Skip to main content
Log in

Molecular templates for bio-specific recognition by low-energy electron beam lithography

  • Original Article
  • Published:
NanoBiotechnology

Abstract

Protein patterning has become an important topic as advances are made in biologically integrated devices and protein chip technology. Versatile and effective patterning requires substrates that can be quantified, with active presentation of proteins and control over protein density and orientation. Herein we describe a model system and the use of low-energy electron beam lithography to pattern molecular templates for immobilization of antibodies through ligand recognition. The templates were patterned over a background of poly(ethylene glycol) (PEG) modified silicon oxide (SiO x ). These substrates were exposed to a low-voltage (2 keV) electron beam to remove PEG selectively from exposed regions. These regions were then functionalized with a dinitrophenyl (DNP) ligand and tested for specific binding of fluorescently labeled anti-DNP antibodies. The PEG modified regions in conjunction with ligand-presenting regions in the patterned arrays substantially reduces non-specific adsorption of proteins, yielding a specific/nonspecific ratio of approx 10. The surface coverage of the biologically active DNP groups on SiO x and the amount of immobilized antibody on DNP were measured with a fluorescence-based, enzyme-linked immunosorbent assay. The specificity of the interaction between DNP ligand and fluorescently labeled anti-DNP antibodies was evaluated with fluorescence microscopy. This approach to patterning of molecular templates and assays for quantification are generally applicable to immobilization of any ligand-receptor pair on a wide range of substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blawas, A. S. and Reichert, W. M. (1998), Biomaterials 19, 595–609.

    Article  CAS  Google Scholar 

  2. Kane, R. S., Takayama, S., Ostuni, E., Ingber, D. E., and Whitesides, G. M. (1999), Biomaterials 20, 2363–2376.

    Article  CAS  Google Scholar 

  3. Craighead, H. G., Turner, S. W., Davis, R. C., et al. (1998) Biomed. Microdev. 1, 49–64.

    Article  CAS  Google Scholar 

  4. Mrksich, M. (2000), Chem. Soc. Rev. 29, 267–273.

    Article  CAS  Google Scholar 

  5. Folch, A. and Toner, M. (2000), Ann. Rev. Biomed. Eng. 2, 227–256.

    Article  CAS  Google Scholar 

  6. Kleinfield, D., Kahler, K. H., and Hockberger, P. E. (1988), J. Neurosci. 8, 4098–4120.

    Google Scholar 

  7. Britland, S., Perez-Arnaud, E., Clark, P., McGinn, B., Connoly, P., and Moores, G. (1992), Biotechnol. Prog. 8, 155–160.

    Article  CAS  Google Scholar 

  8. Stenger, D. A., Georger, J. H., Dulcey, C. S. et al. (1992), J. Am. Chem. Soc. 114, 8435–8442.

    Article  CAS  Google Scholar 

  9. Bhatia, S. K., Teixeira, J. L., Anderson, M., et al. (1993), Anal. Biochem. 208, 197–205.

    Article  CAS  Google Scholar 

  10. Pritchard, D. J., Morgan, H., and Cooper, J. M. (1995), Angew. Chem. Int. Ed. 34, 91–93.

    Article  CAS  Google Scholar 

  11. Mooney, J. F., Hunt, A. J., McIntosh, J. R., Librerko, C. A., Walba, D. M., and Rogers, C. T. (1996) Proc. Natl. Acad. Sci. 93, 12287–12291.

    Article  CAS  Google Scholar 

  12. Singhvi, R., Kumar, A., Lopez, G. P., (1994), Science 264, 696–698.

    Article  CAS  Google Scholar 

  13. Kumar, A., Abbott, N., Kim, E., Biebuyck, H., and Whitesides, G. M. (1995), Acc. Chem. Res. 28, 219.

    Article  CAS  Google Scholar 

  14. Wilson, D. L., Martin, R., Hong, S., Cronin-Golomb, M., Mirkin, C.A., and Kaplan, D. L. (2001), Proc. Natl. Acad. Sci. USA 98, 13660–13664.

