Skip to main content
Log in

Mapping heritability and molecular genetic associations with cortical features using probabilistic brain atlases

Methods and applications to schizophrenia

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

There is an urgent need to decipher the complex nature of genotype-phenotype relationships within the multiple dimensions of brain structure and function that are compromised in neuropsychiatric syndromes such as schizophrenia. Doing so requires sophisticated methodologies to represent population variability in neural traits and to probe their heritable and molecular genetic bases. We have recently developed and applied computational algorithms to map the heritability of, as well as genetic linkage and association to, neural features encoded using brain imaging in the context of three-dimensional (3D), population-based, statistical brain atlases. One set of algorithms builds on our prior work using classical twin study methods to estimate heritability by fitting biometrical models for additive genetic, unique, and common environmental influences. Another set of algorithms performs regression-based (Haseman-Elston) identical-bydescent linkage analysis and genetic association analysis of DNA polymorphisms in relation to neural traits of interest in the same 3D population-based brain atlas format. We demonstrate these approaches using samples of healthy monozygotic (MZ) and dizygotic (DZ) twin pairs, as well as MZ and DZ twin pairs discordant for schizophrenia, but the methods can be generalized to other classes of relatives and to other diseases. The results confirm prior evidence of genetic influences on gray matter density in frontal brain regions. They also provide converging evidence that the chromosome 1q42 region is relevant to schizophrenia by demonstrating linkage and association of markers of the Transelin-Associated-Factor-X and Disrupted-In-Schizophrenia-1 genes with prefrontal cortical gray matter deficits in twins discordant for schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abecasis G. R., Cardon L. R., Cookson, W. O., et al. (2000) A general test of association for quantitative traits in nuclear families. Am. J. Hum. Genet. 66(1), 279–292.

    Article  CAS  Google Scholar 

  • Baare, W. F., Hulshoff Pol, H. E., Boomsma, D. I., et al. (2001) Quantitative genetic modeling of variation in human brain morphology. Cereb. Cortex 11(9), 816–824.

    Article  CAS  Google Scholar 

  • Bearden, C. E., Hoffman K. M., Cannon, T. D., et al. (2001) The neuropsychology and neuroanatomy of bipolar affective disorder: a critical review. Bipolar Disord. 3(3), 106–150.; discussion 151–153.

    Article  CAS  Google Scholar 

  • Cannon, T. D., Hennah, W., et al. (2005) DISC1/TRAX haplotypes associated with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch. Gen. Psychiatr. 62, 1205–1213.

    Article  CAS  Google Scholar 

  • Cannon, T. D., Huttunen, M. O., Lonnqvist, J., et al. (2000) The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. Am. J. Hum. Genet. 67 (2), 369–382.

    Article  CAS  Google Scholar 

  • Cannon, T. D., Kaprio, J., Lonnqvist, J., Huttunen, M., and Koskenvuo, M. (1998) The genetic, epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch. Gen. Psychiatr. 55(1), 67–74.

    Article  CAS  Google Scholar 

  • Cannon, T. D., Thompson, P. M., van Erp, T. G., et al. (2002) Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proc. Natl. Acad. Sci. USA 99(5), 3228–3233.

    Article  CAS  Google Scholar 

  • Carmelli, D., Reed, T., DeCarli, C., et al. (2002) Abivariate genetic analysis of cerebral white matter hyper-intensities and cognitive performance in elderly male twins. Neurobiol. Aging 23 (3), 413–420.

    Article  Google Scholar 

  • Ekelund, J., Hennah, W., et al. (2004) Replication of 1q42 linkage in Finnish schizophrenia pedigrees. Mol. Psychiatr. 9(11), 1037–1041.

    Article  CAS  Google Scholar 

  • Elston, R. C., Buxbaum, S., Jacobs, K. B., and Olson J. M. (2000) Haseman and Elston revisited. Genet. Epidemiol. 19(1), 1–17.

    Article  CAS  Google Scholar 

  • Frackowiak, R. S. J., Friston, K. J., et al. (1997) Human brain Function. Academic Press, San Diego.

    Google Scholar 

  • Gasperoni, T. L., Ekelund, J., Huttunen, M., et al. (2003) Genetic linkage and association between chromosome 1q and working memory function in schizophrenia. Am. J. Med. Genet. 116B(1), 8–16.

    Article  Google Scholar 

  • Gray, J. R. and Thompson P. M. (2004) Neurobiology of intelligence: science and ethics. Nat. Rev. Neurosci. 5(6), 471–482.

    Article  CAS  Google Scholar 

  • Hennah, W., Varilo, T., Kestila, M., et al. (2003) Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum. Mol. Genet. 12(23), 3151–3159.

    Article  CAS  Google Scholar 

  • Hovatta, I., Varilo, T., Suvisaari, J., et al. (1999) A genomewide screen for schizophrenia genes in an isolated finnish subpopulation, suggesting multiple susceptibility loci. Am. J. Human Genet. 65, 1114–1124.

    Article  CAS  Google Scholar 

  • Hurdal, M. K. and Stephenson, K. (2004) Cortical cartography using the discrete conformal approach of circle packings. Neuroimage 23(Suppl 1), S119-S128.

    Article  Google Scholar 

  • James, R., Adams, R. R., Christie, S., Buchanan, S. R., Porteous, D. J., and Miller, J. K. (2004) Disrupted in Schizophrenia 1 (DISC1) is a multicompartmentalized protein that predominantly localizes to mitochondria. Mol. Cell Neurosci. 26(1), 112–122.

