Skip to main content
Log in

Ceramide and other sphingolipids in cellular responses

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Formerly considered to serve only as structural components, sphingolipids are emerging as an important group of signaling molecules involved in many cellular events, including cell growth, senescence, meiotic maturation, and cell death. They are also implicated in functions such as inflammation and the responses to heat shock and genotoxic stress. Defects in the metabolism of sphingolipids are related to various genetic disorders, and sphingolipids have the potential to serve as therapeutic agents for human diseases such as colon cancer and viral or bacterial infections. The best-studied member of this family, ceramide, which also serves as the structural back-bone for other sphingolipids, is an important mediator in multiple cellular signaling pathways. The metabolism and functions of sphingolipids are discussed in this review, with a focus on ceramide regulation in various cellular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horejsi, V., Drbal, K., Cebecauer, M., Cerny, J., Brdicka, T., Angelisova, P., et al. (1999) GPI-microdomains: a role in signalling via immunoreceptors. Immunol. Today 20, 356–361.

    PubMed  CAS  Google Scholar 

  2. Cremesti, A. E., Goni, F. M., and Kolesnick, R. (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome?. FEBS Lett. 531, 47–53.

    PubMed  CAS  Google Scholar 

  3. Hannun, Y. A. Sphingolipid-Mediated Signal Transduction. R. G. Landes Company, Austin, TX, 1997.

    Google Scholar 

  4. Merrill, A. H., Jr., Schmelz, E.-M., Dillehay, D. L., Spiegel, S., Shayman, J. A., Schroeder, J. J. et al. (1997) Sphingolipids—the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol. Applied Pharmacol. 142, 208–225.

    CAS  Google Scholar 

  5. Prieschl, E. E. and Baumruker, T. (2000) Sphingolipids: second messengers, mediators and raft constituents in signaling. Immunol. Today 21, 555–560.

    PubMed  CAS  Google Scholar 

  6. Ohanian, J. and Ohanian, V. (2001) Sphingolipids in mammalian cell signalling. Cell Mol. Life Sci. 58, 2053–2068.

    PubMed  CAS  Google Scholar 

  7. Jarvis, W. D. and Grant, S. (1998) The role of ceramide in the cellular response to cytotoxic agents. Curr. Opin. Oncol. 10, 552–559.

    PubMed  CAS  Google Scholar 

  8. Dbaibo, G. S. (1997) Regulation of the stress response by ceramide. Biochem. Soc. Trans. 25, 557–561.

    PubMed  CAS  Google Scholar 

  9. Yang, J. and Duerksen-Hughes, P. J. (2001) Activation of a p53-independent, sphingolipid-mediated cytolytic pathway in p53-negative mouse fibroblast cells treated with N-methyl-N-nitro-N-nitrosoguanidine. J. Biol. Chem. 276, 27129–27135.

    PubMed  CAS  Google Scholar 

  10. Luberto, C., Hassler, D. F., Signorelli, P., Okamoto, Y., Sawai, H., Boros, E., et al. (2002) Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J. Biol. Chem. 277, 41128–41139.

    PubMed  CAS  Google Scholar 

  11. Colell, A., Morales, A., Fernandez-Checa, J. C., and Garcia-Ruiz, C. (2002) Ceramide generated by acidic sphingomyelinase contributes to tumor necrosis factor-alpha-mediated apoptosis in human colon HT-29 cells through glycosphingolipids formation. Possible role of ganglioside GD3. FEBS Lett. 526, 135–141.

    PubMed  CAS  Google Scholar 

  12. Pru, J. K., Hendry, I. R., Davis, J. S., and Rueda, B. R. (2002) Soluble Fas ligand activates the sphingomyelin pathway and induces apoptosis in luteal steroidogenic cells independently of stress-activated p38(MAPK). Endocrinology 143, 4350–4357.

    PubMed  CAS  Google Scholar 

  13. Geilen, C. C., Barz, S., and Bektas, M. (2001) Sphingolipid signaling in epidermal homeostasis. Current knowledge and new therapeutic approaches in dermatology. Skin Pharmacol. Appl. Skin Physiol. 14, 261–271.

    PubMed  CAS  Google Scholar 

  14. Olivera, A. and Spiegel, S. (1993) Sphingosine-1-phosphate as a second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365, 557–560.

    PubMed  CAS  Google Scholar 

  15. Olivera, A., Zhang, H., Carlson, R.O., Mattie, M.E., Schmidt, R.R. and Spiegel, S. (1994) Stereospecificity of sphingosine-induced intra-cellular calcium mobilization and cellular proliferation. J. Biol. Chem. 269, 17924–17930.

    PubMed  CAS  Google Scholar 

  16. Davaille, J., Li, L., Mallat, A., and Lotersztajn, S. (2002) Sphingosine 1-phosphate triggers both apoptotic and survival signals for human hepatic myofibroblasts. J. Biol. Chem. 277, 37323–37330.

    PubMed  CAS  Google Scholar 

  17. Radin, N. S. (2002) The development of aggressive cancer: a possible role for sphingolipids. Cancer Invest. 20, 779–786.

    PubMed  Google Scholar 

  18. Senchenkov, A., Litvak, D. A., and Cabot, M. C. (2001) Targeting ceramide metabolism—a strategy for overcoming drug resistance. J. Natl. Cancer Inst. 93, 347–357.

    PubMed  CAS  Google Scholar 

  19. Sietsma, H., Veldman, R.J., and Kok, J. W. (2001) The involvement of sphingolipids in multidrug resistance. J. Membr. Biol. 181, 153–162.

    PubMed  CAS  Google Scholar 

  20. Auge, N., Negre-Salvayre, A., Salvayre, R., and Levade, T. (2000) Sphingomyelin metabolites in vascular cell signaling and atherogenesis. Prog. Lipid. Res. 39, 207–229.

    PubMed  CAS  Google Scholar 

  21. Cutler, R. G. and Mattson, M. P. (2001) Sphingomyelin and ceramide as regulators of development and lifespan. Mech. Ageing Dev. 122, 895–908.

    PubMed  CAS  Google Scholar 

  22. Wyrick, P. B. (2000) Intracellular survival by Chlamydia. Cell. Microbiol. 2, 275–282.

    PubMed  CAS  Google Scholar 

  23. Raulin, J. (2002) Human immunodeficiency virus and host cell lipids. Interesting pathways in research for a new HIV therapy. Prog. Lipid. Res. 41, 27–65.

    PubMed  CAS  Google Scholar 

  24. van Ooij, C., Kalman, L., van Ijzendoorn, S., Nishijima, M., Hanada, K., Mostov, K., et al. (2000) Host cell-derived sphingolipids are required for the intracellular growth of Chlamydi trachomatis. Cell. Microbiol. 2, 627–637.

    PubMed  Google Scholar 

  25. Schmelz, E. M., Bushnev, A. S., Dillehay, D. L., Liotta, D. C., and Merrill, A. H., Jr. (1997) Suppression of aberrant colonic crypt foci by synthetic sphingomyelins with saturated or unsaturated sphingoid base backbones. Nutr. Cancer 28, 81–85.

    PubMed  CAS  Google Scholar 

  26. Schmelz, E. M. and Merrill, A. H., Jr. (1998) Ceramides and ceramide metabolites in cell regulation: evidence for dietary sphingolipids as inhibitors of colon carcinogenesis. Nutrition 14, 717–719.

    PubMed  CAS  Google Scholar 

  27. Schmelz, E. M., Sullards, M. C., Dillehay, D. L., and Merrill, A. H., Jr. (2000) Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1, 2-dimethylhydrazine-treated CF1 mice. J. Nutr. 130, 522–527.

    PubMed  CAS  Google Scholar 

  28. Berra, B., Colombo, I., Sottocornola, E., and Giacosa, A. (2002) Dietary sphingolipids in colorectal cancer prevention. Eur. J. Cancer Prev. 11, 193–197.

    PubMed  CAS  Google Scholar 

  29. Hannun, Y. A., Luberto, C., and Argraves, K. M. (2001) Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 40, 4893–4903.

    PubMed  CAS  Google Scholar 

  30. Ferlinz, K., Hurwitz, R., Vielhaber, G., Suzuki, K., and Sandhoff, K. (1994) Occurrence of two molecular forms of human acid sphingomyelianse. Biochem. J. 310, 855–862.

