Skip to main content

Advertisement

Log in

Acute adaptations of the coronary circulation to exercise

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Coronary blood flow is tightly coupled to myocardial oxygen consumption to maintain a consistently high level of myocardial oxygen extraction. This tight coupling has been proposed to depend on periarteriolar, oxygen tension, signals released from cardiomyocytes (adenosine acting on K +ATP channels), and/or the endothelium (prostanoids, nitric oxide, endothelin [ET]) and autonomic influences (catecholamines), but the contribution of each of these regulatory pathways and their interactions are still incompletely understood. Until recently, experimental studies into the regulation of coronary blood flow during exercise were principally performed in the dog. We have performed several studies on the regulation of vasomotor tone in coronary resistance vessels in chronically instrumented exercising swine. These studies have shown that the coronary resistance vessels in swine lack significant α-adrenergic control, but that these vessels are subject to β-adrenergic feed-forward control during exercise, which is aided by a parasympathetic withdrawal. In addition, withdrawal of an ET-mediated vasoconstrictor influence also contributes to exercise-induced coronary vasodilation. Coronary blood flow regulation by endothelial and metabolic vasodilator pathways contributes to resting vasomotor tone regulation but does not appear to contribute to the exercise-induced coronary vasodilation. Furthermore, blockade of one vasodilator pathway is not compensated by an increased contribution of the other vasodilator mechanisms, suggesting that porcine coronary vasomotor control by endothelial and metabolic factors occurs in a linear additive rather than a nonlinear synergistic fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feigl, E. O. (1983) Coronary physiology. Physiol. Rev. 63, 1–205.

    PubMed  CAS  Google Scholar 

  2. Laughlin, M. H., Korthuis, R., Duncker, D. J., and Bache, R. J. (1996) Regulation of blood flow to cardiac and skeletal muscle during exercise, in Handbook of Physiology. Exercise: Regulation and Integration of Multiple Systems, (Rowell, L. B. and Shepherd, J. T. eds.) Bethesda MD, American Physiological Society, pp. 705–769.

    Google Scholar 

  3. Laughlin, M. H. and Tomanek, R. J. (1987) Myocardial capillarity and maximal capillary diffusion capacity in exercise-trained dogs. J. Appl. Physiol. 63, 1481–1486.

    PubMed  CAS  Google Scholar 

  4. Gute, D., Fraga, C., Laughlin, M. H., and Amann, J. F. (1996) Regional changes in capillary supply in skeletal muscle of high-intensity endurance-trained rats. J. Appl. Physiol. 81, 619–626.

    PubMed  CAS  Google Scholar 

  5. Duncker, D. J., Zhang, J., Pavek, T. J., Crampton, M. J., and Bache, R. J. (1995) Effect of exercise on coronary pressure-flow relationship in hypertrophied left ventricle. Am. J. Physiol. 269, H271-H281.

    PubMed  CAS  Google Scholar 

  6. Jones, C. J., Kuo, L., Davis, M. J., and Chilian, W. M. (1995) Regulation of coronary blood flow: coordination of heterogeneous control mechanisms in vascular microdomains. Cardiovasc. Res. 29, 585–596.

    Article  PubMed  CAS  Google Scholar 

  7. Merkus, D., Chilian, W. M., and Stepp, D. W. (1999) Functional characteristics of the coronary microcirculation. Herz 24, 496–508.

    Article  PubMed  CAS  Google Scholar 

  8. Duncker, D. J. and Bache, R. J. (2000) Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion. Pharmacol. Ther. 86, 87–110.

    Article  PubMed  CAS  Google Scholar 

  9. Tune, J. D., Richmond, K. N., Gorman, M. W., and Feigl, E. O. (2002) Control of coronary blood flow during exercise. Exp. Biol. Med. 227, 238–250.

    CAS  Google Scholar 

  10. Tune, J. D., Gorman, M. W., and Feigl, E. O. (2004) Matching coronary blood flow to myocardial oxygen consumption. J. Appl. Physiol. 97, 404–415.

    Article  PubMed  Google Scholar 

  11. Khouri, E. M., Gregg, D. E., and Rayford, C. R. (1965) Effect of exercise on cardiac output, left coronary flow and myocardial metabolism in the unanesthetized dog. Circ. Res. 17, 427–437.

