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ABSTRACT

Boreal peatlands represent a considerable portion of the global carbon (C) pool. These environments 
are vulnerable to changes in water level (WL), which can vary dramatically in response to climate 
or land-use change. Water-level drawdown (WLD) causes peatland drying and induces a vegetation 
change, which in turn affects the decomposition of soil organic matter and the release of greenhouse 
gases (CO

2
 and CH

4
) into the atmosphere. The objective of this thesis was to study the microbial 

communities related to the C cycle and their response to WLD in two boreal peatlands.
The first study site (Lakkasuo) is a boreal peatland complex that was partly drained in 1961 

to investigate the long-term effects of WLD, and includes three site types with different nutrient 
levels. At the same location, an experiment simulating the predicted effect of climate change was 
carried out in 2001 to study the short-term effects of WLD. The second study site (Suonukkasuo) 
is a boreal fen with a WL gradient caused by a groundwater extraction plant; the undisturbed 
fen grades into a pine-dominated peatland forest. Microbial communities were studied with 
phospholipid fatty acid (PLFA) analysis, PCR-DGGE and multivariate analysis.

Both sampling depth and site type had a strong impact on all microbial communities. In 
general, bacteria dominated the deeper layers of the nutrient-rich fen and the wettest surfaces 
of the nutrient-poor bog sites, whereas fungi seemed more abundant in the drier surfaces of the 
nutrient-poor bog. WLD clearly affected the microbial communities but the effect was dependent 
on site type. Fungi and Gram-negative bacteria seemed to benefit and actinobacteria to suffer from 
the WLD in the fens. The fungal and methane-oxidizing bacteria (MOB) community composition 
changed at all sites but the actinobacterial community response was apparent only in the nutrient-
rich fen after WLD. 

The actinobacterial response to WLD was minor compared to that of the fungal community. 
The response was greatest in the nutrient-rich fen and least in the nutrient-poor bog. Microbial 
communities became more similar among sites after long-term WLD. Litter quality had a large 
impact on community composition, whereas the effects of site type and WLD were relatively 
minor. The decomposition rate of fresh organic matter was influenced slightly by actinobacteria, 
but not at all by fungi. Overall, the results were in line with patterns of vegetation change in the 
study sites.

Field respiration measurements in the northern fen indicated that short term WLD accelerates 
the decomposition of soil organic matter. In addition, a correlation between activity and certain 
fungal sequences indicated that community composition affects the decomposition of old organic 
matter in deeper layers of the peat profile. Fungal sequences were matched to taxa capable of 
utilizing a broad range of substrates. Most of the actinobacterial sequences could not be matched to 
characterized taxa in reference databases. WLD had a negative impact on CH

4
 oxidation, especially 

in the oligotrophic fen.
This thesis represents the first investigation of microbial communities and their response to 

WLD among a variety of boreal peatland habitats. The results indicate that microbial community 
responses to WLD are complex but dependent on peatland type, litter quality, depth, and variable 
among microbes.

Keywords: boreal peatlands, carbon cycling, water level drawdown, drainage, climate change, 
litter quality, decomposer communities, fungi, actinobacteria, MOB
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1 INTRODUCTION

1.1 Peatland ecosystems

Peatlands are defined by the presence of peat, a substance composed mainly of partially 
decomposed plants and being over 65% organic matter and less than 20-35% inorganic 
content (Clymo 1983). The International Mire Conservation Group (Joosten and Clarke 2002) 
requires a 30 cm minimum depth of peat for a site to be classified as peatland. A ‘mire’ is a 
water-saturated and peat-forming peatland. The main physical factor in peatland functional 
ecology is the high water level (WL), which reduces the decomposition rate of organic matter 
and enables peat to form (Päivänen and Vasander 1994). The height of the WL varies in time 
and space within and among peatlands. Environmental factors, such as a cool climate and low 
evaporation maintain conditions that promote peat formation. 

Based on ecohydrology and the consequent nutrient status, boreal peatlands are classified 
into two main trophic classes: minerotrophic and ombrotrophic (Rydin and Jeglum 2006). 
Minerotrophic peatlands, i.e., fens, receive nutrients from input water that drains nearby 
mineral soils (Ingram 1992) and they are richer in cations such as Mg2+, K+, and Ca2+ (Malmer 
et al. 1992). Minerotrophic fens can be further divided into three classes according to their 
nutrient availability: oligotrophic (poor), mesotrophic (intermediate) and eutrophic (rich) 
(Rydin and Jeglum 2006). Fens are typically characterized by herbaceous species and sedges 
(e.g., Cyperaceae) that have aerenchymatic tissues enabling them to live in waterlogged 
conditions. The surface of ombrotrophic peatlands, i.e., bogs, is isolated from the throughflow 
and groundwater of the surrounding catchment area; therefore, they receive water and chemical 
elements from atmospheric deposition only. Bogs are typically dominated by dwarf shrubs 
and Sphagnum mosses. While differences in ecohydrology, moisture-aeration and pH-base 
richness largely determine peatland vegetation, variation in the nutrient level and wetness of 
a site produces heterogenic peatland habitats that provide different suites of environmental 
resources to microbial communities. In general, fungal biomass tends to dominate (55–
99%) in ombrotrophic peatland, while bacterial biomass is the most abundant (55–86%) in 
minerotrophic peatlands (Golovchenko et al. 2007).

Subarctic and boreal peatlands store about 460 Pg of C, which is ca. 30% of the global soil 
C pool (Gorham 1991). The accumulation of C in peatlands is a balance between the C input 
of the litter-forming vegetation and C output of decomposer organisms. Carbon dioxide (CO

2)
 

is bound to vegetation via photosynthesis and is released by microbial decomposition of the 
produced organic matter. Decomposition is largely dependent on litter quality, e.g., Sphagnum 
litter types decompose significantly slower than Carex litter (Scheffer et al. 2001) and that 
of deciduous shrubs, trees and graminoids (Aerts et al. 1999). Decomposition efficiency 
may be related to the chemical composition of litters, since Sphagnum litters have low P 
and N concentration (Aerts et al. 1999) and high concentrations of decay-resistant phenolic 
compounds (Johnson and Damman 1991). Indeed, it has been shown that polyphenol/element 
(N/P/K) and C/element ratios mainly affect the decomposition of Sphagnum litter, and the 
C/P ratio controlled the decomposition of graminoids along a minerotrophic-ombrotrophic 
gradient in a bog (Bragazza et al. 2007). 

Peatlands and other wetlands are also the main natural source of the second most important 
greenhouse gas, methane (CH

4
) (Moore and Knowles 1989). CH

4
 is produced in the anoxic 

peat horizon and is partially oxidized by microbes before it escapes into the atmosphere. 
Both methane production and oxidation are processes mediated by microbes. Thus, peatlands 
sequester CO

2
 (the main green house gas) from the atmosphere as peat while they emit large 
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quantities of both CO
2
 and CH

4
. So, the C cycle of peatland is dependent on (i) CO

2
 fixation 

and release, (ii) CH
4
 production and consumption, and (iii) the in- and outflow of dissolved 

organic carbon (DOC) (Urban et al. 1989, Sallantaus 1992). The release of DOC can be 
associated with desorption of organic C from the soil, from the decomposition of peat and 
plant tissues by soil organisms, or through the exudation of organic C from plant roots (Fenner 
et al. 2005, Trinder et al. 2008). DOC output is usually higher than input, which results in a 
net loss from the peatland by the throughflow of water; net losses of 5–9 g C m-2 a-1 have been 
measured at a peatland in central Finland (Sallantaus 1992, Sallantaus and Kaipainen 1996). 
Globally, peatlands contribute 30–40 Tg of the total 500–550 Tg annual emission of CH

4 

(Cicerone and Ormland 1988, Khalil and Rasmussen 1983, Lassey et al. 2000), and the ca. 9 
million hectares of Finnish peatlands emit ca. 0.5 Tg CH

4
 annually (Minkkinen et al. 2002). 

Temperature, soil structure and plant cover are suggested to associate with depth profiles of 
O

2
, CO

2
 and CH

4
, and therefore also with gas emission rates (Shephard et al. 2007).

1.2 Peatland aerobic microbial communities involved in CO2 release

1.2.1 Bacteria

Fragmentation of plant material is initiated by the soil macrofauna (e.g., spiders and 
millipedes). These are followed by the meso- (e.g., mites, collembolans and enchytraied 
potworms) and microfauna (e.g., nematodes, tardigrades, rotifers and amoebae) that mainly 
feed on bacteria and fungi. In an anoxic environment, where oxygen availability is limiting 
decomposition, the fermenting or strictly anaerobic bacteria and archaea are responsible for 
most microbial activity. Yet, aerobic bacteria (probably also archaea) and fungi are the most 
important and effective decomposers of organic matter in the upper, oxic layers of peat, since 
they are responsible for the final mineral release even from the most recalcitrant chemical 
components. During the decomposition of organic matter, microbes release CO

2
 as a product 

of heterotrophic respiration.
Knowledge of bacterial communities in peatlands has been largely based on cultivation 

studies in the 1970’s. These early peatland studies reported on the isolation of aerobic 
bacterial genera such as Achromobacter (Betaproteobacteria), Arthrobacter (Actinobacteria), 
Bacillus (Firmicutes), Cytophaga (Sphingobacteria), Chromobacterium (Betaproteobacteria), 
Micrococcus (Actinobacteria), Pseudomonas (Gammaproteobacteria), Actinomyces 
(Actinobacteria), and Streptomyces (Actinobacteria) (Given and Dickinson 1975). Later, 
Williams and Crawford (1983) complemented the list of peatland genera with Clostridium 
(Firmicutes), Mycobacterium (Actinobacteria), Micromonospora (Actinobacteria) and 
Nocardia (Actinobacteria). In a Scottish raised bog, aerobic bacteria (Bacillus) dominated 
(50–60%), whereas the other main groups were Gram-negative non-sporing rods (30%) and 
Arthrobacter (5%) (Wheatley et al. 1996). A study based on microbial biomass (excluding 
fungi) and plate counting from a drained Sphagnum fallax-Carex rostrata fen in France 
revealed that testate amoebae (48% of the microbial biomass), heterotrophic bacteria (15%), 
cyanobacteria (14%) and diatoms (Bacillariophyceae; 13%) were the dominant groups 
(Gilbert et al. 1998). Another biomass study of five different Sphagnum-dominated peatlands 
in Switzerland, Finland, Netherlands, Sweden, and England showed that heterotrophic 
bacteria dominated in all sites, whereas fungi, microalgae or testate amoebae were the second 
dominant groups, depending on site (Mitchell et al. 2003).

