt then CT > C∗max = 14 .
Thus, with a WIP fixed to 5, the cycle time must be
greater than 14. In order to resolve this example with
our approach, we have, first, modeled the example
as a mathematical linear program. This latter has
been solved by CPLEX solver (version 9.0, ILOG
(2003)) on an Intel Pentium 4 at 2.8 GHz and 1Go
RAM, under Windows XP. The computed schedule
is presented in (“Figure.4”). In this illustration, there
is two Gantt diagrams, the first one

S1

M2

0 42 6 108 12 14

G1:(s1,2)(m1,8)(s1,4)(m2,6)(s1,2)
G2:(s2,2)(m3,10)(s2,4)(m1,4)(s2,2)
G3:(s3,2)(m2,4)(s3,4)(m3,4)(s3,2)

WIP = 5

M1

S2

S 3

1816 20 2422 2826 30 3432 36 38 4240 44 4846

o3,2

o1,1 o1,5o1,3

o2,5 o2,3o2,1

o3,5o3,3o3,1

o1,2

o1,4

o2,2o3,4

o2,4

WIP1

WIP2

WIP3

WIP5

o2,2M3

o2,2WIP4

o1,1

o1,3 o1,5

o1,2

o3,2 o3,5o3,3o3,1 o3,4

o1,4

o2,5

o2,3

o2,1 o2,2

o2,4

Figure 4: Scheduling of the illustrative example

Note that the cycle time found by our approach is
equal to the computed by Seo (which is 16 t.u.). This
value is optimal if we take into account that the WIP
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is fixed to 5. Indeed, under this fixed level of WIP, the
job C have to be processed with only one WIP. As a
consequence, the cycle time will be fixed by this job.

If we consider, now, that the WIP level will be fixed
at 3 (one WIP for each each job). In this case, the
cycle time will be fixed by the higher processing time
among the jobs, which is in our case equals to 22
t.u.).

Note that we have resolved also this case (M = 3)
with our linear program and the corresponding cycle
time is equal to 22 t.u., which is also the same
value found by Seo approach’s when he resolves
the same example without allowing any overtaking
for operations.

4. CONCLUSION

This paper deals with cyclic scheduling problem with
limited WIP and Cycle Time minimization. The main
contribution here is to propose a mathematical model
for such production environnement. First, we have
presented systems with limited WIP and we have
discussed and justified the use of this production
constraint. Secondly, we have proposed a non linear
mathematical program which model systems with
limited WIP and cycle time minimization. Afterwards,
we have presented the method used to linearize
this non-linear program. The last part was reserved
to validate our approach by comparing it with an
illustrative example from the literature.

This study show that, for a production with a fixed
level of WIP, one can find the optimal cycle time. In
addition, we have shown that we can found the same
results as those found by Seo (2002). Further works
will consider another strategy of pallets allocations.
In fact, we suppose, actually that pallets are used
only by one job and are not allowed to be reused
by other jobs within the same cycle time. This last
constraint will be relaxed in the upcoming works
by allowing pallets to be used if they are available.
Moreover, we aim to substitute the CPLEX solver
by an algorithm especially fitted to the mathematical
model, in order to improve the resolution time.
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