    PubMed  CAS  Google Scholar 

  12. von Restorff, W., Holtz, J., and Bassenge, E. (1977) Exercise induced augmentation of myocardial oxygen extraction in spite of normal coronary dilatory capacity in dogs. Pflügers Arch. 372, 181–185.

    Article  Google Scholar 

  13. Heyndrickx, G. R., Pannier, J. L., Muylaert, P., Mabilde, C., and Leusen, I. (1980) Alteration in myocardial oxygen balance during exercise after beta-adrenergic blockade in dogs. J. Appl. Physiol. 49, 28–33.

    PubMed  CAS  Google Scholar 

  14. Gwirtz, P. A. and Stone, H. L. (1981) Coronary blood flow and myocardial, oxygen consumption after alpha adrenergic blockade during submaximal exercise. J. Pharmacol. Exp. Ther. 217, 92–98.

    PubMed  CAS  Google Scholar 

  15. Bache, R. J., Dai, X. Z., Herzog, C. A., and Schwartz, J. S. (1987) Effects of nonselective and selective alpha 1-adrenergic blockade on coronary blood flow during exercise. Circ. Res. 61, II36-II41.

    PubMed  CAS  Google Scholar 

  16. Heyndrickx, G. R., Muylaert, P., and Pannier, J. L. (1982) Alpha-adrenergic control of oxygen delivery to myocardium during exercise in conscious dogs. Am. J. Physiol. 242, H805-H809.

    PubMed  CAS  Google Scholar 

  17. Lombardo, T. A., Rose, L., Taeschler, M., Tuluy, S., and Bing, R. J. (1953) The effect of exercise on coronary blood flow, myocardial oxygen consumption and cardiac efficiency in man. Circulation 7, 71–78.

    PubMed  CAS  Google Scholar 

  18. Messer, J. V., Wagman, R. J., Levine, H. J., Neill, W. A., Krasnow, N., and Gorlin, R. (1962) Patterns of human myocardial oxygen extraction during rest and exercise. J. Clin. Invest. 41, 725–742.

    PubMed  CAS  Google Scholar 

  19. Gorlin, R., Krasnow, N., Levine, H. J., and Messer, J. V. (1964) Effect of exercise on cardiac performance in human subjects with minimal heart disease. Am. J. Cardiol. 13, 293–300.

    Article  PubMed  CAS  Google Scholar 

  20. Binak, K., Harmanci, N., Sirmaci, N., Ataman, N., and Ogan, H. (1967) Oxygen extraction rate of the myocardium at rest and on exercise in various conditions. Br. Heart. J. 29, 422–427.

    Article  PubMed  CAS  Google Scholar 

  21. Richalet, J. P., Soulard, C., Nitenberg, A., Teisseire, B., de Bovee, J., and Seroussi, S. (1981) Myocardial oxygen extraction and oxygen-hemoglobin equilibrium curve during moderate exercise. Eur. J. Appl. Physiol. Occup. Physiol. 47, 27–39.

    Article  PubMed  CAS  Google Scholar 

  22. Holmberg, S., Serzysko, W., and Varnauskas, E. (1971) Coronary circulation during heavy exercise in control subjects and patients with coronary heart disease. Acta Med. Scand. 190, 465–480.

    Article  PubMed  CAS  Google Scholar 

  23. Jorgensen, C. R., Kitamura, K., Gobel, F. L., Taylor, H. L., and Wang, Y. (1971) Long-term precision of the N2O method for coronary flow during heavy upright exercise. J. Appl. Physiol. 30, 338–344.

    PubMed  CAS  Google Scholar 

  24. Kitamura, K., Jorgensen, C. R., Gobel, F. L., Taylor, H. L., and Wang, Y. (1972) Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J. Appl. Physiol. 32, 516–522.

    PubMed  CAS  Google Scholar 

  25. Heiss, H. W., Barmeyer, J., Wink, K., Hell, G., Cemy, F. J., Keul, J., and Reindell, H. (1976) Studies on the regulation of myocardial blood flow in man. I: Training effects on blood flow and metabolism of the healthy heart at rest and during standardized heavy exercise. Basic Res. Cardiol. 71, 658–675.