During the past decade, a few attempts have been made to broaden the view of bacterial 
diversity and distribution in peatlands with the use of molecular identification methods. The 
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main groups of clones found from a Sphagnum-dominated peatland in Siberia were affiliated 
with the phyla Acidobacteria, Alphaproteobacteria, Verrucomicrobia, Actinobacteria, 
Deltaproteobacteria, Chloroflexi and Planctomycetes (Dedysh et al. 2006). The majority of 
bacterial clones from two drained fen sites in Slovenia consisted of Acidobacteria (23%), 
Alpha- (16%), Beta- (12%), Gamma- (8%) and Deltaproteobacteria (17%), Planctomycetes 
(7%) and Actinobacteria (6%) (Kraigher et al. 2006). In addition, bacterial clones from 
Sphagnum-dominated peatlands in NE USA (New England) were dominated by Proteobacteria 
(54%), Firmicutes and Acidobacteria (11%), and the rest of the clones were similar to 
Verrucomicrobia, Actinobacteria and Planctomycetes (Morales et al. 2006). According to a 
decomposition study of Sphagnum, Alphaproteobacteria play the dominant role in the early 
stages of decomposition, whereas Actinobacteria or Planctomycetes become more important 
as the material degrades (Kulichevskaya et al. 2007).

Over thirty years ago, Khan and Williams (1975) suggested that acidophilic actinobacteria 
are important decomposers in acidic environments. Over half of the cultivated bacterial genera 
from peatlands were identified as actinobacteria (Given and Dickinson 1975, Williams and 
Crawford 1983). Furthermore, actinobacteria are believed to contribute significantly to the 
decomposition of organic matter since they are mainly strict aerobes (Goodfellow and Williams 
1983) and contain members that can degrade a variety of polymers (e.g., lignin, celluloses, 
pectin, chitin and humic materials) released during the process (Berg and McClaugherty 
2003, Schrempf 2001, McCarthy 1987). Furthermore, Pankratov et al. (2006) suggested 
that actinobacteria play the leading role in cellulose processing of Sphagnum bogs. Many 
of the clones obtained from peat samples are similar to known actinobacteria (Rheims et al. 
1996, Dedysh et al. 2006) and enrichment cultures have verified three groups similar to either 
Acidimicrobium ferrooxidans or Rubrobacter radiotolerans (Rheims et al. 1999). Although 
actinobacteria represent a considerable portion of the soil microbial community, conclusions 
regarding their abundance and importance in peatlands vary (see the references above). Most 
studies concerning microbial (including actinobacteria) communities have been conducted in 
Sphagnum-dominated peatlands, and the generality of their findings or the influence of habitat 
are uncertain.

1.2.1.1 Methane-oxidizing bacteria (MOB)

Since MOB are the only organisms capable of biological oxidation of CH
4
, they are important 

organisms in C cycle regulation. When CH
4
 produced by methanogenic archaea in underlying 

peat layers reaches the upper aerobic part, MOB oxidize a portion of it to CO
2
. Efficiency 

estimates of the oxidation of autogenic CH
4
 in different peatlands vary considerably from 

20% in Carex dominated fens (Popp et al. 2000) to 78% in Sphagnum dominated bogs (Yavit 
and Lang 1987). Ombrotrophic peatlands consume the majority of upward-diffusing CH

4
, 

whereas flux rates to the atmosphere from minerotrophic peatlands remain high because of the 
gas transport through the aerenchyma of vascular plants (Hornibrook et al. 2009).

MOB are traditionally divided into two taxonomic groups within the Proteobacteria. Type 
I MOB include the Gammaproteobacteria Methylobacter, Methylomicrobium, Methylomonas, 
Methylocaldum, Methylosphaera, Methylothermus, Methylosarcina and Methylococcus 
(Hanson and Hanson 1996). Type II MOB include the Alphaproteobacteria Methylocystis, 
Methylosinus, Methylocella and Methylocapsa (Hanson and Hanson 1996). These types differ 
in their carbon assimilation pathways, phylogenetic affiliation, and intracellular membrane 
arrangement (Hanson and Hanson 1996). In addition, Methylocapsa acidophila was suggested 
to form a novel type III since it has a divergent intracytoplasmic membrane structure (Dedysh 
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et al. 2002). Newly characterized MOB have been found in extreme environments, e.g., type 
I-related Methylohalobius crimeensis from hypersaline lakes of Crimea (Heyer et al. 2005) 
and phylum Verrucomicrobia-related MOB from highly acidic geothermal areas (Dunfield 
et al. 2007, Pol et al. 2007). The first step in CH

4
 oxidation is carried out by the key enzyme 

MMO that catalyzes the initial oxidation of CH
4
 into methanol (CH

3
OH). MMO exists in two 

forms, a particulate membrane-bound (pMMO) and a soluble cytoplasmic form (sMMO). 
The particulate form is present in all known aerobic methanotrophs (Hanson and Hanson 
1996) except Methylocella spp. (Dedysh et al. 2000, 2004, Dunfield et al. 2003). Methylocella 
are also known to be facultative since they can utilize single- and multicarbon compounds, 
e.g., methanol, acetate, pyruvate, succinate, malate, and ethanol (Dedysh et al. 2005). The 
cytoplasmic soluble form of the enzyme is present only in certain MOB strains (Murrell et 
al. 2000).

Peatland MOB activity is highest just above the WL, where CH
4
 and oxygen levels are 

adequate for CH
4 
oxidation (Sundh et al. 1994). A maximum concentration of methanotroph-

specific phospholipid fatty acids (PLFAs) were found at an intermediate depth in the more 
nutrient rich and drier surface of the ombrotrophic mixed peatland site compared to wetter 
medium-rich fen site (Sundh et al. 1997). Identification of MOB-specific PLFAs revealed 
the presence of both types I and II MOB in peatland soil (Krumholz et al. 1995, Sundh et 
al. 1994, 1995). Type I MOB dominate in nutrient-rich environments (Amaral et al. 1995, 
Fisk et al. 2003, Wise et al. 1999) whereas type II MOB dominate in nutrient-poor bogs 
(Edwards et al. 1998). Studies from Russian and German bogs showed that 60–95% of MOB 
belonged to type II with Methylocystis being the dominant genus (Dedysh et al. 2003). A 
new type II strain (Methylocystis heyeri) was isolated from an acidic Sphagnum peat bog 
lake in Germany and an acidic tropical forest soil in Thailand. This strain contained PLFA 
16:1w8c, which was previously considered as a signature PLFA of type I MOB (Dedysh 
et al. 2007). Representatives from two novel acidophilic genera, Methylocella palustris and 
Methylocapsa acidiphila, were also discovered from acidic peat bogs (Dedysh et al. 2000, 
2002). Subsequently, two other Methylocella strains were identified; M. silvestris from acidic 
forest (Dunfield et al. 2003) and M. tundrae from acidic tundra peatlands (Dedysh et al. 2004). 
It has been suggested that Methylocella could be key players in CH

4 
oxidation in natural 

peatlands (Dedysh et al. 2001).
A study conducted from blanket peat samples in England combined PLFA analysis 

with stable isotope probing (SIP), mRNA and microarray techniques (Chen et al. 2008). 
They found that only pMMO was active and that Methylocystis and Methylosinus were the 
dominant MOB and largely responsible for CH

4 
oxidation. They also detected an unique group 

of peat-associated type I MOB and a novel group of uncultivated type II MOB related to 
Methylocapsa. Another study based on fluorescence in situ hybridization (FISH) with the 16S 
rRNA gene suggested that partly endophytic methanotrophs in the hyaline cells of submerged 
Sphagnum mosses consume CH

4
 and are a significant (10–15%) C source for Sphagnum in 

peat bogs by coupling the CO
2
 needed for photosynthesis with the CO

2
 released from CH

4
 

oxidation (Raghoebarsing et al. 2005). In a boreal peatland survey, 23 different Sphagnum 
species oxidized CH

4
 and those analyzed possessed a Methylocystis signature (Larmola et 

al. 2010). As for other bacterial groups, studies of MOB diversity and activity have been 
largely conducted in Sphagnum-dominated peatlands and knowledge of other habitats remains 
incomplete.
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1.2.2. Fungi

Several studies have shown that fungal biomass and production dominates that of bacteria 
in peatlands, and which is likely due to their higher tolerance of acidity (Latter et al. 1967, 
Williams and Crawford 1983). Cellulose-degrading fungi are more abundant in peatlands than 
their bacterial counterparts (Hiroki and Watanabe 1996) and nowadays fungi are considered to 
be the main aerobic decomposers in these habitats (e.g., Thormann 2006a, 2006b). In pristine 
wet peatlands, fungal decomposers are mostly limited to the uppermost surface layers (Latter 
et al. 1967, Nilsson and Rülcker 1992). Many microfungal species have been isolated from 
living and decomposing Sphagnum fuscum, and their ability to decompose various organic 
compounds, e.g., tannic acids, cellulose and pectine, is well described (Thormann et al. 2001, 
2002). From a taxonomic point of view, anamorphic ascomycetes were the largest group 
(62%) of microfungi and genera Penicillium and Acremonium were the dominant groups in 
peatland isolation studies (Thormann 2006a). Zygomycetes (Mortierella) were also frequently 
isolated (10% of all species). Both chytridiomycetes and basidiomycetes comprised 4% of 
isolated species. From chytridiomycetes, Rhizopydium, Phlyctochytrium and Septosperma 
were the dominant genera. Teleomorphic ascomycetes represented 3% of isolated species, and 
Chaetomium, Gelanisospora, Sordaria and Thielevia predominated. 106 of 868 individual 
records of microfungi could not be assigned to any known taxon. In addition, many yeasts have 
been isolated from peatlands that are believed to play an important role in the initial stages 
of organic matter decomposition (Thormann et al. 2007). Cryptococcus, Candida, Pichia and 
Rhodotorula were the most abundant genera, accounting for 58% of known peatland yeasts.

The most effective decomposers belong to macrofungi that produce a variety of enzymes, 
e.g., laccases, phenol oxidases, peroxidases, to decompose the most recalcitrant and complex 
organic compounds derived from plant detritus. Typical macrofungal genera identified from 
boreal peatlands are Cortinarius, Galerina, Hypholoma, Mycena, Collybia and Omphalina 
(Salonen and Saari 1990). These genera include litter or wood saprotrophs and mycorrhizal 
fungi, which are also an important component of groundwater-driven ecosystems such as 
fens and wet meadows (Turner et al. 2000). A great diversity of ECM fungi was found in 
peatlands (Salo 1993). These include species of Lactarius, Hebeloma, Laccaria, Russula, 
Tomentella, and Cortinarius, which are most often collected and associated with the tree 
roots (e.g., Picea, Larix, Salix and Betula). Ericoid mycorrhizal (ERM) (e.g., Rhizoscyphus 
ericae, Oidiodendron spp.) fungi are specific to ericaceous plants (shrubs and dwarf-shrubs; 
Andromeda polifolia, Calluna vulgaris, Empetrum nigrum, Ledum palustre, Vaccinium spp.) 
typical of peatland. Mycorrhizal fungi have evolved repeatedly from saprotrophic precursors 
(Hibbett et al. 2000), and some of them seem to have retained the decomposition enzymes 
(Bending and Read 1997, Read et al. 2004). Indeed, some species of ECM genera such as 
Lactarius and Tomentella have catabolic activities in certain ecological niches (Buée et al. 
2007). Thus, some mycorrhizal fungi can potentially switch between symbiont and free-living 
saprotroph, and may enjoy a competitive advantage (Hibbett et al. 2000). This physiological 
flexibility might be especially useful in the organic-rich and generally nutrient-poor soils of 
peatlands (Read and Perez-Moreno 2003, Read et al. 2004).