    Google Scholar 

  31. Ichikawa, S., Sakiyama, H., Suzuki, G., Hidari, K. I., and Hirabayashi, Y. (1996) Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc. Natl. Acad. Sci. USA 93, 4638–4643.

    PubMed  CAS  Google Scholar 

  32. Bernardo, K., Hurwitz, R., Zenk, T., Desnick, R. J., Ferlinz, K., Schuchman, E. H., and Sandhoff, K. (1995) Purification, characterization, and biosynthesis of human acid ceramidase. J. Biol. Chem. 270, 11098–11102.

    PubMed  CAS  Google Scholar 

  33. Yada, Y., Higuchi, K., and Imokawa, G. (1995) Purification and biochemical characterization of membrane-bound epidermal ceramidases from guinea pig skin. J. Biol. Chem. 270, 12677–12684.

    PubMed  CAS  Google Scholar 

  34. Nikolova-Karakashian, M. and Merrill, A. H. Jr. (2000) Ceramidases. Methods Enzymol. 311, 194–201.

    PubMed  CAS  Google Scholar 

  35. Hanada, K., Hara, T., and Nishijima, M. (2000) Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques. J. Biol. Chem. 275, 8409–8415.

    PubMed  CAS  Google Scholar 

  36. Ternes, P., Franke, S., Zahringer, U., Sperling, P., and Heinz, E. (2002) Identification and characterization of a sphingolipid delta 4-desaturase family. J. Biol. Chem. 277, 25512–25518.

    PubMed  CAS  Google Scholar 

  37. Liu, H., Chakravarty, D., Maceyka, M., Milstien, S., and Spiegel, S. (2002) Sphingosine kinases: a novel family of lipid kinases. Prog. Nucleic Acid Res. Mol. Biol. 71, 493–511.

    PubMed  CAS  Google Scholar 

  38. van Helvoort, A., van't Hof, W., Ritsema, T., Sandra, A., and van Meer, G. (1994) Conversion of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (Madin-Darby canine kidney) cells. Evidence for the reverse action of a sphingomyelin synthase. J. Biol. Chem. 269, 1763–1769.

    PubMed  Google Scholar 

  39. Ruvolo, P. P. (2001) Ceramide regulates cellular homeostasis via diverse stress signaling pathways. Leukemia 15, 1153–1160.

    PubMed  CAS  Google Scholar 

  40. Lester, R. L., Wells, G. B., Oxford, G., and Dickson, R. C. (1993) Mutant strains of Saccharomyces cerevisiae lacking sphingolipids synthesize novel inositol glycerophospholipids that mimic sphingolipid structures. J. Biol. Chem. 268, 845–856.

    PubMed  CAS  Google Scholar 

  41. Hanada, K., Nishijima, M., Kiso, M., Hasegawa, A., Fujita, S., Ogawa, T., et al. (1992) Sphingolipids are essential for the growth of Chinese hamster ovary cells. Restoration of the growth of a mutant defective in sphingoid base biosynthesis by exogenous sphingolipids. J. Biol. Chem. 267, 23527–23533.

    PubMed  CAS  Google Scholar 

  42. Dawkins, J. L., Hulme, D. J., Brahmbhatt, S. B., Auer-Grumbach, M., and Nicholson, G. A. (2001) Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type 1. Nat. Genetics 27, 309–312.

    CAS  Google Scholar 

  43. Bejaoui, K., Wu, C., Scheffler, M. D., Haan, G., Ashby, P., Wu, L., et al. (2001) SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat. Genetics, 27, 261–262.

    CAS  Google Scholar 

  44. Dawkins, J., Brahmbhatt, S., Auer-Grumbach, M., Wagner, K., Hartung, H., Verhoeven, K., et al. (2002) Exclusion of serine palmitoyltransferase long chain base subunit 2 (SPTLC2) as a common cause for hereditary sensory neuropathy. Neuromuscul. Disord. 12, 656.

    PubMed  Google Scholar 

  45. Jin, H. K., Carter, J. E., Huntley, G. W., and Schuchman, E. H. (2002) Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. J. Clin. Invest. 109, 1183–1191.

    PubMed  CAS  Google Scholar 

  46. Rethy, L. A., Kalmanchey, R., Klujber, V., Koos, R., and Fekete, G. (2000) Acid sphingomyelinase deficiency in Beckwith Wiedemann syndrome. Pathol. Oncol. Res. 6, 295–297.

    Article  PubMed  CAS  Google Scholar 

  47. Merrill, A. H., Jr. and Sweeley, C. C. Sphingolipid metabolism and cell signaling. In: Biochemistry of Lipids, Lipoproteins, and Membranes. (Vance, D. E., and Vance, J., eds.) Elsevier Science, Amsterdam, 1996, pp. 309–338.

    Google Scholar 

  48. Spiegel, S., Cuvillier, O., Edsall, L. C., Kohama, T., Menzeleev, R., Olah, Z., et al. (1998) Sphingosine-1-phosphate in cell growth and cell death. Ann. NY Acad. Sci., 845, 11–18.

    PubMed  CAS  Google Scholar 

  49. Spiegel, S., Cuvillier, O., Edsall, L., Kohama, T., Menzeleev, R., Olivera, A., et al. (1998) Roles of sphingosine-1-phosphate in cell growth, differentiation, and death. Biochemistry (Mosc) 63, 69–73.

    CAS  Google Scholar 

  50. Pyne, S., Chapman, J., Steele, L., and Pyne, N. J. (1996) Sphingomyelin-derived lipids differentially regulate the extracellular signal-regulated kinase 2 (ERK-2) and c-Jun N-terminal kinase (JNK) signal cascades in airway smooth muscle. Eur. J. Biochem. 237, 819–826.

    PubMed  CAS  Google Scholar 

  51. Zhang, H., Desai, N. N., Olivera, A., Seki, T., Brooker, G., and Spiegel, S. (1991) Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J. Cell Biol. 114, 155–167.

    PubMed  CAS  Google Scholar 

  52. Gomez-Munoz, A., Waggoner, D. W., O'Brien, L., and Brindley, D. N. (1995) Interaction of ceramides, sphingosine, and sphingosine-1-phosphate in regulating DNA synthesis and phospholipase D activity. J. Biol. Chem. 270, 26318–26325.

    PubMed  CAS  Google Scholar 

  53. Bornfeldt, K. E., Graves, L. M., Raines, E. W., Igarashi, Y., Wayman, G., Yamamura, S., et al. (1995) Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction. J. Cell Biol. 130, 193–206.

    PubMed  CAS  Google Scholar 

  54. An, S., Zheng, Y., and Bleu, T. (2000) Sphingosine 1-phosphate-induced cell proliferation, survival, and related signaling events mediated by G proteincoupled receptors Edg3 and Edg5. J. Biol. Chem. 275, 288–296.

    PubMed  CAS  Google Scholar 

  55. Pyne, S. and Pyne, N. J. (2002) Sphingosine 1-phosphate signalling and termination at lipid phosphate receptors. Biochim. Biophys. Acta 1582, 121–131.

    PubMed  CAS  Google Scholar 

  56. Peyssonnaux, C. and Eychene, A. (2001) The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell 93, 53–62.

    PubMed  CAS  Google Scholar 

  57. Yang, J., Yu, Y. N., and Duerksen-Hughes, P. J. (2003) Protein kinases and their involvement in the cellular responses to genotoxic stress. Rev. Mutat. Res. 543, 31–58.

    CAS  Google Scholar 

  58. Van Brocklyn, J. R., Lee, M. J., Menzeleev, R., Olivera, A., Edsall, L., Cuvillier, O., et al. (1998) Dual actions of sphingosine-1-phosphate: extracellular through the Gicoupled receptor Edg-1 and intracellular to regulate proliferation and survival. J. Cell. Biol. 142, 229–240.

    PubMed  Google Scholar 

  59. Hanafusa, N., Yatomi, Y., Yamada, K., Hori, Y., Nangaku, M., Okuda, T., et al. (2002) Sphingosine 1-phosphate stimulates rat mesangial cell proliferation from outside the cells. Nephrol. Dial. Transplant 17, 580–586.