    Article  PubMed  CAS  Google Scholar 

  26. Duncker, D. J., Stubenitsky, R., and Verdouw, P. D. (1998) Autonomic control of vasomotion in the porcine coronary circulation during treadmill exercise: evidence for feed-froward betaadrenergic control. Circ. Res. 82, 1312–1322.

    PubMed  CAS  Google Scholar 

  27. Dai, X. Z., Sublett, E., Lindstrom, P., Schwartz, J. S., Homans, D. C., and Bache, R. J. (1989) Coronary flow during exercise after selective alpha 1- and alpha 2-adrenergic blockade. Am. J. Physiol. 256, H1148-H1155.

    PubMed  CAS  Google Scholar 

  28. Gorman, M. W., Tune, J. D., Richmond, K. N., and Feigl, E. O. (2000) Feedforward sympathetic coronary vasodilation in exercising dogs. J. Appl. Physiol. 89, 1892–1902.

    PubMed  CAS  Google Scholar 

  29. Heusch, G., Baumgart, D., Camici, P., et al. (2000) Alpha-adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 101, 689–694.

    PubMed  CAS  Google Scholar 

  30. Schulz, R., Oudiz, R. J., Guth, B. D., and Heusch, G. (1990) Minimal alpha 1- and alpha 2-adrenoceptor-mediated coronary vasoconstriction in the anaesthetized swine. Naunyn Schmiedebergs Arch. Pharmacol. 342, 422–428.

    Article  PubMed  CAS  Google Scholar 

  31. Heyndrickx, G. R., Vilaine, J. P., Moerman, E. J., and Leusen, I. (1984) Role of prejunctional alpha 2-adrenergic receptors in the regulation of myocardial performance during exercise in conscious dogs. Circ. Res. 54, 683–693.

    PubMed  CAS  Google Scholar 

  32. Jorgensen, C. R., Wang, K., Wang, Y., Gobel, F. L., Nelson, R. R., and Taylor, H. (1973) Effect of propranolol on myocardial oxygen consumption and its hemodynamic correlates during upright exercise. Circulation 48, 1173–1182.

    PubMed  CAS  Google Scholar 

  33. Ekstrom-Jodal, B., Haggendal, E., Malmberg, R., and Svedmyr, N. (1972) The effect of adrenergic beta-receptor blockade on coronary circulation in man during work. Acta Med. Scand. 191, 245–248.

    PubMed  CAS  Google Scholar 

  34. Bassenge, E., Kucharczyk, M., Holtz, J., and Stoian, D. (1972) Treadmill exercise in dogs under beta-adrenergic blockade: adaptation of coronary and systemic hemodynamics. Pflügers Arch. 332, 40–55.

    Article  PubMed  CAS  Google Scholar 

  35. Broten, T. P., Miyashiro, J. K., Moncada, S., and Feigl, E. O. (1992) Role of endotheliumderived relaxing factor in parasympathetic coronary vasodilation. Am. J. Physiol. 262, H1579-H1584.

    PubMed  CAS  Google Scholar 

  36. Cowan, C. L. and McKenzie, J. E. (1990) Cholinergic regulation of resting coronary blood flow in domestic swine. Am. J. Physiol. 259, H109-H115.

    PubMed  CAS  Google Scholar 

  37. Hata, H., Egashira, K., Fukai, T., et al. (1993) The role of endothelium-derived nitric oxide in acetylcholine-induced coronary vasoconstriction in closed-chest pigs. Coron. Artery Dis. 4, 891–898.

    Article  PubMed  CAS  Google Scholar 

  38. Parent, R., al-Obaidi, M., and Lavallee, M. (1993) Nitric oxide formation contributes to beta-adrenergic dilation of resistance coronary vessels in conscious dogs. Circ. Res. 73, 241–251.

    PubMed  CAS  Google Scholar 

  39. Smith, T. P. Jr. and Canty, J. M. Jr. (1993) Modulation of coronary autoregulatory responses by nitric oxide: Evidence for flowdependent resistance adjustments in conscious dogs. Circ. Res. 73, 232–240.

    PubMed  CAS  Google Scholar 

  40. Altman, J. D., Kinn, J., Duncker, D. J., and Bache, R. J. (1994) Effect of inhibition of nitric oxide formation on coronary blood flow during exercise in the dog. Cardiovasc. Res. 28, 119–124.