Fungi can be separated into five behavioral groups according to their substrate utilization 
patterns during the decomposition of organic matter (Deacon 1997). Group 1 consists of 
many common anamorphic molds (e.g., Cladosporium, Alternaria) that use simple sugars and 
other storage compounds of plants. Group 2 contains pioneer saprobes, mostly zygomycetes 
(e.g., Mucor, Mortierella). Group 3 are simple-polymer degrading fungi (e.g., Fusarium, 
Trichoderma, Chaetomium), group 4 includes many basidiomycetes that degrade recalcitrant 
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polymers and group 5 is formed of opportunistic saprobes (e.g., Mortierella, Pythium) that 
are common throughout the decomposition process. The latter stages of decomposition favour 
basidiomycetes, because they are the major decomposers of complex polymers and become 
dominant in the litter as the process continues (Deacon 1997). Saprotrophic fungi differ in their 
ability to utilize compounds as C sources (Thormann et al. 2001, 2002), and thus associate 
with different litter types according to their chemical composition (Thormann et al. 2004a). 
Indeed, differences in microfungal species distributions and succession patterns among 
peatland litter types have been detected; species of Aspergillus, Mortierella and Oidiodendron 
were common in Sphagnum litter in the bog and species of Phialophora, Phialocephala, 
Fusarium, Dimorphospora foliicola, Monocillium constrictum and several basidiomycetes 
were typical of Carex and Salix litters in the fen (Thormann et al. 2003, 2004b).

Although Thormann and colleagues have carried out several important studies of peatland 
fungal ecology, their reliance on traditional laboratory cultivation and microscopic applications 
risks overemphasizing the importance of more easily cultured organisms, e.g., yeasts and 
molds. Notably, many fungi spend most of their life cycle without forming large or hardly 
visible sporocarps and thus may escape detection methods based on microscopic examination 
of fruiting bodies. Artz et al. (2007) found that different fungal groups dominated when species 
lists obtained from isolate cultures and sequenced clones from the same cutover peatlands 
were compared. Furthermore, the hyphae-forming mantles of several species are difficult to 
differentiate, which complicates their identification. These technical obstacles promote the 
use of less equivocal and more direct molecular methods in understanding microbial diversity 
and functional ecology in different peatland types.

1.3 Effects of climate warming and land-use change on peatlands

1.3.1 Impact on the C cycle

The reservoir of C in peatlands is labile, since it is prone to climate variation. Two important 
green house gases, CO

2
 and CH

4
, are responsible for most of the C loss from peatlands. It 

has been estimated that CH
4
 absorbs infrared radiation about 30 times more effectively than 

CO
2
 and contributes up to 20% of global warming (Bouwman 1990). Global green house gas 

emissions due to human activities have increased since pre-industrial times, with an increase 
of 70% between 1970 and 2004 (IPCC 2007). The annual CO

2
 concentration growth-rate was 

larger during the last 10 years (1995–2005 average: 1.9 ppm per year) than it has been since 
the beginning of continuous direct atmospheric measurements (1960–2005 average: 1.4 ppm 
per year) (IPCC 2007). The global atmospheric concentration of CH

4
 has increased from a 

pre-industrial value of about 715 ppb to 1732 ppb in the early 1990s, and was 1774 ppb in 
2005. It has been estimated that climatic warming together with decreased annual rainfall, 
as predicted by scenarios of future climate change, will lower the WLs in boreal peatlands 
(Gorham 1991) and if the annual mean temperature increases by 3 °C, the WL of boreal fens 
will drop by 14–22 cm (Roulet et al. 1992). Another estimate suggests that a temperature 
increase of 2 °C would increase CO

2
 emission by 30% and a drop in the WL of 15–20 cm 

would increase it by 50–100% (Silvola et al. 1996). Because WL determines the borderline 
between aerobic and anaerobic conditions, lowering the WL increases aerobic decomposition 
and CO

2
 flux from peat to atmosphere (Blodau et al. 2004). Furthermore, fluctuation of the 

WL influences CH
4 

emission from peatlands (Kettunen et al. 1999) so greater variation in 
climate extremes will affect the peatland C cycle. It has also been suggested that a higher 
temperature will increase the release of DOC from peatlands (Freeman et al. 2001a) and an 
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experimentally lowered WL caused an immediate export of DOC followed by higher DOC 
concentrations in the pore-water of the drained peatland (Strack et al. 2008).

Direct human activity in peatlands, e.g., drainage for forestry, affects the natural C store. 
In Finland, about 4.5 million hectares of peatland area has already been drained and 54% of 
that area has been converted to forests (Hökkä et al. 2002). CO

2
 emissions usually increase in 

drained or hydrologically-altered peatlands (Silvola 1986, Moore and Dalva 1993, Silvola et 
al. 1996) and Nykänen et al. (1998) found that drainage converted an oligotrophic fen site from 
a CH

4
 source into a small CH

4
 sink. In addition, as the thickness of the aerobic surface layer 

increases, anaerobic generation of CH
4
 decreases, which diminishes the total CH

4
 emission 

by 30–100% depending on the WL and peatland type (Nykänen et al. 1998). Decomposition 
studies have produced partly contradictory results; in field experiments, drainage either did 
not affect (Domisch et al. 2000) or induced both increased (Lieffers 1988, Minkkinen et al. 
1999) and decreased decomposition rates (Laiho et al. 2004). Hydrology undisputedly affects 
C balance in peatlands, but its impacts can be direct or indirect and influenced by the current 
climate, vegetation, litter quality, soil temperature, pH, and microbial activity. As such, it 
remains unclear whether peatlands inevitably transfrom from C sink to C source following 
WLD.

1.3.3 Impacts on aerobic microbial communities  

There is some evidence that the composition and functioning of peatland microbial 
communities vary with environmental conditions. For example, active fungal mycelium 
was affected by seasonal variations in temperature and distance to WL in an oligotrophic 
Sphagnum-dominated mire (Nilsson and Rülcker 1992), and both depth-related factors (e.g., 
oxygen content) and land-use induced changes (e.g., plant cover and moisture) affected 
microbial activity and biomass in raised bogs (Brake et al. 1999). As WL changes influence 
plant community structure (Weltzin et al. 2000, 2003, Laiho et al. 2003), the succession may 
also induce changes in the microbial community. Indeed, microbial responses to the prevailing 
peatland flora have been observed with substrate-induced respiration (SIR), substrate utilization 
patterns (BIOLOG) and with PLFA analysis (Borgå et al. 1994, Fisk et al. 2003). Interestingly, 
a significant response of the fungal community was linked to a vegetation succession induced 
by regeneration of cutover peatlands (Artz et al. 2007). Peatland vegetation, possibly via the 
quality of litter produced, is believed to be the key determinant of changes in the microbial 
community structure following WLD. However, a comprehensive investigation of litter types 
in peatland habitats with different vegetation (nutrient level) and hydrology (WL) has yet to 
be completed and many peatland ecologists are forced to speculate.

Although microbial responses to nutrient levels and litter types are poorly studied, the 
effects of WL or hydrology have been investigated. In the early studies based on counts and 
biomass estimates, a lowered WL resulted in lower abundances of bacteria and yeasts (Huikari 
1953) and increased abundances of aerobic moulds (Huikari 1953), cellulose-decomposing 
microbes (Paarlahti and Vartiovaara 1958), and aerobic bacteria (Karsisto 1979) in surface 
peat. A significant decline in the abundance of genes of eubacteria (16S rRNA), denitrifiers 
(nirS) and methanogens (mcrA) was detected in a short-term drought experiment in a British 
fen and bog (Kim et al. 2008). When phenol oxidase activity was used as a measure of 
microbial activity, it was found to increase and caused a greater diversity and abundance of 
phenolic-catabolizing bacteria after simulated drought in a Welsh peatland (Fenner et al. 2005). 
Polyphenolics inhibit decomposition by binding to the reactive site of extracellular enzymes 
and through the formation of phenolic complexes (Horner et al. 1988) in low temperatures 
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(Freeman et al. 2001b), oxygen (Pind et al. 1994, Freeman et al. 2001a) and pH (Ruggiero 
and Radogna 1984, Pind et al. 1994). Thus, activity of phenol oxidases is believed to be a key 
regulator of peatland C cycling and storage (Freeman et al. 2001b, 2004) and known microbial 
producers include fungi (Bending and Read 1997) and bacteria (Hullo et al. 2001, Endo et 
al. 2003, Fenner et al. 2005). However, litter and organic soil phenol oxidase activity was 
found to be positively correlated with moisture content, which suggests that enzyme activity 
may require an optimal moisture level and be limited by drought in shallow organic soils 
(Toberman et al. 2008).

Microfungal communities in a Swedish mire decreased strongly as site wetness increased 
(Nilsson et al. 1992). Also, Mitchell et al. (2003) found out that fungal biomass correlated 
positively with the increasing WL, pH and total phosphorus. Yet, it has also been shown that 
abundance and growth of some mycorrhizae might be limited in dry or flooded soil (Lodge 
1989). Mycorrhizal fungi are able to colonize woody plants in peatland habitats even when 
fully submerged (Glenn et al. 1991, Baar et al. 2002). In a study of the fungal communities from 
a Scottish heath-moorland gradient, moisture was suspected to be the strongest determinant 
behind the detected community change (Anderson et al. 2003b).

Unfortunately, relatively little is known about the effects of WL lowering or drainage 
on the activity and community structure of MOB in peatlands. WL has been cited as the 
key environmental factor regulating methanotrophy in Sphagnum (Larmola et al. 2010). 
Hypothetically, if lower WL increases aeration of the peatland and decreases the amount of 
CH

4
 released, this could induce a change from a MOB community characteristic of peatlands 

toward a community typical of upland soils capable of oxidizing atmospheric CH
4

 (Knief et 
al. 2003). In the bog, a more moderate response of the MOB community to WLD would be 
expected; WL causes more dramatic changes to vegetation and soil pH in nutrient-rich fens 
compared to nutrient-poor bogs (Minkkinen et al. 1999, Laiho et al. 2003). Yet, contradictory 
findings about the correlation of MOB activity and pH exist; both higher (Dunfield et al. 1993) 
and non-significant (Moore and Dalva 1997) changes in CH

4 
oxidation rate at a higher soil pH 

have been reported. In summary, even though there is evidence that hydrology clearly affects 
microbial communities and their activity rates in peatlands, specific environmental factors 
linked to changes in WL and their relative impact on the microbial community are poorly 
understood.
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2 AIMS OF THE STUDY

Traditional isolation-culture methods risk over-emphasizing more easily cultured taxa and 
may fail to detect potentially important organisms altogether. Limitations of the traditional 
approach can be navigated with chemical markers (e.g., PLFAs), which can be identified to 
group-level and taxon-specific genetic markers (e.g., rRNA gene), which can be subjected 
to selective amplification (e.g., PCR), community fingerprinting (e.g., DGGE) and finally 
sequenced and compared to reference databases for identification. The aims of this thesis 
were to use such methods to survey the activity, diversity and structure of aerobic microbial 
communities in a diverse set of boreal peatland sites with different hydrology and nutrient 
levels. The following questions were examined in the articles comprising this thesis:

How does the total microbial community of different boreal peatland sites, as represented I 
by the PLFA composition, respond to site nutrient level and short- and long-term 
WLD?