    PubMed  CAS  Google Scholar 

  60. Olivera, A., Kohama, T., Edsall, L., Nava, V., Cuvillier, O., Poulton, S. et al. (1999) Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J. Cell. Biol. 147, 545–558.

    PubMed  CAS  Google Scholar 

  61. Sawai, H., Okazaki, T., and Domae, N. (2002) Sphingosine-induced c-jun expression: differences between sphingosine- and C2-ceramide-mediated signaling pathways. FEBS Lett. 524, 103–106.

    PubMed  CAS  Google Scholar 

  62. Ahn, E. H. and Schroeder, J. J. (2002) Sphingoid bases and ceramide induce apoptosis in HT-29 and HCT-116 human colon cancer cells. Exp. Biol. Med. 227, 345–353.

    CAS  Google Scholar 

  63. Chang, H. C., Tsai, L. H., Chuang, L. Y., and Hung, W. C. (2001) Role of AKT kinase in sphingosine-induced apoptosis in human hepatoma cells. J. Cell. Physiol. 188, 188–193.

    PubMed  CAS  Google Scholar 

  64. Itakura, A., Tanaka, A., Aioi, A., Tonogaito, H., and Matsuda, H. (2002) Ceramide and sphingosine rapidly induce apoptosis of murine mast cells supported by interleukin-3 and stem cell factor. Exp. Hematol. 30, 272–278.

    PubMed  CAS  Google Scholar 

  65. Kagedal, K., Zhao, M., Svensson, I., and Brunk, U. T. (2001) Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem. J. 359, 335–343.

    PubMed  CAS  Google Scholar 

  66. Nava, V. E., Cuvillier, O., Edsall, L. C., Kimura, K., Milstien, S., Gelmann, E. P., et al. (2000) Sphingosine enhances apoptosis of radiation-resistant prostate cancer cells. Cancer Res. 60, 4468–4474.

    PubMed  CAS  Google Scholar 

  67. Cuvillier, O., Edsall, L., and Spiegel, S. (2000) Involvement of sphingosine in mitochondria-dependent Fas-induced apoptosis of type II Jurkat T cells. J. Biol. Chem. 275, 15691–15700.

    PubMed  CAS  Google Scholar 

  68. Matsubara, S. and Ozawa, M. (2001) Expression of alpha-catenin in alphacatenin-deficient cells increases resistance to sphingosine-induced apoptosis. J. Cell Biol. 154, 573–584.

    PubMed  CAS  Google Scholar 

  69. Hung, W. C., Chang, H. C., and Chuang, L. Y. (1999) Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells. Biochem. J. 338, 161–166.

    PubMed  CAS  Google Scholar 

  70. Voss, K. A., Howard, P. C., Riley, R. T., Sharma, R. P., Bucci, T. J. and Lorentzen, R. J. (2002) Carcinogenicity and mechanism of action of fumonisin B1: a mycotoxin produced by Fusarium moniliforme (=F. verticillioides). Cancer Detect. Prev. 26, 1–9.

    PubMed  CAS  Google Scholar 

  71. Schmelz, E. M., Dombrink-Kurtzman, M. A., Roberts, P. C., Kozoutsumi, Y., Kawasaki, T., and Merrill, A. H., Jr. (1998) Induction of apoptosis by Fumonisin B1 in HT29 cells is mediated by the accumulation of endogenous free sphingoid bases. Toxicol. Appl. Pharmacol. 148, 252–260.

    PubMed  CAS  Google Scholar 

  72. Ciacci-Zanella, J. R., Merrill, A. H., Jr., Wang, E., and Jones, C. (1998) Characterization of cell-cycle arrest by Fumonisin B1 in CV-1 cells. Food Chem. Toxicol. 36, 791–804.

    PubMed  CAS  Google Scholar 

  73. Yu, C. H., Lee, Y. M., Yun, Y. P., and Yoo, H. S. (2001) Differential effects of fumonisin B1 on cell death in cultured cells: the significance of the elevated sphinganine. Arch. Pharm. Res. 24, 136–143.

    PubMed  CAS  Google Scholar 

  74. Kim, M. S., Lee, Y. M., Wang, T., and Schroeder, J. J. (2001) Fumonisin B(1) induces apoptosis in LLC-PK(1) renal epithelial cells via a sphinganine-and calmodulin-dependent pathway. Toxicol. Appl. Pharmacol. 176, 118–126.

    PubMed  CAS  Google Scholar 

  75. Delongchamp, R. R. and Young, J. F. (2001) Tissue sphinganine as a biomarker of fumonisin-induced apoptosis. Food Addit. Contam. 18, 255–261.

    PubMed  CAS  Google Scholar 

  76. Wispriyono, B., Schmelz, E., Pelayo, H., Hanada, K., and Separovic, D. (2002) A role for the de novo sphingolipids in apoptosis of photosensitized cells. Exp. Cell Res. 279, 153–165.

    PubMed  CAS  Google Scholar 

  77. Dbaibo, G. S., Pushkareva, M. Y., Jayadev, S., Schwarz, J. K., Horowitz, J. M., Obeid, L. M., and Hannun, Y. A. (1995) Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. Pro. Natl. Acad. Sci. USA 92, 1347–1351.

    CAS  Google Scholar 

  78. Jayadev, S., Liu, B., Bielawska, A. E., Lee, J. Y., Nazaire, F., Pushkareva, M. Y., et al. (1995) Role for ceramide in cell cycle arrest. J. Biol. Chem. 270, 2047–2052.

    PubMed  CAS  Google Scholar 

  79. Jarvis, W. D., Kolesnick, R. N., Fornari, F. A., Traylon, R. S., Gewirtz, D. A., and Grant, S. (1994) Induction of apototic DNA damage and cell death by activation of the sphingomyelin pathway. Proc. Natl. Acad. Sci. USA 91, 73–77.

    PubMed  CAS  Google Scholar 

  80. Martin, S. J., Newmeyer, D. D., Mathias, S., Farschon, D. M., Wang, H., Reed, J. C., et al. (1995) Cell-free reconstitution of Fas-, UN radiation-and ceramide-induced apotposis. EMBO J. 14, 5191–5200.

    PubMed  CAS  Google Scholar 

  81. Obeid, L. M., Linardic, C. M., Karolak, L. A., and Hannun, Y. A. (1993) Programmed cell death induced by ceramide. Science 259, 1769–1771.

    PubMed  CAS  Google Scholar 

  82. Vento, R., Giuliano, M., Lauricella, M., Carabillo, M., Di Liberto, D., and Tesoriere, G. (1998) Induction of programmed cell death in human retinoblastoma Y79 cells by C2-ceramide. Mol. Cell. Biochem. 185, 7–15.

    PubMed  CAS  Google Scholar 

  83. Pruschy, M., Resch, H., Shi, Y. Q., Aalame, N., Glanzmann, C., and Bodis, S. (1999) Ceramide triggers p53-dependent apoptosis in genetically defined fibrosarcoma tumour cells. Br. J. Cancer 80, 693–698.

    PubMed  CAS  Google Scholar 

  84. Craighead, M., Pole, J., and Waters, C. (2000) Caspases mediate C2-ceramideinduced apoptosis of the human oligodendroglial cell line, MO3.13. Neurosci. Lett. 278, 125–128.

    PubMed  CAS  Google Scholar 

  85. Connor, C. E., Burrows, J., Hearps, A. C., Woods, G. M., Lowenthal, R. M., and Ragg, S. J. (2001) Cell cycle arrest of hematopoietic cell lines after treatment with ceramide is commonly associated with retinoblastoma activation. Cytometry 43, 164–169.

    PubMed  CAS  Google Scholar 

  86. Poppe, M., Reimertz, C., Munstermann, G., Kogel, D., and Prehn, J. H. (2002) Ceramide-induced apoptosis of D283 medulloblastoma cells requires mitochondrial respiratory chain activity but occurs independently of caspases and is not sensitive to Bcl-xL overexpression. J. Neurochem. 82, 482–494.

    PubMed  CAS  Google Scholar 

  87. Magnoni, C., Euclidi, E., Benassi, L., Bertazzoni, G., Cossarizza, A., Seidenari, S. et al. (2002) Ultraviolet B radiation induces activation of neutral and acidic sphingomyelinases and ceramide generation in cultured normal human keratinocytes. Toxicol. in Vitro 16, 349–355.