    PubMed  CAS  Google Scholar 

  41. Bernstein, R. D., Ochoa, F. Y., Xu, X., et al. (1996) Function and production of nitric oxide in the coronary circulation of the conscious dog during exercise [published erratum appears in Circ. Res. 1996;79(6):1218]. Circ. Res. 79, 840–848.

    PubMed  CAS  Google Scholar 

  42. Tune, J. D., Richmond, K. N., Gorman, M. W., and Feigl, E. O. (2000) Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs. Circulation 101, 2942–2948.

    PubMed  CAS  Google Scholar 

  43. Lefroy, D. C., Crake, T., Uren, N. G., Davies, G. J., and Maseri, A. (1993) Effect of inhibition of nitric oxide synthesis on epicardial coronary artery caliber and coronary blood flow in humans. Circulation 88, 43–54.

    PubMed  CAS  Google Scholar 

  44. Quyyumi, A. A., Dakak, N., Andrews, N. P., Gilligan, D. M., Panza, J. A., and Cannon, R. O. 3rd. (1995) Contribution of nitric oxide to metabolic coronary vasodilation in the human heart. Circulation 92, 320–326.

    PubMed  CAS  Google Scholar 

  45. Nishikawa, Y., Kanki, H., and Ogawa, S. (1997) Role of nitric oxide in coronary vasomotion during handgrip exercise. Am. Heart J. 134, 967–973.

    Article  PubMed  CAS  Google Scholar 

  46. Duncker, D. J., Stubenitsky, R., Tonino, P. A., and Verdouw, P. D. (2000) Nitric oxide contributes to the regulation of vasomotor tone but does not modulate O2-consumption in exercising swine. Cardiovasc. Res. 47, 738–748.

    Article  PubMed  CAS  Google Scholar 

  47. Friedman, P. L., Brown, E. J. Jr., Gunther, S., et al. (1981) Coronary vasoconstrictor effect of indomethacin in patients with coronaryartery disease. N. Engl. J. Med. 305, 1171–1175.

    Article  PubMed  CAS  Google Scholar 

  48. Duffy, S. J., Castle, S. F., Harper, R. W., and Meredith, I. T. (1999) Contribution of vasodilator prostanoids and nitric oxide to resting flow, metabolic vasodilation, and flow-mediated dilation in human coronary circulation. Circulation 100, 1951–1957.

    PubMed  CAS  Google Scholar 

  49. Pacold, I., Hwang, M. H., Lawless, C. E., Diamond, P., Scanlon, P. J., and Loeb, H. S. (1986) Effects of indomethacin on coronary hemodynamics, myocardial metabolism and anginal threshold in coronary artery disease. Am. J. Cardiol. 57, 912–915.

    Article  PubMed  CAS  Google Scholar 

  50. Edlund, A., Sollevi, A., and Wennmalm, A. (1989) The role of adenosine and prostacyclin in coronary flow regulation in healthy man. Acta Physiol. Scand. 135, 39–46.

    PubMed  CAS  Google Scholar 

  51. Dai, X. Z. and Bache, R. J. (1984) Effect of indomethacin on coronary blood flow during graded treadmill exercise in the dog. Am. J. Physiol. 247, H452-H458.

    PubMed  CAS  Google Scholar 

  52. Osanai, T., Fujita, N., Fujiwara, N., et al. (2000). Cross talk of shear-induced production of prostacyclin and nitric oxide in endothelial cells. Am. J. Physiol. 278, H233-H238.

    CAS  Google Scholar 

  53. Puybasset, L., Bea, M. L., Ghaleh, B., Giudicelli, J. F., and Berdeaux, A. (1996) Coronary and systemic hemodynamic effects of sustained inhibition of nitric oxide synthesis in conscious dogs: evidence for cross talk between nitric oxide and cyclooxygenase in coronary vessels. Circ. Res. 79, 343–357.

    PubMed  CAS  Google Scholar 

  54. Merkus, D., Houweling, B., Zarbanoui, A., and Duncker, D. J. (2004) Interaction between prostanoids and nitric oxide in regulation of systemic, pulmonary, and coronary vascular tone in exercising swine. Am. J. Physiol. 286, H1114-H1123.

    CAS  Google Scholar 

  55. Rubanyi, G. M. and Polokoff, M. A. (1994) Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol. Rev. 46, 325–415.

    PubMed  CAS  Google Scholar 

  56. Frelin, C. and Guedin, D. (1994) Why are circulating concentrations of endothelin-1 so low? Cardiovasc. Res. 28, 1613–1622.