How does the fungal and actinobacterial community of different boreal peatland sites II 
respond to site nutrient level and a short- and long-term WLD?

How does methane-oxidizing bacteria (MOB) diversity and activity of different boreal III 
peatland sites respond to site nutrient level and a long-term WLD?

How do fungal and actinobacterial communities specifically, and microbial activity IV 
generally respond to gradual WLD in a northern boreal fen?

How does the active community of litter-decomposing fungi and actinobacteria respond V 
to litter quality, site type, WLD and decompostion stage in boreal peatlands?
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3 MATERIALS AND METHODS

3.1 Study sites and sampling

3.1.1 Lakkasuo 

Lakkasuo (61°47’N, 24°18’E, ca. 150 m a.s.l.) is a boreal raised bog complex in Central 
Finland containing a variety of site types (Laine et al. 2004, Figure 1). Annual rainfall in this 
area is 710 mm, of which about a third falls as snow. Average temperatures for January and 
July are -8.9 and 15.3 °C, respectively. Approximately half of the peatland was ditch-drained 
to encourage tree growth in 1961. This drained portion was used to estimate the long-term 
effects of WLD. An experimental WLD treatment simulating the predicted effect of climate 
change was carried out in 2001 in the undrained part of the peatland (Laine et al. 2004). This 
design was used to estimate the short-term effects of a persistent WLD. Three sites differing 
in their nutrient levels were included in the studies: two in the minerotrophic, mesotrophic 
and oligotrophic fens and one in the ombrotrophic bog. Study sites included a pristine control 
plot, a plot with short-term WLD, and a plot with long-term WLD, all of which had uniform 
vegetation and soil properties before disturbance (Laine et al. 2004). Together, these plots 
formed a gradient towards a peatland forest ecosystem (Laiho et al. 2003) in which WL-
induced changes to the microbial community could be extensively studied in each plot. 
The pristine and short-term WLD plots at the ombrotrophic site included microtopographic 
variation typical of the site type: hummock, lawn-level and hollow microforms. The detailed 
information on vegetation patterns, site nutrient levels (fertility) and WL between peatland 
sites are found in papers I and III. Average WL, pH and element concentrations of each 
sampling plot and layers are presented in Table 1. 

Samples were taken with a box corer in triplicate per plot during May 2004 (I, II) and 
August 2003 (III). The litter-bag experiment was started in the summer of 2006 (V). The first 
and the second set of litter-bags were collected during October of 2006 and 2007 (V). Sample 
sites and plots are shown in Figure 1.

0 125 250 500 Kilometers

0 150 300 600 Meters

P_OL LTD_OL

STD_OL

P_ME LTD_ME

STD_ME

P_OM
LTD_OM

STD_OM

National Land Survey of Finland MML/VIR/MYY/179/08
© Copyright National Land Survey of Finland 2010
Copying the data is prohibited without a consent of National Land Survey of Finland

Figure 1. Map of Finland showing the location of Lakkasuo study site and sampling plots. Following 
abbreviations for sampling plots are used in figure: ME, mesotrophic, OL, oligotrophic; OM, ombrotrophic; P, 
pristine; STD, short-term water-level drawdown; LTD, long-term water-level drawdown.
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3.1.2 Suonukkasuo

Suonukkasuo is a mesotrophic pine fen located in Rovaniemi, northern Finland (66°28’N, 
25°51’E) within the aapa mire zone (Figure 2). Mesotrophic pine fens (RhSR in the Finnish 
peatland site type nomenclature of Laine and Vasander 2005) are typically sites where wet 
lawns and drier hummocks form a mosaic-like vegetation pattern. A ground-water extraction 
plant on an esker bordering and downstream of the peatland has affected WL at the study site 
since 1959, resulting in a clear hydrological gradient where the undisturbed fen (location S4) 
becomes slightly disturbed (location S3), semi-disturbed (location S2), and finally a pine-
dominated mesotrophic peatland forest (location S1) (Figure 2, IV). Intact triplicate soil 
cores were taken in September 2004 (IV). A tentative fungal in-growth mesh bag experiment 
was installed to sample the ECM fungal community. Mesh bags were buried at the four 
hydrologically-different locations (S1–S4) during June 2005 and harvested four months later. 
The average WL, pH and element concentrations of each sampling location and layer are 
presented in Table 2.

S1
S2

S4 S3

Arctic Circle

0 75 150 300 Kilometers

0 150 300 600 Meters

National Land Survey of Finland MML/VIR/MYY/179/08
© Copyright National Land Survey of Finland 2010
Copying the data is prohibited without a consent of National Land Survey of Finland

Figure 2. Map showing the 
location of Suonukkasuo study site 
and sampling plots. Sampling plots 
represent four locations: S1, S2, S3 and 
S4 described in the text.

Plot Layera WL pH (S.E.) N  
(%)

P K Ca Cu Fe Mg Mn Zn C  
(%)

S1 L1 -24 3.8 (0.1) 2.31 1480 389 2350 15.3 21400 575 571 9.06 48.6
L2 3.9 (0.1) 2.36 1430 241 2500 21.4 22500 531 212 4.57 51.2
L3 4.6 (0.0) 2.19 1450 312 2640 25.2 24000 591 254 5.21 51.5
L4 4.6 (0.1) 2.20 1370 1040 2930 38.9 24500 1620 409 13.90 45.2

S2 L1 -25 4.6 (0.0) 2.29 1380 444 2370 9.9 12900 570 174 8.52 49.9
L2 4.5 (0.1) 2.86 1640 186 2170 11.5 12400 404 155 6.20 53.3
L3 4.6 (0.1) 2.79 1540 111 2260 14.6 16500 334 200 5.21 54.8
L4 4.9 (0.1) 2.66 1340 123 2700 20.1 21800 405 375 4.01 54.0

S3 L1 -19 4.6 (0.1) 2.28 1260 410 2520 5.6 16800 471 289 11.70 51.0
L2 4.7 (0.1) 2.84 1340 101 2240 5.3 13500 277 283 5.91 54.4
L3 4.8 (0.0) 2.77 1240 54 2550 6.4 16600 281 413 5.25 55.9

S4 L1 -12 4.1 (0.2) 2.47 1250 412 1990 4.1 13400 343 239 9.59 51.9
L2 4.3 (0.2) 2.69 1210 99 2250 4.5 15300 204 270 6.98 54.4

a. L1, 0–10 cm; L2, 10–20 cm; L3, 20–30 cm; L4, 30–40 cm. b. unit kg m-3. c. measured from a depth of 30–50 cm

Table 2. Average WL, pH and peat element concentrations (mg kg-1) for the study locations in Suonukkasuo (IV).
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3.2 Analyses

A short description of the methods and analyses is given below and summarized in Table 3. 
Further information can be found in the attached papers (I–V). PCR primers for each of the 
studied microbial groups are presented in Table 4.

3.2.1. Chemical analyses

Dry weight was determined after drying at 105 °C overnight (I–IV) and soil pH was determined 
in distilled water (1:3, vol/vol) using fresh peat soil (I–IV). Concentrations of carbon and 
nitrogen were determined from air-dried samples with a LECO CHN-1000 analyzer and 
the concentration of other elements with an inductively coupled plasma atomic emission 
spectrometer (ICP-AES, ARL 3580) (II, IV).

3.2.2 Microbiological analyses

Microbial biomass and total community structure was investigated by PLFA analysis (I, IV). 
Identification of microbial groups was based on differences in the relative composition of 
cell membrane PLFAs. Briefly, the sum of PLFAs i15:0, a15:0, 15:0, i16:0, 16:1w9, 16:1w7t, 
i17:0, a17:0, 17:0, cy17:0, 18:1w7 and cy19:0 was considered to be predominantly of bacterial 
origin and chosen as an index of bacterial abundance (Frostegård and Bååth 1996). PLFAs 
a15:0, i16:0 and a17:0 have been found to be clearly more common in Gram-positive bacteria 
(Haack et al. 1994) and thus the sum of these was used as an indicator of their abundance. 
Correspondingly, PLFAs 16:1w9, 16:1w7t, 16:1w5, cy17:0, 18:1w7 and a19:1 are suggested 
to be common in Gram-negative bacteria (Wilkinson 1988) and thus the sum of these was used 
as an indicator of their abundance. The PLFAs 10Me16, 10Me17, 10Me18 were considered 
to be of actinobacterial origin (Kroppenstedt, 1985). The quantity of 18:2w6 was used as 
an indicator of fungal abundance, because it is suggested to be mainly of fungal origin in 
soil (Federle 1986) and collerates well with the amount of ergosterol (Frostegård and Bååth 
1996).

Fungal, actinobacterial and MOB communities were analyzed by molecular methods (II–
V). DGGE is based on the electrophoresis of amplified PCR products in polyacrylamide gels 
containing a gradient of chemical DNA denaturants. Partial DNA fragments with different 
base pairs in their sequences have unique melting temperatures and thus migrate differentially. 
Some limitations of the method are known in that PCR primer bias may produce chimeric 
sequences when using DNA extracted directly from environmental samples (Jumpponen 
2007). In addition, small amounts of microbial DNA may PCR poorly and escape detection 
in DGGE. Direct sequencing of DGGE bands that are incompletely resolved may also be 
problematic if they cannot be separated by excision. In spite of these technical obstacles, 
direct PCR-DGGE-sequencing offers a relatively rapid method of analyzing a large number 
of samples, such as in this study.

Fungal communities were studied with partial small subunit (SSU) or 18S rRNA gene 
(II, V) and ITS region (IV). The ITS region is located between 18S rRNA and 25S rRNA 
genes and consist of two non-coding spaces (ITS1 and ITS2) that are separated by the 5.8S 
rRNA gene. ITS is a highly variable region that can provide greater taxonomic resolution than 
18S rRNA alone and enables more precise identification (Anderson et al. 2003a). Former 
research teams in our laboratory have found 18S rRNA to be a suitable marker for fungal 
community studies (Vainio and Hantula 2000, Pennanen et al. 2001), and it was therefore 
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Target of analyses and used methods In paper
Chemical characterization
Element concentrations

C and N with LECO CHN-1000 II, IV
Dry ashing and HCl with ICP-AES ARL 3580 II, IV

Peat soil pH
Water suspension (1:3; vol:vol) I–IV

Dry matter (d.m.)
+105 °C I–IV

Microbial activity
Basal respiration

potential CO2 evolution with GC I, IV
Field respiration

CO2 evolution in the field with IRGA IV
Activity of MOB

Potential CH4 oxidation with GC III

Microbial community structure
Total microbial community

PLFA extraction and analysis with GC I, IV
Fungal, actinobacterial and MOB community

DNA extractions from mycelia IV
DNA extraction from soil II, III, IV
PCR-DGGE and sequencing II, III, IV

Active fungal and actinobacterial community 
RNA extraction from litters V
Reverse-transcription of RNA to cDNA V
PCR-DGGE and sequencing V

Diversity of fungi and actinobacteria
Shannon-Weaver diversity index II, V

Phylogenetic analyses (ARB) II, III, IV, V

Testing of microbial community response
Patterns of DGGE band composition

Multivariate methods:
DCA, PCA, RDA, CA, CCA (CANOCO 4.5) I, II, IV, V
NMDS (PC-ORD 4.0) III

Diversity indices
Two-way ANOVA (SYSTAT 10) II

MOB community and environmental variables
Pearson’s correlation (Statistix 8) III

Respiration and CH4 oxidation models
Linear mixed models (MLwiN 2.02) I, III, IV

Table 3. Analyses and methods used in the papers of this thesis.
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chosen for the first fungal community study in Lakkasuo (II). Preliminary fungal community 
analyses with both 18S rRNA and ITS markers were conducted at Suonukkasuo as part of an 
earlier Master’s thesis (Vuorenmaa 2005) and ITS was selected for further analyses because it 
yielded better separation between sampling locations (IV). Reverse transcription products of 
18S rRNA gene were of a higher quality than those of ITS and it was also chosen to determine 
fungal community in litter samples (V).  