    PubMed  CAS  Google Scholar 

  88. Dallalio, G., North, M., Worden, B. D., and Means, R. T., Jr. (1999) Inhibition of human erythroid colony formation by ceramide. Exp. Hematol. 27, 1133–1138.

    PubMed  CAS  Google Scholar 

  89. Birbes, H., Bawab, S. E., Obeid, L. M., and Hannun, Y. A. (2002) Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Adv. Enzyme Regul. 42, 113–129.

    PubMed  CAS  Google Scholar 

  90. Mimeault, M. (2002) New advances on structural and biological functions of ceramide in apoptotic/necrotic cell death and cancer. FEBS Lett 530, 9–16.

    PubMed  CAS  Google Scholar 

  91. Kim, S. S., Chae, H. S., Bach, J. H., Lee, M. W., Kim, K. Y., Lee, W. B., et al. (2002) T53 mediates ceramide-induced apoptosis in SKN-SH cells. Oncogene 21, 2020–2028.

    PubMed  CAS  Google Scholar 

  92. Tomassini, B. and Testi, R. (2002) Mitochondria as sensors of sphingolipids. Biochimie 84, 123–129.

    PubMed  CAS  Google Scholar 

  93. Hearps, A. C., Burrows, J., Connor, C. E., Woods, G. M., Lowenthal, R. M., and Ragg, S. J. (2002) Mitochondrial cytochrome c release precedes transmembrane depolarisation and caspase-3 activation during ceramide-induced apoptosis of Jurkat T cells. Apoptosis 7, 387–394.

    PubMed  CAS  Google Scholar 

  94. Jones, B. E., Lo, C. R., Srinivasan, A., Valentino, K. L., and Czaja, M. J. (1999) Ceramide induces caspase-independent apoptosis in rat hepatocytes sensitized by inhibition of RNA synthesis. Hepatology 30, 215–222.

    PubMed  CAS  Google Scholar 

  95. von Haefen, C., Wieder, T., Gillissen, B., Starck, L., Graupner, V., Dorken, B., et al. (2002) Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent pathway in human carcinoma cells. Oncogene 21, 4009–4019.

    Google Scholar 

  96. Lee, J. Y., Leonhardt, L. G., and Obeid, L. M. (1998) Cell-cycle-dependent changes in ceramide levels preceding retinoblastoma protein dephosphorylation in G2/M. Biochem. J. 334, 457–461.

    PubMed  CAS  Google Scholar 

  97. Shi, Y. Q., Wuergler, F. E., Blattmann, H., and Crompton, N. E. (2001) Distinct apoptotic phenotypes induced by radiation and ceramide in both p53-wild-type and p53-mutated lymphoblastoid cells. Radiat. Environ. Biophys. 40, 301–308.

    PubMed  CAS  Google Scholar 

  98. Willaime, S., Vanhoutte, P., Caboche, J., Lemaigre-Dubreuil, Y., Mariani, J., and Brugg, B. (2001) Ceramide-induced apoptosis in cortical neurons is mediated by an increase in p38 phosphorylation and not by the decrease in ERK phosphorylation. Eur. J. Neurosci. 13, 2037–2046.

    PubMed  CAS  Google Scholar 

  99. Brenner, B., Koppenhoefer, U., Weinstock, C., Linderkamp, O., Lang, F., and Gulbins, E. (1997) Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J. Biol. Chem. 272, 22173–22181.

    PubMed  CAS  Google Scholar 

  100. Jarvis, W. D., Fornari, F. A., Jr., Auer, K. L., Freemerman, A. J., Szabo, E., Birrer, M. J., et al. (1997) Coordinate regulation of stress- and mitogen-activated protein kinases in the apoptotic actions of ceramide and sphingosine. Mol. Pharmacol. 52, 935–947.

    PubMed  CAS  Google Scholar 

  101. Buisson-Legendre, N., Bernard, P., Bobichon, H., Emonard, H., Schneider, C., Maquart, F. X., et al. (1999) Involvement of the 92-kDa gelatinase (matrix, metalloproteinase-9) in the ceramide-mediated inhibition of human keratinocyte growth. Biochem. Biophys. Res. Commun. 260, 634–640.

    PubMed  CAS  Google Scholar 

  102. Pettus, B. J., Chalfant, C. E., and Hannun, Y. A. (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim. Biophys. Acta 1585, 114–125.

    PubMed  CAS  Google Scholar 

  103. Mathias, S., Dressler, K. A., and Kolesnick, R. N. (1991) Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor alpha. Proc. Natl. Acad. Sci. USA 88, 10009–10013.

    PubMed  CAS  Google Scholar 

  104. Yao, B., Zhang, Y., Delikat, S., Mathias, S., Basu, S., and Kolesnick, R. (1995) Phosphorylation of Raf by ceramide-activated protein kinase. Nature 378, 307–310.

    PubMed  CAS  Google Scholar 

  105. Zhang, Y., Yao, B., Delikat, S., Bayoumy, S., Lin, X. H., Basu, S., et al. (1997) Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89, 63–72.

    PubMed  CAS  Google Scholar 

  106. Basu, S., Bayoumy, S., Zhang, Y., Lozano, J., and Kolesnick, R. (1998) BAD enables ceramide to signal apoptosis via Ras and Raf-1. J. Biol. Chem. 273, 30419–30426.

    PubMed  CAS  Google Scholar 

  107. Huwiler, A., Brunner, J., Hummel, R., Vervoordeldonk, M., Stabel, S., van den Bosch, H., et al. (1996) Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc. Natl. Acad. Sci. USA 93, 6959–6963.

    PubMed  CAS  Google Scholar 

  108. Muller, G., Storz, P., Bourteele, S., Doppler, H., Pfizenmaier, K., Mischak, H., et al. (1998) Regulation of Raf-1 kinase by TNF via its second messenger ceramide and cross-talk with mitogenic signalling. EMBO J. 17, 732–742.

    PubMed  CAS  Google Scholar 

  109. Muller, G., Ayoub, M., Storz, P., Rennecke, J., Fabbro, D., and Pfizenmaier, K. (1995) PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J. 14, 1961–1969.

    PubMed  CAS  Google Scholar 

  110. Berra, E., Diaz-Meco, M. T., Lozano, J., Frutos, S., Municio, M. M., Sanchez, P., et al. (1995) Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta. EMBO J. 14, 6157–6163.

    PubMed  CAS  Google Scholar 

  111. Diaz-Meco, M. T., Lozano, J., Municio, M. M., Berra, E., Frutos, S., Sanz, L., et al. (1994) Evidence for the in vitro and in vivo interaction of Ras with protein kinase C zeta. J. Biol. Chem. 269, 31706–31710.

    PubMed  CAS  Google Scholar 

  112. Wickel, M., Heinrich, M., Weber, T., Brunner, J., Kronke, M., and Schutze, S. (1999) Identification of intracellular ceramide target proteins by affinity chromatography and TID-ceramide photoaffinity labelling. Biochem. Soc. Trans. 27, 393–399.

    PubMed  CAS  Google Scholar 

  113. Heinrich, M., Wickel, M., Winoto-Morbach, S., Schneider-Brachert, W., Weber, T., Brunner, J., et al. (2000) Ceramide as an activator lipid of cathepsin D. Adv. Exp. Med. Biol. 477, 305–315.

    PubMed  CAS  Google Scholar 

  114. Heinrich, M., Wickel, M., Schneider-Brachert, W., Sandberg, C., Gahr, J., Schwandner, R., et al. (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 18, 5252–5263.

    PubMed  CAS  Google Scholar 

  115. Dobrowsky, R. T., Kamibayashi, C., Mumby, M. C., and Hannun, Y. A. (1993) Ceramide activates heterotrimeric protein phosphatase 2A. J. Biol. Chem. 268, 15523–15530.

    PubMed  CAS  Google Scholar 

  116. Wolff, R. A., Dobrowsky, R. T., Bielawska, A., Obeid, L. M., and Hannun, Y. A. (1994) Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J. Biol. Chem. 269, 19605–19609.

    PubMed  CAS  Google Scholar 

  117. Chalfant, C. E., Kishikawa, K., Mumby, M. C., Kamibayashi, C., Bielawska, A., and Hannun, Y. A. (1999) Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. J. Biol. Chem. 274, 20313–20317.

