Skip to main content
Log in

Protein-surface interactions

An energy-based mathematical model

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This article describes an energy-based approach to protein adsorption, focusing on the energies involved in the interactions between a protein and a surface. Mathematical modeling and simulation based on this approach allow an improved understanding of the conditions that favor or prevent adsorption of a protein onto a surface and that can play a significant role in the design of material surfaces that interact with biological tissues according to specific needs. Biocompatibility with respect to fluids in motion, such as blood, is the main foreseeable application of our work.

The considered energies are the van der Waals energy, the electrostatic energy, and the hydrophobic or hydrophilic energy. Moreover, the motion of the medium in which particles are immersed is also taken into account, considering the drag effect of the motion of the fluid on the particle, leading to a kinetic contribution to the total energy. It is shown that the adsorption behavior is not mainly determined by the van der Waals energy and by the double layer energy, but that a significant role is also played by the hydrophobic or hydrophilic energy. These results support the findings of experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rolfe, P. (1990) In vivo chemical sensor for intensive-care monitoring. Med. Biol. Eng. Comp. 28, B34-B47.

    Article  CAS  Google Scholar 

  2. Zhang, S., Benmakroha, Y., Rolfe, P., Tanaka, S., and Hikara, K. (1996) Development of a Haemocompatible pO2 Sensor with phospholipid based co-polymer membrane. Biosens. Bioelectron 11, 1019–1029.

    Article  PubMed  CAS  Google Scholar 

  3. Benmakroha, Y., Zhang, S., and Rolfe, P. (1995) Haemocompatibility of invasive sensors. Med. Biol. Eng. Comp. 33, 811–821.

    Article  CAS  Google Scholar 

  4. Zhang, S., Wright, G., and Yang, Y. (2000) Material and techniques for electrochemical biosensor design and construction. Biosensor. Bioelectron 15, 273.

    Article  CAS  Google Scholar 

  5. Rolfe, P. (1991) Intravascular, tissue and ex-vivo sensor for anaesthesia and critical care. Curr. Anaesth. Crit. Care 2, 122–129.

    Article  Google Scholar 

  6. Lehmann, M., Baumann, W., Brischwein, M., Ehret, R., Kraus, M., Schwinde, A., Botenhofer, M., Freund, I., and Wolf, B. (2000) Non invasive measurement of cell membrane associated proton gradients by ion-sensitive field effect transistor arrays for microphysiological and bioelectronical applications, Biosens. Bioelectron 14, 117.

    Article  Google Scholar 

  7. Johnson, C. A., Wu, P., and Lenhoff, A. M. (1994) Electrostatic and Van der Waals contributions to protein adsorption: 2. Modeling of ordered arrays. Langmuir 10, 3705–3713.

    Article  CAS  Google Scholar 

  8. Senger, B., Schaaf, P., Bafaluy, F. J., Cuisinier, F. J. G., Talbot, J., and Voegel, J. C. (1994) Adhesion of hard spheres under the influence of double layer, van der Waals, and gravitational potentials at a solid liquid interface. Proc. Natl. Acad. Sci. U S A 91, 3004–3008.

    Article  PubMed  CAS  Google Scholar 

  9. Adamczyk, Z., Zembala, M., Siwek, B., and Warszynski, P. (1990) Structure and ordering in localized adsorption of particles. J. Colloid Interface Sci. 140, 123–137.

    Article  CAS  Google Scholar 

  10. Derjaguin, B. V. and Landau, L. D. (1941) Acta Physicochim. USSR, 14, 633.

    Google Scholar 

  11. Verwey, E. J. W. and Overbeek, J. T. G. (1948) Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam.

    Google Scholar 

  12. Ruggiero, C., Mantelli, M., Curtis, A., Zhang, S., and Rolfe, P. (1999) Computer modelling of the adsorption of proteins on solid surfaces under the influence of double layer and van der Waals energy. Med. Biol. Eng. Comp. 37, 119–124.

    Article  CAS  Google Scholar 

  13. Cowley, A. C., Fuller, N. L., Rand, R. P., and Parsegian, V. A. (1978) Measurement of repulsive forces between charged phospholipid bilayers. Biochemistry 17, 3163–3168.

    Article  PubMed  CAS  Google Scholar 

  14. Pashley, R. M. and Israelachvili, J. N. (1984) Forces between mica surfaces in Mg2+, Ca2+, Sr2+, and Ba2+ chloride solutions. J. Colloid Interface Sci. 97, 446–455.