Actinobacterial communities were studied with partial 16S rRNA gene analysis (II, IV, V). 
Ribosomal RNA is an excellent molecule to identify microbes since it is found abundantly in 
all living cells and contains sufficient genetic variation to be a useful genus/species marker 
(Woese 1987). The sequence of nucleotides in rRNA is highly conserved, and evolutionary 
relationships among all life forms can be inferred by comparing rRNA sequences (Woese 
1998). 

For peat soil analyses, we used extracted rRNA gene that can also be obtained from 
dormant or dead cells (II, IV). Notably DNA-based analyses can potentially detect the entire 
community irrespective of organismal activity. Metabolically active species synthesize larger 
amounts of RNA. Thus, the direct recovery of rRNA from environmental samples enables the 
metabolically active microbes to be detected and measured (Aneja et al. 2004, Girvan et al. 
2004, Pennanen et al. 2004). For the litter analyses, extracted RNA was immediately reverse 
transcribed into cDNA, which can be further PCR amplified and used in additional analyses 
(V). MOB were characterized with two partial functional genes, pmoA (Holmes et al. 1995) 
and mmoX (Auman et al. 2000), which encode the A-subunit of the pMMO and the α-subunit 
of the hydroxylase component of the sMMO, respectively (III). DGGE bands with separate 
positions in gels were excised, re-amplified, purified, sequenced and subjected to a BLAST 
search of databases maintained by the National Center for Biotechnology Information (NCBI) 
and SeqMatch search of Ribosomal Database Project (RDP) releases 9.44 or 10 (Cole et al. 
2005, 2009). Alignments and phylogenetic trees were created with the ARB package (Ludvig 
et al. 2004) to explore the diversity and taxonomic affiliation of the sequenced microbial 
DGGE bands.

Basal respiration or potential microbial activity in fresh peat samples was measured under 
laboratory conditions as the amount of CO

2
 evolved in 66 h (I, IV). Field respiration was 

Target Marker Primer Sequence 5’→ 3’ Fragment 
length (bp)

Reference

Fungi 18S rRNA FF390
FR11

CGA TAA CGA ACG AGA CCT
GAI CCA TTC AAT CGG TAI T

390 Vainio & Hantula 2000

ITS ITS1F2

ITS2
CTT GGT CAT TTA GAG GAA GTA A
GCT GCG TTC TTC ATC GAT GC

290 Gardes & Bruns 1993
White et al. 1990

Actino- 
bacteria

16S rRNA S-C-Act-235-a-s-203

S-C-Act-878-a-A-19
CGC GGC CTA TCA GCT TGT TG
CCG TAC TCC CCA GGC GGG G

643 Stach et al. 2003

MOB pmoA A189f4

A682r
GGS GAC TGG GAC TTC TGG
GAA SGC NGA GAA GAA SGC

500 Holmes et al. 1995

mmoX mmoxA4

mmoxB
ACC AAG GAR CAR TTC AAG
TGG CAC TCR TAR CGC TC

1100 Auman et al. 2000

gc-clamps: 1 CCCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGCC, 2 
CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGG, 
3 CCCCCCCCCCCCCGCCCACCGCCCCCCGCCCCCGCCGCCC, 4 CCCCCCCCCCCCCGCCCCCCGCCCCCCGCCCCCGCCGCCC

Table 4. PCR-primers used in the papers II–V.
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conducted at the study site to measure total heterotrophic microbial activity in peat soil, and 
fluxes were calculated as a linear change of CO

2
 concentration in chamber headspace over 

time (IV). MOB activity was measured in the laboratory as a linear decrease of CH
4
 in the 

bottle headspace over time (III).

3.2.3 Multivariate and statistical analyses 

Communities were screened for the presence (1) or absence (0) of observed bands in DGGE. 
Several multivariate analyses were used to detect changes in microbial communities since 
they offer tools for explaining and interpreting the complex microbial ecological data, its 
dissimilarities, similarities, and relationships between environmental variables (Ramette 
2007). Multivariate analyses were conducted using the Canoco for Windows 4.5 software 
(Lepš and Šmilauer 2003). First, heterogeneity in the data was examined using DCA and, 
depending on the gradient lengths, linear (PCA, RDA) or unimodal (CA, CCA) methods were 
applied to PLFA composition and DGGE binary data. Significance of the axes was evaluated 
with Monte Carlo permutation tests (500 or 1000 permutations with reduced model). We used 
the Jaccard coefficient and NMDS method (Ellison 2000) for MOB-derived DGGE binary 
data (III). NMDS was simply chosen to illustrate similarity among communities. Pearson’s 
correlation analysis was performed among pH, CH

4 
oxidation rate, and amount of pmoA 

DGGE bands (Analytical Software Statistix 8) (III). A mixed (multilevel) regression model 
(Goldstein 1995) was applied to quantify the effects of environmental variables on basal/
field respiration, CH

4 
oxidation, and their relationships to different microbial communities 

(III, IV). We applied the RIGLS method, which is recommended for small samples (Rasbash 
et al. 2000). Shannon-Weaver diversity indices (Shannon and Weaver 1963) were calculated 
for fungi and actinobacteria in each peat core (i.e., integrating layers L1–L3 per sampling 
location) (II) and for replicate litter samples in each plot (V). The diversity indices were 
subjected to two-way analysis of variance (ANOVA) with General Linear Models in the 
SYSTAT v. 10 package (II).
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4 RESULTS AND DISCUSSION

Environmental influences will be presented first followed by changes in microbial community 
structure and activity.

4.1 Factors affecting microbial communities

4.1.1 Site type

Microbial communities clearly responded to the nutrient status of peat soils, since the PLFA 
composition differed among pristine peatland sites with different nutrient levels in Lakkasuo 
(I). Also fungal communities differed between the fen sites and the bog in Lakkasuo according 
to fungal 18S rRNA gene sequence data (II). The results are congruent with the vegetation 
pattern (Laine et al. 1995), which is more similar between the two fens than between either of 
the fens and the bog, and may reflect variation in substrate quality and heterogeneity.

Results from papers II and IV showed similar trends with the findings from earlier studies 
where the microfungal community composition was related to peatland type and wetness 
(Nilsson et al. 1992), and where a moorland-forest moisture gradient determined the fungal 
sequence composition (Anderson et al. 2003b). Site type also affected the active fungal and 
actinobacterial community composition in litter (V). Fungal communities of the surveyed sites 
probably follow ecohydrology and, consequently, the physical and chemical characteristics 
(e.g., pH, substrate quality, gas exchange) of the peatland types (Laine et al. 2004). Despite 
differences detected between fens and bogs, actinobacterial community found in the pristine 
Lakkasuo sites were not influenced by environmental variables (II). The oligotrophic fen and 
ombrotrophic bog sites possessed different MOB community (III).

Some sequences exhibited a random distribution pattern among sampling plots and/or 
layers. Thus, differences observed in the fungal response patterns among sites may not imply 
real differences in all cases, but may be artificial and due to the limited coverage of sample 
cores. Also, a high spatial variability of microbial distribution patterns must be kept in mind 
when sampling (Pennanen et al. 1999, Malmivaara-Lämsä et al. 2008). On the other hand, it 
has been suggested that an observable and predictable distribution pattern of soil organisms 
exists and might be linked to, e.g., vegetation, fine roots and the aggregation of organic matter 
or soil carbon (Ettema and Wardle 2002).

4.1.2 Depth

Sampling depth was inevitably one of the main factors shaping the total PLFA distribution 
both in Lakkasuo and Suonukkasuo (I, IV). This result was expected, since the importance 
of peat depth has been emphasized before (Artz et al. 2006). O

2
 availability likely explains 

part of the fundamental differences in PLFA composition since an earlier study found it had a 
strong effect on PLFA patterns in two wetlands differing in carbon quality, storage and water-
holding capacity (D’Angelo et al. 2005).

The fungal communities of the surface and deeper layers diverged both in Lakkasuo 
and Suonukkasuo, and correlated positively with distance from WL (II, IV). Indeed, the 
surface fungal community differed clearly between locations, whereas that of deeper layers 
had become more similar in Suonukkasuo (Fig. 3 in IV). The result may be explained by 
homogeneity in layers containing old peat, e.g., substrate quality and O

2 
availability have 

become more stable than in the surface peat, where fresh litter may feed a more diverse fungal 
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community. Actinobacteria of all sites in Lakkasuo and different locations in Suonukkasuo 
separated clearly according to sampling depth (II, IV). Actinobacteria may be dependent on 
some other depth-related factor than moisture or aeration, e.g., substrate quality generally 
decreases downwards along with the state of decomposition (Hogg et al. 1992, Hogg 1993). 
In addition, the pmoA-possessing MOB were also affected, since DGGE bands increased with 
sample depth (III).

4.1.3 Water level drawdown (WLD)

A clear change in the PLFA composition of peat soils following WLD was detected in all 
three sites with different nutrient levels in Lakkasuo (I) and along the WL gradient between 
the sampling locations in Suonukkasuo (IV). Changes after short-term WLD were smaller in 
both sites compared to long-term WLD, and the change was most prominent in the nutrient-
rich mesotrophic fen and least prominent in the ombrotrophic bog (I). Thus, WLD induced 
changes in microbial communities seem to correspond with nutrient level, as well as changes 
in vegetation (Laine et al. 1995) and litter quality (Laiho et al. 2003). Similarly, the WL 
gradient was the strongest determinant for the PLFA composition in Suonukkasuo; the greatest 
separation was seen between the driest and wettest locations (IV).