    Article  CAS  Google Scholar 

  • Kruglyak, L. and Lander, E. S. (1995) Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am. J. Hum. Genet. 57(2), 439–454.

    CAS  Google Scholar 

  • Mangin, J. F., Riviere, D., Cachia, A., et al. (2004) A framework to study the cortical folding patterns. Neuroimage 23(Suppl 1.), S129-S138.

    Article  Google Scholar 

  • Merikangas, K. R., Chakravarti, A., Moldin, S. O., et al. (2002) Future of genetics of mood disorders research. Biol. Psychiatr. 52 (6), 457–477.

    Article  Google Scholar 

  • Millar, J. K., Christie, S., and Porteous, D. J (2003) Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochem. Biophys. Res. Commun. 311(4), 1019–1025.

    Article  CAS  Google Scholar 

  • Millar, J. K., Wilson-Annan, J. C., Anderson, S., et al. (2000) Disruption of two novel genes by a, translocation co-segregating with schizophrenia. Hum. Mol. Genet. 9(9), 1415–1423.

    Article  CAS  Google Scholar 

  • Miyoshi, K., Honda, A., Baba, K., et al. (2003) Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol. Psychiatr. 8(7), 685–694.

    Article  CAS  Google Scholar 

  • Morris, J. A., Kandpal, G., Ma, L., Austin, C. P. (2003) DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum. Mol. Genet. 12(13), 1591–1608.

    Article  CAS  Google Scholar 

  • Neale, M. C. and Cardon, L. R. (1992) Methodology for Genetic Studies of Twins and Families. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Owen, M. J., Williams, N. M., O'Donovan, M. C., et al. (2004) The molecular genetics of schizophrenia: new findings promisenew insights. Mol. Psychiatr. 9(1), 14–27.

    Article  CAS  Google Scholar 

  • Plomin, R. and Kosslyn, S. M. (2001) Genes, brain and cognition. Nat. Neurosci. 4(12), 1153–1154.

    Article  CAS  Google Scholar 

  • Posthuma, D., De Geus, E. J., Baare, W. F., HulshoffPol, H. E., Kahn, R. S., and Boomsma, D. I. (2002) The association between brain volume and intelligence is of genetic origin. Nat. Neurosci. 5(2), 83–84.

    Article  CAS  Google Scholar 

  • Rasser, P. E., Johnston, P. J., et al. (2005) BOLD activation during the tower of London task using gyral pattern and intensity averaging models of cerebral cortex. Neuroimage 26(3), 941–951.

    Article  Google Scholar 

  • Rocchi, A., Pellegrini, S., Siciliano, G., and Murri, L. (2003) Causative and susceptibility genes for Alzheimer's disease: a review. Brain Res. Bull. 61(1), 1–24.

    Article  CAS  Google Scholar 

  • Thompson, P. M., Cannon, T. D., Narr, K. L., et al. (2001a) Genetic influences on brain structure. Nat. Neurosci. 4(12), 1253–1258.

    Article  CAS  Google Scholar 

  • Thompson, P. M., Hayashi, K. M., Sowell, E. R., et al. (2004) Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia. Neuroimage 23(Suppl 1), S2-S18.

    Article  Google Scholar 

  • Thompson, P. M., Mega, M. S., Woods, R. P., et al. (2001b) Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. Cereb. Cortex 11(1), 1–16.

    Article  CAS  Google Scholar 

  • Thompson, P. M., Rapoport, J. L., et al. (2003) Automated analysis of structural MRI data. Brain Imaging in Schizophrenia. D. Weinberger, Oxford University Press

  • Thompson, P. M. and Toga, A. W. (2002) A framework for computational anatomy. Comput. Vis. Sci. 5, 1–12.

    Article  Google Scholar 

  • Thompson, P. M., Woods, R. P., Mega, M. S., and Toga, A. W. (2000) Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain. Hum. Brain Mapp. 9(2), 81–92.

    Article  CAS  Google Scholar 

  • Tosun, D., Rettmann, M. E., Han, X., et al. (2004) Cortical surface segmentation and mapping. Neuroimage 23(Suppl 1), S108-S118.

    Article  Google Scholar 

  • Turkheimer, E., Haley, A., Waldron, M., D'Onofrio, B., and Gottesman, II. (2003) Socioeconomic status modifies heritability of IQ in young children. Psychol. Sci. 14(6), 623–628.

    Article  Google Scholar 

  • van Erp, T. G., Saleh, P. A., Huttunen, M., et al. (2004) Hippocampal volumes in schizophrenic twins. Arch. Gen. Psychiatr. 61(4), 346–353.

    Article  Google Scholar 

  • Van Essen, D. C. (2004) Surface-based approaches to spatial localization and registration in primate cerebral cortex. Neuroimage 23(Suppl 1), S97-S107.

    Google Scholar 

  • Worsley, K. J., Andermann, M., Koulis, T., MacDonald, D., and Evans, A. C. (1999) Detecting changes in nonisotropic images. Hum. Brain Mapp. 8(2–3), 98–101.

    Article  CAS  Google Scholar 

  • Zeineh, M. M., Engel, S. A., Thompson, P. M., Bookheimer, S. Y., et al. (2003) Dynamics of the hippocampus during encoding and retrieval of face-name pairs. Science 299(5606), 577–580.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyrone D. Cannon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannon, T.D., Thompson, P.M., van Erp, T.G.M. et al. Mapping heritability and molecular genetic associations with cortical features using probabilistic brain atlases. Neuroinform 4, 5–19 (2006). https://doi.org/10.1385/NI:4:1:5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:4:1:5

Index Entries

Navigation