Skip to main content
Log in

A dual role for apolipoprotein E in neuroinflammation

Anti- and pro-inflammatory activity

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Chronically activated glia associated with amyloid plaques might contribute to neuronal dysfunction in Alzheimer’s disease (AD) through generation of neuroinflammatory molecules. Apolipoprotein E (apoE), also found associated with amyloid plaques, has been hypothesized to serve an anti-inflammatory role in the CNS through its ability to modulate β-amyloid (Aβ)-induced glial activation. To further characterize the effect of apoE on inflammation, we examined the ability of exogenously added human apoE3 and apoE4 to modulate neuroinflammatory responses of cultured rat glia. Apolipoprotein E3 (apoE3) and apoE4 suppressed oligomeric Aβ-induced production of inducible nitric oxide synthase and cyclo-oxygenase-2, supporting an anti-inflammatory role for apoE. Exogenous apoE also inhibited Aβ-induced production of endogenous apoE. However, exogenous apoE in the absence of Aβ stimulated production of the pro-inflammatory cytokine interleukin-1β in an isoform-dependent manner, with apoE4 inducing a significantly greater response than apoE3. These data support the idea that Aβ stimulation of glial apoE limits neuroinflammation but that overproduction of apoE by activated glia might exacerbate inflammation. In addition, the observation that apoE4 has more robust pro-inflammatory activity than apoE3 provides a mechanistic link between the APOE4 allele and AD, and suggests potential apoE-based therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akiyama H., Barger S., Barnu, S., Bradt B., Bauer J., Cole G. M., et al. (2000) Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383–421.

    Article  PubMed  CAS  Google Scholar 

  • Bales K. R., Dodart J. C., DeMattos R. B., Holtzman D. M., and Paul S.M. (2002) Apolipoprotein E, amyloid, and Alzheimer disease. Mol. Interventions 2, 363–375.

    Article  CAS  Google Scholar 

  • Bales K. R., Verina T., Cummins D. J., Du Y., Dodel R. C., Saura J., et al. (1999) Apolipoprotein E is essential for amyloid deposition in the APPV717F transgenic mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 96, 15233–15238.

    Article  PubMed  CAS  Google Scholar 

  • Barger S. W. and Harmon A. D. (1997) Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388, 878–881.

    Article  PubMed  CAS  Google Scholar 

  • Beffert U., Danik M., Krzywkowski P., Ramassamy C., Berrada F., and Poirier J. (1998) The neurobiology of apolipoproteins and their receptors in the CNS and Alzheimer’s disease. Brain Res. Rev. 27, 119–142.

    Article  PubMed  CAS  Google Scholar 

  • Clay M. A., Ananthraramaiah G. M., Mistry M. J., Balasubramaniam A., and Harmony J. A. K. (1995) Localization of a domain in apolipoprotein E with both cytostatic and cytotoxic activity. Biochemistry 34, 11142–11151.

    Article  PubMed  CAS  Google Scholar 

  • Colton C. A., Brown C. M., Czapiga M., and Vitek M. P. (2002) Apolipoprotein E allele specific regulation of nitric oxide production. Ann. N. Y. Acad. Sci. 962, 212–225.

    Article  PubMed  CAS  Google Scholar 

  • Dahlgren K. N., Manelli A. M., Stine W. B., Baker L. K., Krafft G. A., and LaDu M. J. (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem. 277, 32046–32053.

    Article  PubMed  CAS  Google Scholar 

  • Gotthardt M., Trommsdorff M., Nevitt M. F., Shelton J., Richardson J. A., Stockinger W., et al. (2000) Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J. Biol. Chem. 275, 25616–25624.

    Article  PubMed  CAS  Google Scholar 

  • Griffin W. S. T., Sheng J. G., Royston M. C., Gentleman S. M., McKenzie J. E., Graham D. I., et al. (1998) Glial-neuronal interactions in Alzheimer’s disease: the potential role of a “cytokine cycle” in disease progression. Brain Pathol. 8, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Holtzman D. M., Bales K. R., Tenkova T., Fagan A. M., Parsadanian M., Sartorius L. J., et al. (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 97, 2892–2897.

    Article  PubMed  CAS  Google Scholar 

  • Hu J., Castets F., Guevara J. L., and Van Eldik L. J. (1996) S100β stimulates inducible nitric oxide synthase activity and mRNA levels in rat cortical astrocytes. J. Biol. Chem. 271, 2543–2547.

    Article  PubMed  CAS  Google Scholar 

  • Hu J., LaDu M. J., and Van Eldik L. J. (1998) Apolipoprotein E attenuates β-amyloid-induced astrocyte activation. J. Neurochem. 71, 1626–1634.

    Article  PubMed  CAS  Google Scholar 

  • Hyman B. T., Strickland D., and Rebeck G. W. (2000) Role of the low-density lipoprotein receptor-related protein in β-amyloid metabolism and Alzheimer disease. Arch. Neurol. 57, 646–650.

    Article  PubMed  CAS  Google Scholar 

  • Janciauskiene S., Sun Y. X., and Wright H. T. (2002) Interactions of Aβ with endogenous anti-inflammatory agents: a basis for chronic neuroinflammation in Alzheimer’s disease. Neurobiol. Dis. 10, 187–200.