WLD affected fungal communities at all peatland sites (II) and locations (IV) as well as 
active fungal and actinobacterial community composition in litters (V). Fungal communities 
became somewhat similar between sites after long-term WLD (II). Fungal diversity increased 
after short-term WLD, but not after long-term WLD (Table 2 in II) and patterns of change for 
most fungal sequences that responded to WLD were often dependent on site (Table 3 in II). 
One explanation for this could be that short-term WLD has created transient environmental 
conditions that induce a colonization of common aerobes leading to higher overall diversity. 
Following long-term WLD, upon establishment of the drier conditions the environment 
dramatically differs from the pristine one (Laiho 2006) and continued gradual replacement of 
specialists by generalists leads to lowered diversity. Similar patterns of succession have been 
noted in plants (Laine et al. 1995, Vasander et al. 1997).

The greatest difference in Suonukkasuo was detected between the driest and the wettest 
locations, which are also the most floristically different, i.e., drier locations had more shrubs and 
trees compared to the wettest location (IV). In Suonukkasuo, the actinobacterial community 
was rather homogeneous among locations although WL was variable (IV). Results indicate 
that actinobacterial response to hydrological change, whether drastic or gradual, is minor 
(II, IV), and it seems that most actinobacteria in boreal peatlands may be rather resilient to a 
fluctuating environment. The MOB community also clearly changed in the oligorophic fen 
and the ombrotrophic bog sites following WLD (III).

4.1.4. Substrate quality (for litter decomposers)

The litters of the litterbag experiment represented rather fresh organic matter, while peat soil 
is an older substrate of generally increasing age and decomposition with depth. Litter type had 
the greatest impact on active fungal and actinobacterial communities after the first and second 
years of decomposition (V). The result agrees with earlier findings that litter quality is the 
main regulator of initial decomposition and fungal community structure (Trinder et al. 2008). 
Different fungal sequences were typical of certain litter types in different years, indicating 
that the decomposition stage affects communities as well (Table 5). Indeed, decomposition 
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stage is known to affect fungal colonization in needles (Osono et al. 2006). The effect of 
decomposition stage on actinobacterial communities was minor (Table 5).

Litter chemical composition explained most (30–40%) of the variation among microbial 
communities (Table 2 in V). This variation is difficult to interpret because of its multidimensional 
nature due to numerous chemical variables. In general, after the first year of decomposition, 
the concentrations of some nutrient elements, e.g., lignin, lignin-like compounds and 
hemicelluloses, had the greatest influence on fungal community structure (Table 3 in V). 
In the second year of decomposition, the influence of carbon related compounds increased 
while that of some initial nutrient element concentrations decreased. Manganese, which is an 
important component of certain ligninolytic fungal enzymes (Morgenstern et al. 2008), was 
influential in the first and second years of decomposition. Variables that seemed to have some 
relevance for the actinobacterial community composition in both years were total carbon and 
Klason lignin (Table 3 in V).

Fungal diversities between litter types varied considerably and were highest in graminoid 
leaf litters (Table 4 in V). The lowest fungal diversities were detected on branches and in foliar 
litter after the first and second year of decomposition, respectively. The result from the first 
year of decomposition likely involves the lower litter quality which fewer fungi can utilize. In 
the second year, foliar litters were already so well decomposed which might have affected the 
rRNA yield and further to fungal diversity in them.

Foliar litter and needles had the greatest actinobacterial diversity after the first and second 
year of decomposition, respectively (Table 4 in V). The lowest actinobacterial diversity in 
both sampling sets was detected on branches, which may reflect the lack of organisms capable 
of using wooden substrates.

4.1.5 The explanatory power of different factors

The response of microbial communities to environmental factors was explored across a variable 
set of boreal peatland sites from both fresh and older substrate. Firstly, litter quality had the 
greatest impact on the structure of active microbial decomposer communities, especially fungi 
(V). Secondly, the site of decomposition as well as their hydrological status influenced the 
active microbial community composition but to a lesser extent. Thirdly, microbial function 
(defined as litter-mass loss after the two-year-decomposition period) could not be explained 
in terms of fungal community composition and only to a minor extent by actinobacterial 
community composition after the second year of decomposition (V).

Sampling depth and site had the greatest, and WLD the second greatest impact on total 
microbial communities in Lakkasuo (I). Notably, interactive effects of sampling depth and 
WLD had greater explanatory power than these two variables separately. Site and WLD had 
the greatest, and depth the second greatest effect on the fungal community (II). The combined 
effects of the sampling depth and WLD explained more of the variation than these factors 
alone in the oligotrophic fen and in the ombrotrophic bog (II). Sampling depth had the greatest, 
and site the second greatest effect on the actinobacterial community, and WLD was also 
influential in the mesotrophic fen (II). Both WLD and sampling depth had strong effects on 
the total microbial and fungal community, whereas only sampling depth significantly affected 
the actinobacterial community in Suonukkasuo (IV). Although MOB community was also 
affected by site type, depth and WLD, community analyses were explored with NMDS and 
thus these factors cannot be ranked in a similar manner (III).
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Fungi Litter type Taxonomic affiliation Putative ecological role  
(e.g. reference)

1st year pine needles Cortinarius ECM, saprotroph of well decomposed 
organic matter (Lindahl et al. 2007)

E. vaginatum leaves Marasmius, Rhodocollybia saprotroph of fresh litter and lignin 
(Lindahl et al. 2007, Valášková et al. 
2007)

C. lasiocarpa leaves Mycena, Hygrocybe saprotroph of fresh litter (Griffith & 
Roderick 2008, Lynch & Thorn 2006)

pine branches Arthonia dispersa, Leotia pathogen, wood-decayer (Wang et al. 
2006)

forest moss Meliniomyces, Phialocephala ERM, saprotrophs of many polymers 
(Currah & Tsuneda 1993, Piercey et 
al. 2002)

S. fallax Boletaceae unknown
2nd year pine needles Basidiomycete putative lignin-degrader (Blackwood 

et al. 2007)
pine branches Hyphodiscus, Oidiodendron saprotrophs of various woody 

substrates (Bending & Read, 1997, 
Hosoya 2002) 

S.fallax Boletaceae unknown
Actinobacteria
1st year pine needles Frankia free-living saprotrophs, nitrogen-

fixers (Arveby & Huss-Daniel 1988, 
Smolander et al. 1988, Nickel 2000)

B. nana leaves Frankia free-living saprotrophs, nitrogen-fixers
pine branches ambiguous unknown
E. vaginatum leaves ambiguous unknown
forest moss ambiguous unknown
E. vaginatum basal sheats Frankia free-living saprotrophs, nitrogen-fixers
C. lasiocarpa leaves Frankia free-living saprotrophs, nitrogen-fixers
Sphagnum mosses Frankia free-living saprotrophs, nitrogen-fixers
S.fallax ambiguous unknown

2nd year pine needles Frankia free-living saprotrophs, nitrogen-fixers
B. nana leaves Frankia free-living saprotrophs, nitrogen-fixers
S.fallax ambiguous unknown

Table 5. Taxonomic affiliation of the sequences, and their putative ecological role in different litter types during 
the two-year decomposition period.



29

4.2 Microbial community composition

4.2.1 Total community

The relative proportion of bacterial PLFAs as well as the proportion of Gram-positive and 
Gram-negative PLFAs was higher in the minerotrophic fens than in the bog (I), and this result 
is in line with previous studies of sedge-dominated fens (Holding et al. 1965, Borgå et al. 
1994). The dominance of mono-unsaturated PLFAs in surface layers of fen sites and the 
increasing amount of saturated PLFAs with depth probably reflects the presence of aerobic 
bacteria at the surface and anaerobic forms in deeper layers, as suggested by Sundh et al. 
(1997). The same trend was observed at Suonukkasuo, where the upper layers had a distinctive 
PLFA composition compared to deeper ones (IV).

Fungal PLFAs dominated in the drier hummock and lawn surfaces of the ombrotrophic bog, 
which may indicate an abundance of mycorrhizal fungi on these surfaces (I). The proportion 
of actinobacterial PLFAs was highest in the nutrient-rich mesotrophic fen at Lakkasuo (I) 
and, correspondingly, actinobacteria dominated in the surface layers of the wettest locations 
at Suonukkasuo (IV). The result indicates that actinobacteria play a more important role in 
nutrient-rich peatlands. As certain actinobacteria are suggested to decompose acidic litter 
above and organic matter below ground (Khan and Williams, 1975), and to act as antagonists 
of fungi (Dinishi Jayasinghe and Parkinson 2008), it is likely that fungi are their major 
competitors in acidic environments. Thus, actinobacteria might have a competitive advantage 
over fungi in nutrient-rich fens of a higher pH.

A lower WL increased fungal PLFAs over bacterial PLFAs only at the wettest sites, the 
mesotrophic fen and hollow surfaces of the bog in Lakkasuo (I). The increasing abundance 
of fungi after WLD may partly reflect the increase of mycorrhizal vegetation (e.g., shrubs 
and trees). A similar trend was detected at Suonukkasuo, where an increase of the fungal and 
bacterial biomass ratio in the drier locations was positively correlated with a lower WL (IV). 
Fungi may enjoy a competitive advantage over bacteria in drier conditions where the substrate 
is more recalcitrant. The typical pattern for the wetter conditions seemed to mirror a decrease 
of actinobacterial PLFAs after WLD at both Lakkasuo and Suonukkasuo (I, IV). On the other 
hand, sample depth or some other depth-related factor was more important than WLD for 
actinobacteria at the drier peatland sites.

Some reservations must be made when PLFAs are handled as group-specific indicators 
for bacteria (I and IV). Signature fatty acids are based on cultivated species, although the 
majority of bacteria remain to be cultivated. As new bacteria are isolated and characterized, 
the knowledge of different PLFAs in groups may change. For example, although iso- (i) and 
anteiso (a) branched fatty acids are generally considered as indicators for Gram-positive 
bacteria, several Gram-negative bacteria also contain significant amounts of them (e.g., 
Männistö and Häggblom 2006, Männistö et al. 2007).

4.2.2 Fungal community

Fungal 18S rRNA gene and ITS sequences from peat soil and cDNA-derived 18S rRNA gene 
sequences from litters clustered with fungi capable of utilizing a broad range of substrates (II, 
IV, V). Unfortunately, the fungal 18S rRNA gene marker is not sufficiently variable to provide 
universally decisive identification at the generic level. Furthermore, the 18S rRNA primers 
also amplified non-target organisms (e.g., algae and protozoa) and a sequence of common 
mire plant, Menyanthes trifoliata L., with one base pair mismatch. However, the sequence 



30

data provided many useful insights and the majority of fungal sequences from Lakkasuo 
were split equally between Ascomycota and Basidiomycota (II, V). Most of the fungal ITS 
sequences from peat soil of Suonukkasuo were similar to Basidiomycota (IV). Interestingly, 
most of the sequences from Lakkasuo and Suonukkasuo were identified as different fungal 
taxa. This might be explained by the use of different genetic markers in these studies that, 
through their comparison with available databases of incomplete coverage, produced different 
views of fungal diversity in peatlands. ITS databases appear to be dominated by basidiomycete 
sequences, since this group is more commonly used for ectomycorrhizal studies (Dahlberg 
2001, Horton and Bruns 2001).