    PubMed  CAS  Google Scholar 

  118. Deng, X., Ito, T., Carr, B., Mumby, M., and May, W. S., Jr. (1998) Reversible phosphorylation of Bcl2 following interleukin 3 or bryostatin 1 is mediated by direct interaction with protein phosphatase 2A. J. Biol. Chem. 273, 34157–34163.

    PubMed  CAS  Google Scholar 

  119. Ruvolo, P. P., Deng, X., Ito, T., Carr, B. K., and May, W. S. (1999) Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A. J. Biol. Chem. 274, 20296–20300.

    PubMed  CAS  Google Scholar 

  120. Sato, S., Fujita, N., and Tsuruo, T. (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA 97, 10832–10837.

    PubMed  CAS  Google Scholar 

  121. Sweeney, E. A., Inokuchi, J., and Igarashi, Y. (1998) Inhibition of sphingolipid induced apoptosis by caspase inhibitors indicates that sphingosine acts in an earlier part of the apoptotic pathway than ceramide. FEBS Lett. 425, 61–65.

    PubMed  CAS  Google Scholar 

  122. Moore, A. N., Kampfl, A. W., Zhao, X., Hayes, R. L., and Dash, P. K. (1999) Sphingosine-1-phosphate induces apoptosis of cultured hippocampal neurons that requires protein phosphatases and activator protein-1 complexes. Neuroscience 94, 405–415.

    PubMed  CAS  Google Scholar 

  123. Gennero, I., Fauvel, J., Nieto, M., Cariven, C., Gaits, F., Briand-Mesange, F., et al. (2002) Apoptotic effect of sphingosine 1-phosphate and increased sphingosine 1-phosphate hydrolysis on mesangial cells cultured at low cell density. J. Biol. Chem. 277, 12724–12734.

    PubMed  CAS  Google Scholar 

  124. Pyne, S. (2002) Cellular signaling by sphingosine and sphingosine 1-phosphate. Their opposing roles in apoptosis. Subcell. Biochem. 36, 245–268.

    Article  PubMed  CAS  Google Scholar 

  125. Cuvillier, O., Rosenthal, D. S., Smulson, M. E., and Spiegel, S. (1998) Sphingosine 1-phosphate inhibits activation of caspases that cleave phly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymhocytes. J. Biol. Chem. 273, 2910–2916.

    PubMed  CAS  Google Scholar 

  126. Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P. G., Coso, O. A., Gutkind, S., et al. (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381, 800–803.

    PubMed  CAS  Google Scholar 

  127. Castillo, S. S. and Teegarden, D. (2001) Ceramide conversion to sphingosine-1-phosphate is essential for survival in C3H10T1/2 cells. J. Nutr. 131, 2826–2830.

    PubMed  CAS  Google Scholar 

  128. Morita, Y., Perez, G. I., Paris, F., Miranda, S. R., Ehleiter, D., Haimovitz-Friedman, A., et al. (2000) Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat. Med. 6, 1109–1114.

    PubMed  CAS  Google Scholar 

  129. Manggau, M., Kim, D. S., Ruwisch, L., Vogler, R., Korting, H. C., Schafer-Korting, M., et al. (2001) 1Alpha,25-dihydroxyvitamin D3 protects human keratinocytes from apoptosis by the formation of sphingosine-1-phosphate. J. Invest. Dermatol. 117, 1241–1249.

    PubMed  CAS  Google Scholar 

  130. Misasi, R., Sorice, M., Di Marzio, L., Campana, W. M., Molinari, S., Cifone, M. G., et al. (2001) Prosaposin treatment induces PC12 entry in the S phase of the cell cycle and prevents apoptosis: activation of ERKs and sphingosine kinase. FASEB J. 15, 467–474.

    PubMed  CAS  Google Scholar 

  131. Cuvillier, O. and Levade, T. (2001) Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/DIABLO from mitochondria. Blood 98, 2828–2836.

    PubMed  CAS  Google Scholar 

  132. Kwon, Y. G., Min, J. K., Kim, K. M., Lee, D. J., Billiar, T. R., and Kim, Y. M. (2001) Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J. Biol. Chem. 276, 10627–10633.

    PubMed  CAS  Google Scholar 

  133. Xia, P., Wang, L., Gamble, J. R., and Vadas, M. A. (1999) Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. J. Biol. Chem. 274, 34499–34505.

    PubMed  CAS  Google Scholar 

  134. Edsall, L. C., Cuvillier, O., Twitty, S., Spiegel, S., and Milstien, S. (2001) Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells. J. Neurochem. 76, 1573–1584.

    PubMed  CAS  Google Scholar 

  135. Strelow, A., Bernardo, K., Adam-Klages, S., Linke, T., Sandhoff, K., kronke, M., et al. (2000) Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J. Exp. Med. 192, 601–612.

    PubMed  CAS  Google Scholar 

  136. Prieschl, E. E., Csonga, R., Novotny, V., Kikuchi, G. E., and Baumruker, T. (1999) The balance between sphingosine and sphingosine-1-phosphate is decisive for mast cell activation after Fc epsilon receptor I triggering. J. Exp. Med. 190, 1–8.

    PubMed  CAS  Google Scholar 

  137. Le Stunff, H., Galve-Roperh, I., Peterson, C., Milstien, S., and Spiegel, S. (2002) Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. J. Cell Biol. 158, 1039–1049.

    PubMed  Google Scholar 

  138. Le Stunff, H., Peterson, C., Liu, H., Milstien, S., and Spiegel, S. (2002) Sphingosine-1-phosphate and lipid phosphohydrolases. Biochim. Biophys. Acta 1582, 8–17.

    PubMed  Google Scholar 

  139. Baumruker, T. and Prieschl, E. E. (2002) Sphingolipids and the regulation of the immune response. Semin. Immunol. 14, 57–63.

    PubMed  CAS  Google Scholar 

  140. Preschl, E. E. and Baumruker, T. (2000) Beyond a structural component: sphingolipids in immunology. Arch. Immunol. Ther. Exp. (Warsz) 48, 163–171.

    Google Scholar 

  141. Ballou, L. R. Geramide and inflammation. In: Sphingolipid-mediated signal transduction. (Hannun, Y. A., ed), R. G. Landes Company, Austin, Texas, 1997.

    Google Scholar 

  142. Goldsby, R. A., Kindt, T. J., and Osborne, B. A. Kuby Immunology. W. H. Freeman and Company, New York, 2000.

    Google Scholar 

  143. Dinarello, C. A. (1994) Inflammatory cytokines: interleukin-1 and tumor necrosis factor as effector molecules in autoimmune disease. Curr. Opin. Immunol. 3, 941–948.

    Google Scholar 

  144. Dinarello, C. A. (1996) Biologic basis for interleukin-1 in disease. Blood 87, 2095–2147.

    PubMed  CAS  Google Scholar 

  145. Dinarello, C. A. (1998) Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int. Rev. Immunol. 16, 457–499.

    PubMed  CAS  Google Scholar 

  146. Goetzl, E. J., An, S., and Smith, W. L. (1995) Specificity of expression and effects of eicosanoids mediators in normal physiology and human diseases. FASEB J. 9, 1051–1058.

    PubMed  CAS  Google Scholar 

  147. Dbaibo, G. S., Obeid, L. M., and Hannun, Y. A. (1993) Tumor necrosis factor-alpha signal transduction through ceramide. J. Biol. Chem. 268, 17762–17766.

    PubMed  CAS  Google Scholar 

  148. Kolesnick, R. and Golde, D. W. (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77, 325–328.

    PubMed  CAS  Google Scholar 

  149. Nikolova-Karakashian, M., Morgan, E. T., Alexander, C., Liotta, D. C., and Merrill, A. H., Jr. (1997) Bimodal regulation of ceramidase by interleukin-1b: implications for the regulation of cytochrome p450 2C11. J. Biol. Chem. 272, 18718–18724.

    PubMed  CAS  Google Scholar 

  150. Yamamura, S., Sadahira, Y., Ruan, F., Hakomori, S., and Igarashi, Y. (1996) Sphingosine-1-phosphate inhibits actin nucleation and pseudopodium formation to control cell motility of mouse melanoma cells. FEBS Lett. 382, 193–197.