    PubMed  CAS  Google Scholar 

  57. Merkus, D., Duncker, D. J., and Chilian, W. M. (2002) Metabolic regulation of coronary vascular tone—role of endothelin-1. Am. J. Physiol. 283, H1915-H1921.

    CAS  Google Scholar 

  58. Takamura, M., Parent, R., Cernacek, P., and Lavallee, M. (2000). Influence of dual ET(A)/ET(B)-receptor blockade on coronary responses to treadmill exercise in dogs. J. Appl. Physiol. 89, 2041–2048.

    PubMed  CAS  Google Scholar 

  59. Lenz, T., Nadansky, M., Gossmann, J., Oremek, G., and Geiger, H. (1998) Exhaustive exercise-induced tissue hypoxia does not change endothelin and big endothelin plasma levels in normal volunteers. Am. J. Hypertens. 11, 1028–1031.

    Article  PubMed  CAS  Google Scholar 

  60. Haitsma, D. B., Bac, D., Raja, N., Boomsma, F., Verdouw, P. D., and Duncker, D. J. (2001) Minimal impairment of myocardial blood flow responses to exercise in the remodeled left ventricle early after myocardial infarction, despite significant hemodynamic and neurohumoral alterations. Cardiovasc. Res. 52, 417–428.

    Article  PubMed  CAS  Google Scholar 

  61. Maeda, S., Miyauchi, T., Goto, K., and Matsuda, M. (1994) Alteration of plasma endothelin-1 by exercise at intensities lower and higher than ventilatory threshold. J. Appl. Physiol. 77, 1399–1402.

    PubMed  CAS  Google Scholar 

  62. Ahlborg, G., Weitzberg, E., and Lundberg, J. (1995) Metabolic and vascular effects of circulating endothelin-1 during moderately heavy prolonged exercise. J. Appl. Physiol. 78, 2294–2300.

    PubMed  CAS  Google Scholar 

  63. Merkus, D., Stepp, D. W., Jones, D. W., Nishikawa, Y., and Chilian, W. M. (2000) Adenosine preconditions against endothelin-induced constriction of coronary arterioles. Am. J. Physiol. 279, H2593-H2597.

    CAS  Google Scholar 

  64. Merkus, D., Houweling, B., Mirza, A., Boomsma, F., van den Meiracker, A. H., and Duncker, D. J. (2003) Contribution of endothelin and its receptors to the regulation of vascular tone during exercise is different in the systemic, coronary and pulmonary circulation. Cardiovasc. Res. 59, 745–754.

    Article  PubMed  CAS  Google Scholar 

  65. Goligorsky, M. S., Tsukahara, H., Magazine, H., Andersen, T. T., Malik, A. B., and Bahou, W. F. (1994) Termination of endothelin signaling: role of nitric oxide. J. Cell. Physiol. 158, 485–494.

    Article  PubMed  CAS  Google Scholar 

  66. Wiley, K. E. and Davenport, A. P. (2001) Nitric oxide-mediated modulation of the endothelin-1 signalling pathway in the human cardiovascular system. Br. J. Pharmacol. 132, 213–220.

    Article  PubMed  CAS  Google Scholar 

  67. Berne, R. M. and Rubio, R. (1974) Regulation of coronary blood flow. Adv. Cardiol. 12, 303–317.

    PubMed  CAS  Google Scholar 

  68. Olsson, R. A., Bunger, R., and Spaan, J. A. (1992) Coronary circulation, in The Heart and Cardiovascular System (Fozzard, H. A., Haber, E., Jennings, R. B., Katz, A. M., and Morgan, H. E., eds.), Raven, New York, pp. 1393–1426.

    Google Scholar 

  69. Sparks, H. V. Jr. and Bardenheuer, H. (1986) Regulation of adenosine formation by the heart. Circ. Res. 58, 193–201.

    PubMed  CAS  Google Scholar 

  70. Saito, D., Steinhart, C. R., Nixon, D. G., and Olsson, R. A. (1981) Intracoronary adenosine deaminase reduces canine myocardial reactive hyperemia. Circ. Res. 49, 1262–1267.