A few sequences that were found in both peat and litter samples were similar to a common 
set of taxonomic groups (Fig. 1 in II, Fig. 4 in IV, Figs. 1 and 2 in V). These included the 
common soil zygomycete Mortierella (Deacon 1997, Thormann 2006b) and ECM genus 
Russula. These taxa may represent ubiquitous members of peatland fungal communities. In 
addition, identical sequences were obtained from peat and litter samples at Lakkasuo that 
were similar to Podochytrium (Chytridiomycota), Babjevia (Lipomycetaceae) and several 
genera of aero-aquatic cellulose degraders (Dothideomycetes) (Fisher et al. 1977, Abdullah 
and Taj-Aldeen 1989) (II, V).

Quite unexpectedly, sequences similar to the common and fast growing genera Mucor 
and Penicillium were not detected at any of our sites (II, IV, V) even though their presence 
in peatlands has been confirmed elsewhere (e.g., Given and Dickinson 1975, Thormann 
2006a, 2006b). It is unlikely that these genera would be entirely absent from Lakkasuo and 
Suonukkasuo, but they are certainly not abundant (II). These fungi may constitute only a 
small part of the fungal biomass although they are easily detected by traditional cultivation 
methods (e.g., Fritze and Bååth 1993, Artz et al. 2007, Lindahl and Boberg 2008). Similarly, 
no arbuscular-mycorrhizal (AM) fungi (Glomeromycota) were detected among the sites 
although they are common in nutrient-rich fens (Wolfe et al. 2007) where they form mutualistic 
associations with plants such as sedges (Turner et al. 2000).

Different fungal sequences characterized the two fens and the bog site at Lakkasuo (II). 
For instance, sequences that were similar to, e.g., uncultured Boleaceaceae clone from aspen 
rhizosphere (Lesaulnier et al. 2008) and a clone clustering in the same clade with Mortierella 
were typical of the fen. Another sequence that was most similar to Dothideomycetes (e.g, 
Helicoon and Tyrannosorus) was typical of the bog. The latter includes cellulose degraders 
(Fisher et al. 1977) and major decomposers of wood and plant litter as well as plant parasites 
and biotrophs (Goos 1987). In addition, a sequence similar to ECM-forming Russula was 
found in almost all of the pristine sites. This result agrees that ECM fungi are common in 
peatlands (Thormann et al. 1999), but does not confirm that they have a rather narrow tolerance 
of site wetness (Lodge 1989).

Collectively, the results suggest that WLD may have a greater effect on basidiomycetes 
than ascomycetes (Table 3 in II). Only one ascomycete sequence showed a response (positive) 
to long-term WLD. This sequence was similar to Sordariales, which is a diverse group 
containing lignicolous, herbicolous, coprophilous and soil-dwelling taxa (Huhndorf et al. 
2004). In addition, the response to WLD was variable and taxon specific. For instance, a 
sequence similar to the wood-decomposing genera Cymatoderma and Panus appeared in the 
oligotrophic fen and in the hummock-surfaces of the ombrotrophic bog after short-term WLD, 
and another sequence similar to Clavulina disappeared in the mesotrophic fen and the bog 
after long-term WLD. The response of chytrids to WLD was also variable but appeared to be 
site dependent. 
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Most of the fungal ITS sequences from Suonukkasuo were typical of drier locations 
(IV). Typical sequences of wetter sites clustered with both Ascomycota (Cercophora) and 
Basidiomycota (e.g., Russula, Tylospora, Theleporaceae, Hypholoma). Sequences of the 
ECM fungi Russula nitida and Tylospora fibrillosa were more typical of surface layers, 
whereas those similar to Cercophora were commonly found in deeper layers. Most of the ITS 
sequences derived from in-growth mesh bags represented mycorrhizal fungi (IV). The results 
support the view that some ECM fungi are able to switch from symbiotic mycorrhizal to a 
saprotrophic lifestyle (Hibbett et al. 2000), and their limited ability to use certain complex 
compounds, e.g., tannic aid, lignin, cellulose and pectin (Hutchison 1990, Bending and Read 
1997) may confer a competitive advantage in organic-rich soils Read and Perez-Moreno 2003, 
Read et al. 2004).

Fungal sequences that were typical of site, WLD or both were observed (Table 6). Since 
the litters analysed were not sterilized, microbes that were present prior to field establishment 
might have affected the initial community composition and subsequent succession. For 
example, it has been reported that phyllosphere fungi change the litter quality and in turn 
affect its subsequent decomposition and fungal succession (Osono 2003). Phyllosphere fungi 
might contain primary saprotrophs (Hudson 1968) that readily utilize carbohydrates and 
generate a more favourable environment for the colonization of fungi capable of decomposing 
more recalcitrant substances. Müller et al. (2001) found that endophytic fungi act as pioneer 
decomposers in surface-sterilized spruce needles when incubated for 5 months on sterile 
and non-sterile soils. Furthermore, endophytic fungi were an active part of the needle-decay 
community during the entire two-year decomposition study (Korkama-Rajala et al. 2007).

Fungi Site or plot Taxonomic affiliation Putative ecological role (e.g. reference)
1st year LTD ME Russula ECM

LTD OM Meliniomyces, Phialocephala, 
Cladophialophora

ERM, saprotrophs of many polymers (Currah & 
Tsuneda 1993, Piercey et al. 2002, Davey & Currah 
2007)

2nd year OM mitosporic Herpotrichiellaceae saprotrophs of litters, wood and soil (Domsch et 
al. 1980)

LTD ME zygomycete, Phlebia soil saprotrops, white-rot fungi capable of lignin 
decaying (Hatakka 1994) 

Actinobacteria
1st year ME Frankia free-living saprotrophs, nitrogen-fixers (Arveby & 

Huss-Daniel 1988, Smolander et al. 
1988, Nickel 2000)

OM Rhodococcus saprotrophs of many compounds (Bell et al. 
1998, Häggblom et al. 1988, van der Geize and 
Dijkhuizen 2004, Larkin et al. 2005) 

LTD ME Mycobacterium saprotroph, pathogen (Kazda et al. 1990, Torkko et 
al. 2000, Tortoli 2003)

2nd year ME ambiguous unknown
OM ambiguous unknown

Table 6. Taxonomic affiliation of the sequences, and their putative ecological role in different sites or plots during 
the two-year decomposition period.
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4.2.3. Actinobacterial community

Collectively, results (II, IV, V) suggest that public databases currently offer a limited reference 
set of sequences for actinobacteria, and agrees with the earlier suggestion that relatively few 
of the soil bacteria have been described (Joseph et al. 2003). A BLAST search for the most 
actinobacterial 16S rRNA sequences derived from either DNA or rRNA from Lakkasuo and 
Suonukkasuo matched to a set of “unknown actinobacterial clones” or “isolates from a variety 
of environments” (II, IV and V).

Ribosomal Database Project (RDP) classifier software (Wang et al. 2007) was tested to 
search for the closest similarity to the quality checked full-length 16S rRNA gene sequences 
of the known actinobacterial taxa in the RDP database (Appendix A. in the thesis). Lakkasuo 
litter-derived sequences (V) were classified with the most diverse set of known actinobacterial 
taxa compared to peat-derived sequences (II) and sequences from Suonukkasuo (IV) (Appendix 
A.). The RDP classifier revealed that the confidence values for sequences are rather low with 
most of the known taxa and most sequences remain unclassified within the taxa. This further 
proves that the obtained sequences are only distantly related to any known taxa.

Since sequences similar to Mycobacterium were found in peat and litter samples of both 
Lakkasuo (II, V) and Suonukkasuo (IV), this reflects their common occurrence and abundance. 
Sequences similar to Rhodococcus seem to be important at Lakkasuo since they were found 
in both from peat and litter samples (II, V). Although 16S rRNA is a relatively conserved 
marker in Mycobacterium (Turenne et al. 2001), Lakkasuo sequences (II) clustered with 
pathogenic species as well as groups that are considered purely saprotrophic, e.g., M. cookii 
from Sphagnum in New Zealand (Kazda et al. 1990) and slow-growing strains of M. xenopi 
and M. botniense (Torkko et al. 2000) and sequences from Suonukkasuo (IV) were similar to 
M. chlorophenolicum, known to mineralize pentachlorophenol (Briglia et al. 1994, Häggblom 
et al. 1994, Apajalahti et al. 1986). Some members of Rhodococcus are well known for their 
metabolic versatility and capacity to degrade environmentally hazardous chemicals (Bell et 
al. 1998, Häggblom et al. 1988, van der Geize and Dijkhuizen 2004, Larkin et al. 2005). 
Presumably, some of these taxa can also degrade the complex hydrocarbons accumulating 
in peat soils. In summary, the broader range of soil pH and vegetation patterns at Lakkasuo 
may partly explain the more diverse actinobacterial community compared to that in the 
Suonukkasuo fen.

The peat soil actinobacterial community at Lakkasuo was not affected by site type (II). 
However, the occurrence of a few actinobacterial sequences after short-term or long-term WLD 
was codependent on nutrient level (II). Various sequences were more typical of drier locations 
and a few of them characterized wetter locations (IV). Because precise identifications could 
not be made, the ecological significance of these actinobacteria remains unclear. Some specific 
sequence patterns were found among litters that were typical of site, WLD or both (Table 6). 
Distantly Frankia-related actinobacteria might play a general role in fens and species similar to 
Mycobacterium might become increasingly important after WLD. In contrast, Rhodococcus-
related actinobacteria appear to thrive in the bog. Frankia are atmospheric nitrogen fixing 
bacteria that live as symbionts in root nodules of, e.g., Alnus and Myrica. Frankia are also 
known to produce carbohydrases (Safo-Sampah and Torrey 1988, Igual et al. 2001) and to live 
as free soil bacteria in acid forests devoid of actinorhizal plants (e.g., Smolander and Sundman 
1987, Arveby and Huss-Daniel 1988, Smolander et al. 1988). Whether members of Frankia 
are saprotrophic in these litters and derive from soils as earlier reported (Nickel, 2000) or play 
some other role cannot be assessed on the basis of these results.
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4.2.4 MOB community

Only type I MOB were detected in the oligotrophic fen, whereas the ombrotrophic bog had 
both types I and II MOB, thereby supporting the findings of earlier studies (Amaral et al. 
1995, Graham et al. 1993, Wise et al. 1999) (III). Notably, the pmoA-specific primer pair that 
was used in paper III failed to amplify pmoA in peat samples from two other boreal fen sites 
(personal observations; Tuomivirta et al. 2009). Type II MOB-related pmoA sequences were 
successfully amplified from these fen sites using A189f and a new reverse primer (A621r: 
Tuomivirta et al. 2009). This new reverse primer was designed to substitute A682r, which 
together with A189f are known to cause PCR bias and nonspecific products (Bourne et al. 
2001). Thus, it is possible that type II MOB were not detected in the fen site because of 
mispriming. However, type I MOB-related pmoA sequences were most similar to sequences 
found in other Finnish organic soils (accession numbers AJ317928 and AJ317926) and type 
II MOB-related pmoA sequences were most similar to Methylocystis.