    PubMed  CAS  Google Scholar 

  151. Spiegel, S., Olivera, A., Zhang, H., Thompson, E. W., Su, Y., and Berger, A. (1994) Sphingosine-1-phosphate, a novel second messenger involved in cell growth regulation and signal transduction, affects growth and invasiveness of human breast cancer cells. Breast Cancer Res. Treat. 31, 337–348.

    PubMed  CAS  Google Scholar 

  152. Takuwa, Y., Takuwa, N., and Sugimoto, N. (2002) The edg family g proteincoupled receptors for lysophospholipids: their signaling properties and biological activities. J. Biochem. (Tokyo) 131, 767–771.

    CAS  Google Scholar 

  153. Goetzl, E. J., Dolezalova, H., Kong, Y., Hu, Y. L., Jaffe, R. B., Kalli, K. R., et al. (1999) Distinctive expression and functions of the type 4 endothelial differentiation geneencoded G protein-coupled receptor for lysophosphatidic acid in ovarian cancer. Cancer Res. 59, 5370–5375.

    PubMed  CAS  Google Scholar 

  154. Stam, J. C., Michiels, F., van der Kammen, R. A., Moolenaar, W. H., and Collard, J. G. (1998) Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J. 17, 4066–4074.

    PubMed  CAS  Google Scholar 

  155. Wargovich, M. J. (1997) Experimental evidence for cancer preventive elements in foods. Cancer Lett. 114, 11–17.

    PubMed  CAS  Google Scholar 

  156. Potter, J. D. (1996) Nutrition and colorectal cancer. Cancer Causes Control 7, 127–146.

    PubMed  CAS  Google Scholar 

  157. Kim, Y. I. and Mason, J. B. (1996) Nutrition chemoprevention of gastrointestinal cancers: a critical review. Nutr. Rev. 54, 259–279.

    Article  PubMed  CAS  Google Scholar 

  158. Mason, J. B. and Kim, Y. (1999) Nutritional strategies in the prevention of colorectal cancer. Curr. Gastroenterol. Rep. 1, 341–353

    PubMed  CAS  Google Scholar 

  159. Schmelz, E. M., Crall, K. J., LaRocque, R., Dillehay, D. L., and Merrill, A. H. (1994) Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J. Nutr. 124, 701–712.

    Google Scholar 

  160. Schmelz, E. M., Dillehay, D. L., Webb, S. K., Reiter, A., Adams, J., and Merrill, A. H., Jr. (1996) Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1,2-dimethylhydrazine: implications for dietary sphingolipids and colon carcingoenesis. Cancer Res. 56, 4936–4941.

    PubMed  CAS  Google Scholar 

  161. Birt, D. F., Merrill, A. H., Jr., Barnett, T., Enkvetchakul, B., Pour, P. M., Liotta, D. C., et al. (1998) Inhibition of skin carcinomas but not papillomas by sphingosine, N-methylsphingosine, and Nacetylsphingosine. Nutr Cancer 31, 119–126.

    Article  PubMed  CAS  Google Scholar 

  162. Venable, M. E. and Obeid, L. M. (1999) Phospholipase D in cellular senescence. Biochim. Biophys. Acta 1439, 291–298.

    PubMed  CAS  Google Scholar 

  163. Obeid, L. M. and Venable, M. E. (1997) Signal transduction in cellular senescence. J. Am. Geriatr. Soc. 45, 361–366.

    PubMed  CAS  Google Scholar 

  164. Yechiel, E. and Barenholz, Y. (1985) Relationships between membrane lipid composition and biological properties of rat myocytes. J. Biol. Chem. 260, 9123–9131.

    PubMed  CAS  Google Scholar 

  165. Miller, C. J. and Stein, G. H. (2001) Human diploid fibroblasts that undergo a senescent-like differentiation have elevated ceramide and diacylglycerol. J. Gerontol. (A) Biol. Sci. Med. Sci. 56, B8–19.

    CAS  Google Scholar 

  166. Venable, M. E., Lee, J. Y., Smyth, M. J., Bielawska, A., and Obeid, L. M. (1995) Role of ceramide in cellular senescence. J. Biol. Chem. 270, 30701–30708.

    PubMed  CAS  Google Scholar 

  167. Mouton, R. E. and Venable, M. E. (2000) Ceramide induces expression of the senescence histochemical marker, beta-galactosidase, in human fibroblasts. Mech. Ageing Dev. 113, 169–181.

    PubMed  CAS  Google Scholar 

  168. Abousalham, A., Liossis, C., O'Brien, L., and Brindley, D. N. (1997) Cell permeable ceramides prevent the activation of phospholipase D by ADP ribosylation factor and RhoA. J. Biol. Chem. 272, 1069–1075.

    PubMed  CAS  Google Scholar 

  169. Nakamura, Y., Nakashima, S., Ojio, K., Banno, Y., Miyata, H., and Nozawa, Y. (1996) Ceramide inhibits IgE-mediated activation of phospholipase D, but not of phospholipase C, in rat basophilic leukemia (RBL-2H3) cells. J. Immunol. 156, 256–262.

    PubMed  CAS  Google Scholar 

  170. Yoshimura, S., Sakai, H., Ohguchi, K., Nakashima, S., Banno, Y., Nishimura, Y., et al. (1997) Changes in the activity and mRNA levels of phospholipase D during ceramide-induced apoptosis in rat C6 glial cells. J. Neurochem. 69, 713–720.

    Article  PubMed  CAS  Google Scholar 

  171. Tilly, J. L. and Kolesnick, R. N. (1999) Sphingolipid signaling in gonadal development and function. Chem. Phys. Lipids 102, 149–155.

    PubMed  CAS  Google Scholar 

  172. Ghosh, S., Strum, J. C., and Bell, R. M. (1997) Lipid biochemistry: functions of glycerolipids and sphingolipids in cellular signaling. FASEB J. 11, 45–50.

    PubMed  CAS  Google Scholar 

  173. Strum, J. C., Swenson, K. I., and Bell, R. M. A role for ceramide in meiosis. In: Sphingolipid-Mediated Signal Transduction. (Hannun, Y. A., ed.), R. G. Landes Company, Austin, Texas, 1997, pp. 53–60.

    Google Scholar 

  174. Morrill, G. A. and Kostellow, A. B. (1998) Progesterone release of lipid second messengers at the amphibian oocyte plasma membrane: role of ceramide in initiating the G2/M transition. Biochem. Biophys. Res. Commun. 246, 359–363.

    PubMed  CAS  Google Scholar 

  175. Varnold, R. L. and Smith, L. D. (1990) Protein kinase C and progesterone-induced maturation in Xenopus oocytes. Development 109, 597–604.

    PubMed  CAS  Google Scholar 

  176. Strum, J. C., Swenson, K. I., Turner, J. E., and Bell, R. M. (1995) Ceramide triggers meiotic cell cycle progression in Xenopus oocytes: a potential mediator of progesterone-induced maturation. J. Biol. Chem. 270, 13541–13547.

    PubMed  CAS  Google Scholar 

  177. De Smedt, V., Rime, H., Jessus, C., and Ozon, R. (1995) Inhibition of glycoaphingolipid synthesis induces p34cdc2 activation in Xenopus oocyte. FEBS Lett. 375, 249–253.

    PubMed  Google Scholar 

  178. Lin, T. Y., Viswanathan, S., Wood, C., Wilson, P. G., Wolf, N., and Fuller, M. T. (1996) Coordinate developmental control of the meiotic cell cycle and spermatid differentiation in Drosophila males. Development 122, 1331–1341.

    PubMed  CAS  Google Scholar 

  179. Endo, K., Akiyama, T., Kobayashi, S., and Okada, M. (1996) Degenerative spermatocyte, a novel gene encoding a transmembrane protein required for the initiation of meiosis in Drosophila spermatogenesis. Mol. Gen. Genet. 253, 157–165.

    PubMed  CAS  Google Scholar 

  180. Endo, K., Matsuda, Y., and Kobayashi, S. (1997) Mdes, a mouse homolog of the Drosophila degenerative spermatocyte gene is expressed during mouse spermatogenesis. Dev. Growth Differ. 39, 399–403.