    Article  CAS  Google Scholar 

  15. Hyun, J., Ahn, S. J., Lee, W. K., Chilkoti, A., and Zauscher, S. (2002), Nano Lett. 2, 1203–1207.

    Article  CAS  Google Scholar 

  16. Hoff, J. D., Cheng, L., Meyhofer, E., Guo, L. J., and Hunt, A. J. (2004), Nano Lett. 4, 853–857.

    Article  CAS  Google Scholar 

  17. Harris, J. M. (1992) Poly(ethyleneglycol) Chemistry: Biotechnical and Biomedical Applications, Plenum Press, New York, and references therein.

    Google Scholar 

  18. Lee, J. H., Lee, H. B., and Andrade, J. D. (1995), Prog. Polym. Sci. 20, 1043–1079.

    Article  CAS  Google Scholar 

  19. Lercel, M. J., Whelan, C. S., Craighead, H. G., Seshadri, K., and Allara, D. L. (1996), J. Vac. Sci. Technol. B 14, 4085–4090.

    Article  CAS  Google Scholar 

  20. Golzhauser, A., Geyer, W., Stadler, V., et al. (2000), J. Vac. Sci. Technol. B 18, 3414–3418.

    Article  CAS  Google Scholar 

  21. Lin, X. M., Parthasarathy, R., and Jaeger, H. M. (2001), Appl. Phys. Lett. 78, 1915–1917.

    Article  CAS  Google Scholar 

  22. Feldstein, M. J., Golden, J. P., Rowe, C. A., MacCraith, B. D., Ligler, Sakurai, H., Oyama, N., Tokuda, K., and Ohsaka, T. (1999), J. Biomed. Microdevices 1, 139.

    Article  CAS  Google Scholar 

  23. Delamarche, E., Bernard, A., Schmid, H., Michel, B., and Biebuyck, H. (1997), Science 276, 779.

    Article  CAS  Google Scholar 

  24. Foquet, M. E., Han, J., Lopez, A., Wright, W., and Craighead, H. G. (1998), Proceedings of SPIE — The International Society of Optical Engineering 3258, 141–147.

    CAS  Google Scholar 

  25. Harnett, C. K., Satyalakshmi, K. M., and Craighead, H. G. (2001), Langmuir 17, 178–182.

    Article  CAS  Google Scholar 

  26. Harnett, C. K., Satyalakshmi, K. M., and Craighead, H. G. (2000), Appl. Phys. Lett. 76, 2466–2468.

    Article  CAS  Google Scholar 

  27. Glezos, N., Misiakos, K., Kakabakos, S., Petrou, P., and Terzoudi, G. (2002), Biosens. Bioelectron. 17, 279–282.

    Article  CAS  Google Scholar 

  28. Huang, S. C., Caldwell, K. D., Lin, J. N., Wang, H. K., and Herron, J. N. (1996), Langmuir 12, 4292–4298.

    Article  CAS  Google Scholar 

  29. Nijas, M., Gelbcke, M., Azarkan, M., Brygier, J., Guermant, C., Baeyens-Volant, D., Musu, T., Paul, C., and Looze, Y. (1994), Appl. Biochem. Biotechnol. 49, 75.