    PubMed  CAS  Google Scholar 

  71. Kroll, K. and Feigl, E. O. (1985) Adenosine is unimportant in controlling coronary blood flow in unstressed dog hearts. Am. J. Physiol. 249, H1176-H1187.

    PubMed  CAS  Google Scholar 

  72. Hanley, F. L., Grattan, M. T., Stevens, M. B., and Hoffman, J. I. (1986) Role of adenosine in coronary autoregulation. Am. J. Physiol. 250, H558-H566.

    PubMed  CAS  Google Scholar 

  73. Schutz, W., Zimpfer, M., and Raberger, G. (1977) Effect of aminophylline on coronary reactive hyperaemia following brief and long occlusion periods. Cardiovasc. Res. 11, 507–511.

    PubMed  CAS  Google Scholar 

  74. Giles, R. W. and Wilcken, D. E. (1977) Reactive hyperaemia in the dog heart: inter-relations between adenosine, ATP, and aminophylline and the effect of indomethacin. Cardiovasc. Res. 11, 113–121.

    PubMed  CAS  Google Scholar 

  75. Martin, S. E., Tidmore, W. C., and Patterson, R. E. (1991) Adenosine receptor blockade with 8p-sulfophenyltheophylline aggravates coronary constriction. Am. J. Physiol. 260, H1753-H1759.

    PubMed  CAS  Google Scholar 

  76. Bache, R. J., Dai, X. Z., Schwartz, J. S., and Homans, D. C. (1988) Role of adenosine in coronary vasodilation during exercise. Circ. Res. 62, 846–853.

    PubMed  CAS  Google Scholar 

  77. Watkinson, W. P., Foley, D. H., Rubio, R., and Berne, R. M. (1979) Myocardial adenosine formation with increased cardiac performance in the dog. Am. J. Physiol. 236, H13-H21.

    PubMed  CAS  Google Scholar 

  78. Bacchus, A. N., Ely, S. W., Knabb, R. M., Rubio, R., and Berne, R. M. (1982) Adenosine and coronary blood flow in conscious dogs during normal physiological stimuli. Am. J. Physiol. 243, H628-H633.

    PubMed  CAS  Google Scholar 

  79. Edlund, A. and Sollevi, A. (1995) Theophylline increases coronary vascular tone in humans: evidence for a role of endogenous adenosine in flow regulation. Acta Physiol. Scand. 155, 303–311.

    Article  PubMed  CAS  Google Scholar 

  80. Duncker, D. J., Stubenitsky, R., and Verdouw, P. D. (1998) Role of adenosine in the regulation of coronary blood flow in swine at rest and during treadmill exercise. Am. J. Physiol. 275, H1663-H1672.

    PubMed  CAS  Google Scholar 

  81. Merkus, D., Haitsma, D. B., Fung, T. Y., Assen, Y. J., Verdouw, P. D., and Duncker, D. J. (2003) Coronary blood flow regulation in exercising swine involves parallel rather than redundant vasodilator pathways. Am. J. Physiol. 285, H424-H433.

    CAS  Google Scholar 

  82. Standen, N. B., Quayle, J. M., Davies, N. W., Brayden, J. E., Huang, Y., and Nelson, M. T. (1989) Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 245, 177–180.

    Article  PubMed  CAS  Google Scholar 

  83. Duncker, D. J., Van Zon, N. S., Altman, J. D., Pavek, T. J., and Bache, R. J. (1993) Role of K+ ATP channels in coronary vasodilation during exercise. Circulation 88, 1245–1253.

    PubMed  CAS  Google Scholar 

  84. Duncker, D. J., van Zon, N. S., Pavek, T. J., Herrlinger, S. K., and Bache, R. J. (1995) Endogenous adenosine mediates coronary vasodilation during exercise after K+ ATP channel blockade. J. Clin. Invest. 95, 285–295.

    Article  PubMed  CAS  Google Scholar 

  85. Richmond, K. N., Tune, J. D., Gorman, M. W., and Feigl, E. O. (2000) Role of K+ ATP channels and adenosine in the control of coronary blood flow during exercise. J. Appl. Physiol. 89, 529–536.

    PubMed  CAS  Google Scholar 

  86. Narishige, T., Egashira, K., Akatsuka, Y., et al. (1994) Glibenclamide prevents coronary vasodilation induced by beta 1-adrenoceptor stimulation in dogs. Am. J. Physiol. 266, H84-H92.