    PubMed  CAS  Google Scholar 

  181. Bielawska, A., Crane, H. M., Liotta, D., Obeid, L. M., and Hannun, Y. A. (1993) Selectivity of ceramide-mediated biology. Lack of activity of erythrodihydroceramide. J. Biol. Chem. 268, 26226–26232.

    PubMed  CAS  Google Scholar 

  182. Michel, C., van Echten-Deckert, G., Rother, J., Sandhoff, K., Wang, E., and Merrill, A. H., Jr., (1997) Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. J. Biol. Chem. 272, 22432–22437.

    PubMed  CAS  Google Scholar 

  183. Sax, C. M. and Piatigorsky, J. (1994) Expression of the alpha-crystallin/small heat-shock protein/molecular chaperone genes in the lens and other tissues. Adv. Enzymol. Relat. Areas Mol. Biol. 69, 155–201.

    PubMed  CAS  Google Scholar 

  184. Shyman, J. A. and Radin, N. S. The use of cerebroside synthase inhibitors as probes for assessing the metabolism and function of sphingolipids. In: Sphingolipid-Mediated Signal Transduction. (Hannun, Y. A., ed.), R. G. Landes Company, Austin, Texas, 1997, pp. 91–102.

    Google Scholar 

  185. Chang, Y., Abe, A., and Shayman, J. A. (1995) Ceramide formation during heat shock: a potential mediator of alpha B-crystallin transcription. Proc. Natl. Acad. Sci. USA, 92, 12275–12279.

    PubMed  CAS  Google Scholar 

  186. Ferguson-Yankey, S. R., Skrzypek, M. S., Lester, R. L., and Dickson, R. C. (2002) Mutant analysis reveals complex regulation of sphin-golipid long chain base phosphates and long chain bases during heat stress in yeast. Yeast 19, 573–586.

    PubMed  CAS  Google Scholar 

  187. Skrzypek, M. S., Nagiec, M. M., Lester, R. L., and Dickson, R. C. (1999) Analysis of phosphorylated sphingolipid long-chain bases reveals potential roles in heat stress and growth control in Saccharomyces. J. Bacteriol. 181, 1134–1140.

    PubMed  CAS  Google Scholar 

  188. Jenkins, G. M., Richards, A., Wahl, T., Mao, C., Obeid, L., and Hannun, Y. (1997) Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J. Biol. Chem. 272, 32566–32572.

    PubMed  CAS  Google Scholar 

  189. Dickson, R. C., Nagiec, E. E., Skrzypek, M., Tillman, P., Wells, G. B., and Lester, R. L. (1997) Sphingolipids are potential heat stress signals in Saccharomyces. J. Biol. Chem. 272, 30196–30200.

    PubMed  CAS  Google Scholar 

  190. Wells, G. B., Dickson, R. C. and Lester, R. L. (1998) Heat-induced elevation of ceramide in Saccharomyces cerevisiae via de novo synthesis. J. Biol. Chem. 273, 7235–7243.

    PubMed  CAS  Google Scholar 

  191. Jenkins, G. M., Cowart, L. A., Signorelli, P., Pettus, B. J., Chalfant, C. E., and Hannun, Y. A. (2002) Acute activation of de novo sphin-golipid biosynthesis upon heat shock causes an accumulation of ceramide and subsequent dephosphorylation of SR proteins. J. Biol. Chem. 277, 42572–42578.

    PubMed  CAS  Google Scholar 

  192. Kondo, T., Matsuda, T., Kitano, T., Takahashi, A., Tashima, M., Ishikura, H., et al. (2000) Role of c-jun expression increased by heat shock-and ceramide-activated caspase-3 in HL-60 cell apoptosis. Possible involvement of ceramide in heat shock-induced apoptosis. J. Biol. Chem. 275, 7668–7676.

    PubMed  CAS  Google Scholar 

  193. Verheij, M., Bose, R., Lin, X. H., Yao, B., Jarvis, W. D., Grant, S., et al. (1996) Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380, 75–79.

    PubMed  CAS  Google Scholar 

  194. Huang, C., Ma, W., Ding, M., Bowden, G. T., and Dong, Z. (1997) Direct evidence for an important role of sphingomyelinase in ultraviolet-induced activation of c-Jun N-terminal kinase. J. Biol. Chem. 272, 27753–27757.

    PubMed  CAS  Google Scholar 

  195. Grether-Beck, S., Bonizzi, G., Schmitt-Brenden, H., Felsner, I., Timmer, A., Sies, H., et al. (2000) Non-enzymatic triggering of the ceramide signalling cascade by solar UVA radiation, EMBO J. 19, 5793–5800.

    PubMed  CAS  Google Scholar 

  196. Chatterjee, M. and Wu, S. (2001) Cell line dependent involvement of ceramide in ultraviolet light-induced apoptosis. Mol. Cell. Biochem. 219, 21–27.

    PubMed  CAS  Google Scholar 

  197. Holleran, W. M., Uchida, Y., Halkier-Sorensen, L., Haratake, A., Hara, M., Epstein, J., et al. (1997) Structural basis for the UVB-induced abnormality in epidermal barrier function. Photodermatol. Photoimmunol. Photomed. 13, 117–128.

    PubMed  CAS  Google Scholar 

  198. Farrell, A. M., Uchida, Y., Nagie, M. M., Harris, I. R., Dickson, R. C., Elias, P. M., et al. (1998) UVB irradiation up-regulates serine palmitoyltransferase in cultured human keratinocytes. J. Lipids Res. 39, 2031–2038.

    CAS  Google Scholar 

  199. Deng, J., Zhang, H., Kloosterboer, F., Liao, Y., Klostergaard, J., Levitt, M. L., et al. (2002) Ceramide does not act as a general second messenger for ultraviolet-induced apoptosis. Oncogene 21, 44–52.

    PubMed  CAS  Google Scholar 

  200. Verheij, M., van Blitterswijk, W. J., and Bartelink, H. (1998) Radiation-induced apoptosis—the ceramide-SAPK signaling pathway and clinical aspects. Acta Oncol. 37, 575–581.

    PubMed  CAS  Google Scholar 

  201. Watters, D. (1999) Molecular mechanisms of ionizing radiation-induced apoptosis. Immunol. Cell. Biol. 77, 263–271.

    PubMed  CAS  Google Scholar 

  202. Schmidt-Ullrich, R. K., Dent, P., Grant, S., Mikkelsen, R. B., and Valerie, K. (2000) Signal transduction and cellular radiation responses. Radiat. Res. 153, 245–257.

    PubMed  CAS  Google Scholar 

  203. Haimovitz-Friedman, A., Kolesnick, R. N., and Fuks, Z. (1997) Differential inhibition of radiation-induced apoptosis. Stem Cells 15, 43–47.

    Article  PubMed  CAS  Google Scholar 

  204. Haimovitz-Friedman, A., Kan, C. C., Ehleiter, D., Persanud, R. S., McLoughlin, M., Fuks, Z., et al. (1994) Ionizing radiation acts on cellular membranes to generate ceramid and initiate apoptosis. J. Exp. Med. 180, 525–535.

    PubMed  CAS  Google Scholar 

  205. Fuks, Z., Haimovitz-Friedman, A., and Kolesnick, R. N. (1995) The role of the sphingomyelin pathway in radiation-induced cell kill. Important Adv. Oncol. 9, 19–31.

    Google Scholar 

  206. Michael, J. M., Lavin, M. F., and Watters, D. J. (1997) Resistance to radiation-induced apoptosis in Burkitt's lymphoma cells is associated with defective ceramide signaling. Cancer Res. 57, 3600–3605.

    PubMed  CAS  Google Scholar 

  207. Chmura, S. J., Mauceri, H. J., Advani, S., Heimann, R., Beckett, M. A., Nodzenski, E., et al. (1997) Decreasing the apoptotic threshold of tumor cells through protein kinase C inhibition and sphingomyelinase activation increases tumor killing by ionizing radiation. Cancer Res. 57, 4340–4347.

    PubMed  CAS  Google Scholar 

  208. Santana, P., Pena, L. A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., et al. (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86, 189–199.

    PubMed  CAS  Google Scholar 

  209. Bruno, A. P., Laurent, G., Averbeck, D., Demur, C., Bonnet, J., Bettaieb, A., et al. (1998) Lack of ceramide generation in TF-1 human myeloid leukemic cells resistant to ionizing radiation. Cell Death Differ. 5, 172–182.