    Google Scholar 

  30. Zalipsky, S., Seltzer, R., and Menon-Rudolph, S. (1992), Biotechnol. Appl. Biochem. 15, 100–114.

    CAS  Google Scholar 

  31. Haugland, R. P. and You, W. W. (1995), Methods Mol. Biol. 45, 223–233.

    CAS  Google Scholar 

  32. Haugland, R. P. and You, W. W. (1998), Methods Mol. Biol. 80, 173–183.

    Article  CAS  Google Scholar 

  33. Deguchi, Y., Kurihara, A., and Pardrigde, W. M. (1999), Bioconjugate Chem. 10, 32–37.

    Article  CAS  Google Scholar 

  34. Prime, K. L. and Whitesides, G. M. (1993), J. Am. Chem. Soc. 115, 10714–10721.

    Article  CAS  Google Scholar 

  35. Mrksich, M., Sigal, G. B., and Whitesides, G. M. (1995), Langmuir 11, 4383–4385.

    Article  CAS  Google Scholar 

  36. Malmstem, M., Emoto, K., and Van Alstine, J. M. (1998), J. Colloid Interf. Sci. 202, 507–517.

    Article  Google Scholar 

  37. Lee, S. W. and Laibinis, P.E. (1998), Biomaterials 19, 1669–1675.

    Article  CAS  Google Scholar 

  38. Sofia, S. J., Premnath, V. and Merrill, E. W. (1998), Macromolecules 31, 5059–5070.

    Article  CAS  Google Scholar 

  39. Piehler, J., Brecht, A., Valiokas, R., Liedberg, B., and Gauglitz, G. (2000), Biosens. Bioelectron. 15, 473–481.

    Article  CAS  Google Scholar 

  40. Benesch, J., Svedhem, S., Svensson, S. T., Valiokas, R., Liedberg, B., and Tengvall, P. (2001), J. Biomater. Sci., Polym. Ed. 12, 581–597.

    Article  CAS  Google Scholar 

  41. Zhu, B., Eurell, T., Gunawan, R., and Leckband, D. (2001), J. Biomed. Mater. Res. 56, 406–421.

    Article  CAS  Google Scholar 

  42. Zhang, M., Desai, T., and Ferrari, M. (1998), Biomaterials 19, 953–960.

    Article  CAS  Google Scholar 

  43. Zhang, M. and Ferrari, M. (1998), Biomedical Microdevices 1, 81–89.

    Article  CAS  Google Scholar 

  44. Andruzzi, L., Senaratne, W., Hexemer, A., et al. (2005), Langmuir, 21, 2495–2504.

    Article  CAS  Google Scholar 

  45. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., and Ingber, D. E. (1998), Biotechnol. Prog. 14, 356–363.

    Article  CAS  Google Scholar 

  46. Houseman, B. T., Huh, J. H., Kron, S. J., and Mrksich, M. (2002), Nat. Biotech. 20, 270–274.

    Article  CAS  Google Scholar 

  47. Houseman, B. T., Gawalt, E. S., and Mrksich, M. (2003), Langmuir 19, 1522–1531.

    Article  CAS  Google Scholar 

  48. Lopez, G. P., Albers, M. W., Schreiber, S. L., Carroll, R., Peralta, E., and Whitesides, G. M. (1993), J. Am. Chem. Soc. 115, 5877–5878.

    Article  CAS  Google Scholar 

  49. Yang, Z., Galloway, J. A., and Yu. H. (1999), Langmuir 15, 8405–8411.

    Article  CAS  Google Scholar 

  50. Jo, S. and Park, K. (2000), Biomaterials 21, 605–616.

    Article  CAS  Google Scholar 

  51. Eisen, N.E. and Siskind, G.W. (1964), Biochemistry 3, 996–1008.

    Article  CAS  Google Scholar 

  52. Senaratne, W., Sengupta, P., Jakubek, V., Holowka, D., Ober, C., and Baird, B. (2005), to be published.

  53. Shriver, L. C.-Lake, Donner, B., Edelstein, R., Breslin, K., Bhatia, S. K., and Ligler, F. S. (1997), Biosens. Bioelectron. 12, 1101–1106.

    Article  Google Scholar 

  54. Lahiri, J., Otsuni, E., and Whitesides, G. M. (1999), Langmuir 15, 2055–2060.

    Article  CAS  Google Scholar 

  55. Grunwald, C., Eck, W., Optiz, N., Kulmann, J., and Woll, C. (2004), Phys. Chem. Chem. Phys. 6, 4358–4362.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher K. Ober.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senaratne, W., Sengupta, P., Harnett, C. et al. Molecular templates for bio-specific recognition by low-energy electron beam lithography. Nanobiotechnol 1, 23–33 (2005). https://doi.org/10.1385/NBT:1:1:023

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NBT:1:1:023

Key Words

Navigation