    PubMed  CAS  Google Scholar 

  87. Duncker, D. J., Oei, H. H., Hu, F., Stubenitsky, R., and Verdouw, P. D. (2001) Role of K+ ATP channels in regulation of systemic, pulmonary, and coronary vasomotor tone in exercising swine. Am. J. Physiol. 280, H22-H33.

    CAS  Google Scholar 

  88. Samaha, F. F., Heineman, F. W., Ince, C., Fleming, J., and Balaban, R. S. (1992) ATP-sensitive potassium channel is essential to maintain basal coronary vascular tone in vivo. Am. J. Physiol. 262, C1220-C1227.

    PubMed  CAS  Google Scholar 

  89. Hein, T. W. and Kuo, L. (1999) cAMP-independent dilation of coronary arterioles to adenosine: role of nitric oxide, G proteins, and KATP channels. Circ. Res. 85, 634–642.

    PubMed  CAS  Google Scholar 

  90. Heaps, C. L. and Bowles, D. K. (2002) Genderspecific K+-channel contribution to adenosine-induced relaxation in coronary arterioles. J. Appl. Physiol. 92, 550–558.

    PubMed  CAS  Google Scholar 

  91. Jackson, W. F., Konig, A., Dambacher, T., and Busse, R. (1993) Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels. Am. J. Physiol. 264, H238-H243.

    PubMed  CAS  Google Scholar 

  92. Schubert, R., Serebryakov, V. N., Mewes, H., and Hopp, H. H. (1997) Iloprost dilates rat small arteries: role of KATP- and KCa-channel activation by cAMP-dependent protein kinase. Am. J. Physiol. 272, H1147-H1156.

    PubMed  CAS  Google Scholar 

  93. Ishibashi, Y., Duncker, D. J., Zhang, J., and Bache, R. J. (1998) ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise. Circ. Res. 82, 346–359.

    PubMed  CAS  Google Scholar 

  94. Tune, J. D., Richmond, K. N., Gorman, M. W., and Feigl, E. O. (2001) K+ ATP channels, nitric oxide, and adenosine are not required for local metabolic coronary vasodilation. Am. J. Physiol. 280, H868-H875.

    CAS  Google Scholar 

  95. Tanaka, T., Fukumoto, T., Ochi, T., and Kuroiwa, A. (1990) Theophylline inhibits isoproterenol-induced coronary dilatation in the isolated perfused rat heart. Int. J. Cardiol. 29, 373–380.

    Article  PubMed  CAS  Google Scholar 

  96. Popp, R., Fleming, I., and Busse, R. (1998) Pulsatile stretch in coronary arteries elicits release of endothelium-derived hyperpolarizing factor: a modulator of arterial compliance. Circ. Res. 82, 696–703.

    PubMed  CAS  Google Scholar 

  97. Fisslthaler, B., Fleming, I., and Busse, R. (2000) EDHF: a cytochrome P450 metabolite in coronary arteries. Semin. Perinatol. 24, 15–19.

    Article  PubMed  CAS  Google Scholar 

  98. Ishizaka, H., Gudi, S. R., Frangos, J. A., and Kuo, L. (1999) Coronary arteriolar dilation to acidosis: role of ATP-sensitive potassium channels and pertussis toxin-sensitive G proteins. Circulation 99, 558–563.

    PubMed  CAS  Google Scholar 

  99. Hayabuchi, Y., Nakaya, Y., Matsuoka, S., and Kuroda, Y. (1998) Effect of acidosis on Ca2+-activated K+ channels in cultured porcine coronary artery smooth muscle cells. Pflügers Arch. 436, 509–514.

    Article  PubMed  CAS  Google Scholar 

  100. Kitakaze, M., Hori, M., and Kamada, T. (1993) Role of adenosine and its interaction with alpha adrenoceptor activity in ischaemic and reperfusion injury of the myocardium. Cardiovasc. Res. 27, 18–27.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk J. Duncker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duncker, D.J., Merkus, D. Acute adaptations of the coronary circulation to exercise. Cell Biochem Biophys 43, 17–35 (2005). https://doi.org/10.1385/CBB:43:1:017

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:43:1:017

Index Entries

Navigation