    Article  CAS  Google Scholar 

  15. Pashley, R. M. (1981) DLVO and hydration forces between mica surfaces in Li+ Na+, K+, and Cs+ electrolyte solutions: a correlation of double-layer and hydration forces with surface cation exchange properties. J. Colloid Interface Sci. 83, 531–545.

    Article  CAS  Google Scholar 

  16. Pashley, R. M. (1981) Hydration forces between mica surfaces in aqueous electrolyte solutions. J. Colloid Interface Sci. 80, 153–162.

    Article  CAS  Google Scholar 

  17. Israelachvili, J. N. and Pashley, R. M. (1984) Measurements of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solution. J. Colloid Interface Sci. 98, 500–514.

    CAS  Google Scholar 

  18. Pashley, R. M., McGuiggan, P. M., Ninham, B. W., and Evans, D. F. (1985) Attractive forces between uncharged hydrophobic surfaces: direct measurements in aqueous solution. Science 229, 1088–1089.

    Article  PubMed  CAS  Google Scholar 

  19. Roth, C. M. and Lenhoff, A. M. (1993) Electrostatic and Van der Waals contributions to protein adsorption: computation of equilibrium constants. Langmuir 9, 962–972.

    Article  CAS  Google Scholar 

  20. Lange, H. (1957) Uber die energetische wechselwirkung zwischen textifarsen und pigmentschmutz beim waschprozess. Kolloidzeitschrift 154, 103–110.

    Article  CAS  Google Scholar 

  21. Visser, J. (1976) Surface and Colloid Science, Wiley, New York.

    Google Scholar 

  22. Bafaluy, J., Senger, B., Voegel, J. C., and Schaaf, P. (1993) Effect of hydrodynamic interactions on the distribution of adhering Brownian particles. Phys. Rev. Lett. 70, pp 623–626.

    Article  PubMed  CAS  Google Scholar 

  23. Hamaker, H. C. (1937) The London-van der Waals attraction between spherical particles. Physica 4, 1058–1072.

    Article  CAS  Google Scholar 

  24. Landau L. D. and Lifshitz E. M. (1987) Course of Theoretical Physics, Vol. 6. Pergamon Press, Oxford, 26–31.

    Google Scholar 

  25. Dutton, K., Thompson, S., and Barraclough, B. (1997) The Art of Control Engineering, Addison Wesley, Reading, MA.

    Google Scholar 

  26. Curtis, A. S. G. and Hocking, L. M. (1970) Collision efficiency of equal spherical particles in a shear flow. Trans. Faraday Soc. 66, 1381–1390.

    Article  CAS  Google Scholar 

  27. Hogg, R., Healy, T. W., and Fuerstenau, D. W. (1966) Mutual coagulation of colloidal dispersion. Trans. Faraday Soc. 62, 1638–1651.

    Article  CAS  Google Scholar 

  28. Curtis, A. S. G. (1973) Cell Adhesion. Prog. Biophys. Mol. Biol. 27, 315–386.

    Article  Google Scholar 

  29. Donners, W. A. B., Rijnbout, J. B., and Vrji, J. (1977) Light scattering from soap films-1 determination of double-layer repulsion forces. J. Colloid Interface Sci. 61, 249–260.

    Article  CAS  Google Scholar 

  30. Smith, C. P., Maeda, M., Atanasoska, L., White, H., and Sand McClure, D. J. (1988) Ultrathin platinum films on mica and the measurement of forces at the platinum/water interface. J. Phys. Chem. 92, 199–205.

    Article  CAS  Google Scholar 

  31. MacRitchie, F. (1972) The adsorption of proteins at solid/liquid interface. J. Colloid Interface Sci. 38, 484–488.

    Article  CAS  Google Scholar 

  32. Luey, J. K., McGuire, J., and Sproull, R. D. (1991) “he effect of pH and NaCl concentration on adsorption of β-lactoglobulin at hydrophilic and hydrophobic silicon surfaces. J. Colloid Interface Sci. 143, 489–499.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ruggiero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruggiero, C., Mantelli, M., Curtis, A. et al. Protein-surface interactions. Cell Biochem Biophys 43, 407–417 (2005). https://doi.org/10.1385/CBB:43:3:407

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:43:3:407

Index Entries

Navigation