The number of pmoA-derived DGGE bands increased with depth and was positively 
correlated with soil pH. It is unlikely that pH is directly responsible for MOB diversity, but 
indirect influences are possible via the vegetation it supports. Deep-rooting sedges, which 
push photosynthetic C and O

2
 into deep peat layers, are typical of fens, whereas the Sphagnum 

mosses that characterize bogs cannot do so. Thus, overall differences in MOB communities 
among peatland sites and sampling depths are most likely related to vegetation that in turn 
creates the vertical peat profile. Sequences of sMMO-possessing MOB were found only in 
the bog and were distantly related to any known MOB. These sequences may represent a 
novel lineage since they were grouped with a large set of mmoX sequences that represented 
a novel group of acidophilic or acid-tolerant methanotrophs and accounted for more than 
two-thirds of the mmoX clone library from a Calluna-covered soil sample (Chen et al. 2008). 
Earlier studies have clearly detected sMMO in bogs (McDonald et al. 1996, 1999, Morris 
et al. 2002) and emphasized the distinction of MOB communities inhabiting fens and bogs. 
Yet, a limited diversity of sMMO-possessing MOB was observed, suggesting constraints on 
genetic diversity of this enzyme due to the essential conservation of function (McDonald et 
al. 2006).

The MOB community in the oligotrophic fen became more similar to that of the 
ombrotrophic bog after WLD. We did not detect a change towards a “high-affinity” MOB 
community that is characteristic of upland soils after WLD. Yet, the MOB community did 
change following WLD and appeared to be adapted to a lower substrate (CH

4
) concentration. 

Several pmoA sequences that were characteristic of the fen and bog were not detected after 
WLD. Furthermore, WLD caused a more dramatic decrease in the number of DGGE-derived 
pmoA-bands in the fen than the bog. WL was found to be the key environmental factor 
regulating methanotrophy in Sphagnum where a loose symbiosis between Sphagnum spp. and 
Methylocystis (type II MOB) was suggested to account for 10–30% of Sphagnum C biomass 
(Larmola et al. 2010). Only minor differences in the sMMO-possessing MOB community 
were observed with respect to WLD and depth. Recently, more specific detection methods 
such as mRNA-based microarrays (Bodrossy et al. 2006) and SIP-PLFA (Chen et al. 2008) 
have been applied to study MOB communities in environmental samples. These advanced 
techniques detect active MOB populations and offer precise and comprehensive tools to future 
investigations of peatland MOB.
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4.3 Microbial activity

4.3.1 Respiration

The basal respiration values were negatively correlated with depth (I) and bulk density (IV), and 
positively correlated with pH (I) and water content (IV). Soil pH is one of the most important 
factors affecting the vegetation composition of pristine peatlands, and thus separates the types 
on the basis of their flora (Wheeler and Proctor 2000, Økland et al. 2001). Furthermore, WLD 
lowers pH especially in fens (Minkkinen et al. 1999, Table 2). Fungal and eukaryotic-specific 
PLFAs were positively correlated with basal respiration, indicating that fungi are responsible 
for a major part of microbial respiration at Lakkasuo (I). The decreasing respiration with 
depth in the peat profile may be a result of low substrate quality (Hogg et al. 1992). In the 
pristine fen sites in particular, aerobic decomposers may be absent from the deeper anoxic 
layers. In these sites, there is an input of fresh root litter to the deeper layers (Saarinen 1996), 
so substrate quality does not decrease with depth as predictably as in Sphagnum sites.

In contrast to basal respiration rates, field respiration rates between the driest and 
wettest locations in Suonukkasuo were threefold different (IV). These results indicate that 
basal respiration measures the aerobic decomposition potential of the substrate. In the dry 
locations, the decomposition potential of the surface peat may have already been completed 
to a great extent. Yet, field respiration measurements incorporate the entire CO

2
 flow of the 

peat profile as a result of aerobic and CH
4
 oxidation when an oxic surface layer is present. 

On the other hand, a high WL limits decomposition in the wet locations, which is reflected 
in the field respiration results. A similar trend was observed in six Finnish drained peatland 
sites, where average WL was shown to regulate field respiration via microbial community 
structure (Mäkiranta et al. 2009). Many PLFAs and fungal ITS sequences correlated with basal 
respiration, whereas sequences representing the fungal saprotrophs Lasiosphaeria (Miller and 
Huhndorf 2004), Cercophora (Fallah and Shearer 2001) and Hypholoma correlated positively 
with field respiration rates (IV).

4.3.2 Mass loss

When the effects of site, WLD and litter type were eliminated, microbial function (litter-mass 
loss) after the two-year decomposition period only explained a small amount of variation 
in actinobacterial community composition after the second year of decomposition (Table 2 
in V) and none of the variation for fungi. These results echo those of a similar study that 
found no relationship between the active endophytic fungal community and the mass loss 
of needle litter after two years of decomposition (Korkama-Rajala et al. 2007). Recently, 
Salminen et al. (2009) showed that removal of the soil fauna changed the composition of 
the bacterial community in a coniferous forest but these structural changes did not influence 
the decomposition rate of cellulose or wooden discs. Thus, these results support the idea 
of functional redundancy, which suggests that at a fundamental level the actual microbial 
species composition may irrelevant since most organic decomposition processes eventually 
lead to intermediates or end products (e.g., pyryvate, acetyl CoA, and various compounds in 
tricarboxylic acid cycle) of respiration (Fierer et al. 2009).
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4.3.3 Potential CH
4
 oxidation 

The highest CH
4
 oxidation activity was found 20–40 cm above the WL at the pristine 

oligotrophic fen and the activity decreased to almost zero in the vicinity of the WL (III). In 
the pristine ombrotrophic bog, the highest activity was detected at a deeper layer than in the 
fen, but in contrast oxidation rates were still observed at the WL and 10 cm below it. The 
differential distribution of CH

4
 oxidation between pristine fen and bog cannot be explained 

with the variables measured here. The number of pmoA-derived DGGE bands did not correlate 
with maximum CH

4
 oxidation rate in any of the sites. The amount of pmoA amplicons obtained 

with A189f and the newly designed A621r primers were positively correlated with potential 
CH

4
 oxidation rates in two other fen sites (Tuomivirta et al. 2009). However, these results are 

strictly not comparable since the latter study was based on quantitative real-time PCR.
WLD reduced the potential CH

4
 oxidation at the fen and bog sites. The results agree with 

previous studies that showed how WL significantly influences CH
4
 oxidation (Moore and 

Knowles 1989, Nykänen et al. 1998, Kettunen et al. 1999). Even though WLD generally 
lowered peat soil pH (Table 1), a correlation between soil pH and potential CH

4
 oxidation was 

not detected (III), echoing the results of Moore and Dalva (1997). However, contradictary 
results exist in that higher in vitro CH

4
 oxidation rates were measured at an elevated pH 

(Dunfield et al. 1993), and indications about relationship between CH
4 
oxidation rates and soil 

pH have been detected (Amaral et al. 1995, Hütch et al. 1994). In other words, even if CH
4 
flux 

has been noticed to correlate with WL, it does not necessarily correlate with water chemistry 
(pH, Ca, Mg and K

corr
) (Bubier 1995). 

A potential mechanism for WL control could be that surface subsidence and an increase in 
peat bulk density caused by a lowered WL reduces the diffusion of CH

4 
and O

2
 (Nykänen et 

al. 1998), which in turn limits CH
4 
oxidation. Peatland type may be a critical factor affecting 

CH
4
 flux;

 
in a mesocosm study from a northern peatland, pore water chemistry and plant 

productivity controlled CH
4 
flux in the bog, whereas WL controlled CH

4 
flux in the fen through 

its effects on CH
4
 oxidation rates (White et al. 2008). Thus, the indirect effects of climate 

change, e.g., vegetation and peat chemistry, may be as important as the direct effects of WL 
in controlling CH

4
 production and oxidation in peatlands.
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5 CONCLUSIONS AND FUTURE PROSPECTS

This thesis represents the first investigation of microbial communities among an extensive set 
of samples that circumscribe many types of boreal peatlands. In general, microbial community 
responses to environmental change were variable and detected at multiple taxonomic levels. 
The results also describe the difficulty faced when making generalisations about the direction 
of change, which may depend on many factors including peatland site, microform, sampling 
depth, litter quality and microbial group and the interactions among them.

However, sampling depth was found to be one of the main factors affecting the structure 
of aerobic microbial communities. Site type and microtopographic variation within the site 
affected the microbial community overall and the fungal community in particular. Several 
bacterial groups, including actinobacteria, were abundant in the nutrient-rich fen whereas 
fungi dominated the drier surfaces of the nutrient-poor bog. The actinobacterial community 
appeared to be more dependent on an undefined depth-related factor. Site also had an impact 
on the MOB community; a higher number of DGGE bands were detected from the oligotrophic 
fen compared to the ombrotrophic bog. Litter quality had the greatest impact on the structure 
of active decomposer communities in litters representing a ‘fresh’ substrate. Decomposition 
stage of litters affected fungi, although only to a minor extent.

Short-term and gradual WLD induced changes in the resident microbial community, and 
the change became more evident following long-term WLD. The results generally showed 
that WLD homogenizes microbial communities in sites with different nutrient levels in the 
long-run and that the change is greatest in the nutrient-rich mesotrophic fen and least in the 
nutrient-poor ombrotrophic bog, which follows the vegetation pattern. Both fungi and Gram-
negative bacteria appear to benefit while actinobacteria appear to suffer from a lowered WL 
in the fen. Fungi either suffered or benefited depending on the microform of the bog, thus 
their response is at least to some extent dependent on peatland type. WLD increased fungal 
diversity especially in the fen, whereas actinobacterial diversity did not change. To conclude, 
patterns of change were different in peatland types. Basidiomycetes might be more responsive 
to WLD than ascomycetes. 

Basal respiration was negatively correlated with depth and bulk density, and positively 
correlated with pH, water content and fungal PLFAs. WL at the time of measurement explained 
most of the variation in field respiration data. The field respiration rates indicated that climate-
warming induced WLD would accelerate decomposition of soil organic matter at least in the 
nutrient-rich northern fen. In addition, a correlation between field respiration and saprotrophic 
fungal sequences indicated that species composition may play a role in the decomposition 
process in situ. Furthermore, some fungi might have a competitive advantage when peat is 
exposed to air and some mycorrhizal fungi might have a dual role as saprotrophs in peatlands. 
WLD had an impact on MOB community and activity, especially in the oligotrophic fen. 
Litter-mass loss showed only a minor effect on the active actinobacterial community structure, 
which reflects the functional redundancy of the communities.

Fungal sequences pertained to various taxa capable of utilizing a broad range of substrates. 
Most of the actinobacterial sequences could not be matched with any characterized taxon, 
although some were similar to taxa that can degrade complex hydrocarbons. The lack of precise 
identifications reflects the need for more reference data in public databases, and encourages 
the construction of a comprehensive clone library with longer genetic markers from peat and 
litter samples. To investigate microbial communities in peatlands further, novel applications 
that would utilize, e.g., high-throughput sequencing techniques and the incorporation of 13C 
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into litter or peat soil under controlled conditions might detail the pathways and mechanisms 
of microbial C assimilation and the peatland C cycle.
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