    Article  PubMed  CAS  Google Scholar 

  • LaDu M. J., Falduto M. T., Manelli A. M., Reardon C. A., Getz G. S., and Frail D. E. (1994) isoform-specific binding of apolipoprotein E to β-amyloid. J. Biol. Chem. 269, 23403–23406.

    PubMed  CAS  Google Scholar 

  • LaDu M.J., Reardon C., Van Eldik L. J., Fagan A. M., Bu G., Holtzman D., and Getz G. S. (2000a) Lipoproteins in the central nervous system. Ann. N. Y. Acad. Sci. 903, 167–175.

    Article  PubMed  CAS  Google Scholar 

  • LaDu M. J., Shah J. A., Reardon C. A., Getz G. S., Bu G., Hu J., et al. (2000b) Apolipoprotein E receptors mediate the effects of β-amyloid on astrocyte cultures. J. Biol. Chem. 275, 33974–33980.

    Article  PubMed  CAS  Google Scholar 

  • LaDu M. J., Shah J. A., Reardon C. A., Getz G. S., Bu G., Hu J., et al. (2001) Apolipoprotein E and apolipoprotein E receptors modulate Aβ-induced glial neuroinflammatory responses. Neurochem. Int. 39, 427–434.

    Article  PubMed  CAS  Google Scholar 

  • Laskowitz D. T., Goel S., Bennett E. R., and Matthew W. D. (1997) Apolipoprotein E suppresses glial cell secretion of TNFα. J. Neuroimmunol. 76, 70–74.

    Article  PubMed  CAS  Google Scholar 

  • Laskowitz D. T., Thekdi A. D., Thekdi S. D., Han S. K. D., Myers J. K., Pizzo S. V., and Bennett E. R. (2001) Downregulation of microglial activation by apolipoprotein E and apoE-mimetic peptides. Exp. Neurol. 167, 74–85.

    Article  PubMed  CAS  Google Scholar 

  • Lynch J. R., Morgan D., Mance J., Matthew W. D., and Laskowitz D. T. (2001) Apolipoprotein E modulates glial activation and the endogenous central nervous system inflammatory response. J. Neuroimmunol. 114, 107–113.

    Article  PubMed  CAS  Google Scholar 

  • Mahley R. W. and Rall S. C. Jr. (2000) Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Genomics Hum. Genet. 1, 507–537.

    Article  PubMed  CAS  Google Scholar 

  • Manelli A. M., Stine W. B. Jr., Van Eldik L. J., and LaDu M. J. (2004) ApoE and Aβ1-42 interactions: effects of isoform and conformation on structure and function. J. Mol. Neurosci. 23, 231–242.

    Article  Google Scholar 

  • Moulder K. L., Narita M., Chang L. K., Bu G., and Johnson E. M. Jr. (1999) Analysis of a novel mechanism of neuronal toxicity produced by an apolipoprotein E-derived peptide. J. Neurochem. 72, 1069–1080.

    Article  PubMed  CAS  Google Scholar 

  • Mrak R. E. and Griffin W. S. T. (2001) Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol. Aging 22, 903–908.

    Article  PubMed  CAS  Google Scholar 

  • Petrova T. V., Akama K. T., and Van Eldik L. J. (1999) Cyclopentanone prostaglandins suppress activation of microglia: down-regulation of inducible nitric oxide synthase by 15-deoxy-δ12,14-prostaglandin J2. Proc. Natl. Acad. Sci. USA 96, 4668–4673.

    Article  PubMed  CAS  Google Scholar 

  • Qiao X., Cummins D. J., and Paul S. M. (2001) Neuroinflammation-induced acceleration of amyloid deposition in the APPV717F transgenic mouse. Eur. J. Neurosci. 14, 474–482.

    Article  PubMed  CAS  Google Scholar 

  • Tokuda T., Calero M., Matsubara E., Vidal R., Kumar A., Permanne B., et al. (2000) Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid β peptides. Biochem. J. 348, 359–365.

    Article  PubMed  CAS  Google Scholar 

  • Tolar M., Keller J. N., Chan S., Mattson M. P., Marques M. A., and Crutcher K. A. (1999) Truncated apolipoprotein E (ApoE) causes increased intracellular calcium and may mediate ApoE neurotoxicity. J. Neurosci. 19, 7100–7110.

    PubMed  CAS  Google Scholar 

  • Tolar M., Marques M. A., Harmony J. A., and Crutcher K. A. (1997) Neurotoxicity of the 22 kDa thrombin-cleavage fragment of apolipoprotein E and related synthetic peptides is receptor-mediated. J. Neurosci. 17, 5678–5686.

    PubMed  CAS  Google Scholar 

  • Van Eldik L. J. (2001) Glia and Alzheimer’s disease. Neurochem. Int. 39, 329–331.

    Article  PubMed  Google Scholar 

  • Wyss-Coray T. and Nucke L. (2000) Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35, 419–432.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda J. Van Eldik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L., LaDu, M.J. & Van Eldik, L.J. A dual role for apolipoprotein E in neuroinflammation. J Mol Neurosci 23, 205–212 (2004). https://doi.org/10.1385/JMN:23:3:205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:23:3:205

Index Entries

Navigation