    PubMed  CAS  Google Scholar 

  210. Chmura, S. J., Nodzenski, E., Kharbanda, S., Pandey P., Quintans, J., Kufe, D. W. et al. (2000) Down-regulation of ceramide production abrogates ionizing radiation-induced cytochrome c release and apoptosis. Mol. Pharmacol. 57, 792–796.

    PubMed  CAS  Google Scholar 

  211. Grant, S. (1997) 1-[b-D-arabinofuranosyl]cytosine: molecular and cellular pharmacology. Adv. Cancer Res. 72, 197–233.

    Google Scholar 

  212. Mayer, R. J., Davis, R. B., Schiffer, C. A., Berg, D. T., Powell, B. L., Schulman, P., et al. (1994) Intensive postremisson chemotherapy in adults with acute myeloid leukemia. Cancer and leukemia group B. New Engl. J. Med. 331, 896–903.

    PubMed  CAS  Google Scholar 

  213. Gunji, H., Kharbanda, S., and Kufe, D. (1991) Induction of internucleosomal DNA fragmentation in human myeloid leukemia cells by 1-beta-darabinofuranosylcytosine. Cancer Res. 51, 741–743.

    PubMed  CAS  Google Scholar 

  214. Kufe, D., Spriggs, D., Egan, E. M., and Munroe, D. (1984) Relationships among Ara-CTP pools, formation of (Ara-C) DNA, and cytotoxicity of human leukemic cells. Blood 64, 54–58.

    PubMed  CAS  Google Scholar 

  215. Strum, J. C., Small, G. W., Pautig, S. B., and Daniel, L. W. (1994) 1-beta-d- arabinofuranosylcytosine stimulates ceramides and diglyceride formation in HL-60 cells. J. Biol. Chem. 269, 15493–15497.

    PubMed  CAS  Google Scholar 

  216. Grant, S., Freemerman, A. J., Birrer, M. J., Martin, H. A., Turner, A. J., Szabo, E., et al. (1996) Effect of 1-[b-D-arabinofuranosyl]cytosine on apoptosis and differentiation in human monoblastic leukemia cells (U937) expressing a c-Jun dominant-negative mutant protein (TAM-67). Cell Death Differ. 7, 603–613.

    CAS  Google Scholar 

  217. Hande, K. R. (1998) Clinical applications of anticancer drugs targeted to topoisomerase II. Biochim. Biophys. Acta 1400, 173–184.

    PubMed  CAS  Google Scholar 

  218. Jaffrezou, J.-P., Levade, T., Bettaieb, A., Andrieu, N., Bezombes, C., Maestre, N., et al., (1996). Daunorubicin-induced apoptosis: triggering ceramide generation through sphingomyelin hydrolysis. EMBO J. 15, 2417–2424.

    PubMed  CAS  Google Scholar 

  219. Bose, R., Verheij, M., Haimovitz-Friedman, A., Scotto, K., and Kolesnick, R. N. (1995) Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell Death Differ. 82, 405–414.

    CAS  Google Scholar 

  220. Allouche, M., Bettaieb, A., Vindis, C., Rousse, A., Gringon, C., and Laurent, G. (1997) Influence of Bcl-2 overexpression on the ceramide pathway in daunorubicin-induced apoptosis of leukemic cells. Oncogene 14, 1837–1845.

    PubMed  CAS  Google Scholar 

  221. Mansat, V., Bettaieb, A., Levade, T., Laurent, G., and Jaffrezou, J. P. (1997) Serine protease inhibitors block neutral sphingomyelinase activation, ceramide generation, and apoptosis triggered by daunorubicin. FASEB J. 11, 695–702.

    PubMed  CAS  Google Scholar 

  222. Mansat, V., Laurent, G., Levade, T., Bettaieb, A., and Jaffrezou, J. P. (1997) The protein kinase C activators phorbol diesters and phosphatidylserine inhibit neutral sphingomyelinase activation, ceramide generation, and apoptosis triggered by daunorubicin. Cancer Res. 57, 5300–5304.

    PubMed  CAS  Google Scholar 

  223. Hande, K. R. (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer 34, 1514–1521.

    PubMed  CAS  Google Scholar 

  224. Tepper, A. D., de Vries, E., van Blitterswijk, W. J., and Borst, J. (1999) Ordering of ceremide formation, caspase activation, and mitochondrial changes during CD95- and DNA damage-induced apoptosis. J. Clin. Invest. 103, 971–978.

    PubMed  CAS  Google Scholar 

  225. Perry, D. K., Carton, J., Shah, A. K., Meredith, F., Uhlinger, D. J., and Hannun, Y. A. (2000) Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J. Biol. Chem. 275, 9078–9084.

    PubMed  CAS  Google Scholar 

  226. Duerksen-Hughes, P., Yang, J., and Schwartz S. B. (1999) HPV16E6 blocks TNF-mediated apoptosis in mouse fibroblast LM cells. Virology 264, 55–65.

    PubMed  CAS  Google Scholar 

  227. Nikolova-Karakashian, M., Vales, T. R., Wang, E., Menaldino, D. S., Alexander, C., Goh, J., et al. Ceramide synthase and ceramidases in the regulation of sphingoid base metabolism. In: Sphingolipid-Mediated Signal Transduction. (Hannun, Y. A., ed.), R. G. Landes Company, Austin, Texas, 1997, pp. 159–172.

    Google Scholar 

  228. Blazquez, C., Geelen, M. J., Velasco, G., and Guzman, M. (2001) The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Lett. 489, 149–153.

    PubMed  CAS  Google Scholar 

  229. Mandala, S. M. and Harris, G. H. (2000) Isolaton and characterization of novel inhibitors of sphingolipid synthesis: australifungin, viridiofungins, rustmicin, and khafrefungin. Methods Enzymol. 311, 335–348.

    PubMed  CAS  Google Scholar 

  230. Kiuchi, M., Adachi, K., Kohara, T., Minoguchi, M., Hanano, T., Aoki, Y., et al. (2000) Synthesis and immunosuppressive activity of 2-substituted 2-aminopropane-1,3-diols and 2-aminoethanols. J. Med. Chem. 43, 2946–2961.

    PubMed  CAS  Google Scholar 

  231. Riely, R. T., Norred, W. P., Wang, E., and Merrill, A. H., Jr. (1999) Alteration in sphingolipid metabolism: bioassays for fumonisinand ISP-1-like activity in tissues cells and other matrices. Nat. Toxins 7, 407–414.

    Google Scholar 

  232. Linn, S. C., Kim, H. S., Keane, E. M., Andras, L. M., Wang, E., and Merrill, A. H., Jr. (2001) Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem. Soc. Trans. 29, 831–835.

    PubMed  CAS  Google Scholar 

  233. Merrill, A. H., Jr., Sullards, M. C., Wang, E., Voss, K. A., and Riely, R. T. (2001) Sphingolipid metabolism: roles in signal transduction and disruption by fumonisin. Environ. Health Perspect. 109, 283–289.

    PubMed  CAS  Google Scholar 

  234. Merrill, A. H. J., Liotta, D. C., and Riley, R. T. (1996) Fumonisins: fungal toxins that shed light on sphingolipid function. Trends Cell Biol. 6, 218–223.

    PubMed  CAS  Google Scholar 

  235. Humpf, H. U., Schmelz, E. M., Meredith, F. I., Vesper, H., Vales, T. R., Wang, E., et al. (1998) Acylation of naturally occurring and synthetic 1-deoxysphinganines by ceramide synthase. Formation of N-palmitoyl-aminopentol produces a toxic metabolite of hydrolyzed fumonisin, AP1, and a new category of ceramide synthase inhibitor. J. Biol. Chem. 273, 19060–19064.

    PubMed  CAS  Google Scholar 

  236. Desai, K., Sullards, M. C., Allegood, J., Wang, E., Schmelz, E. M., Hartl, M., et al. (2002) Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim. Biophys. Acta 1585, 188–192.

    PubMed  CAS  Google Scholar 

  237. Riely, R. T., Enongene, E., Voss, K. A., Norred, W. P., Meredith, F. I., Sharma, R. P., et al. (2001) Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. Environ. Health Perspect. 109, 301–308.

    Google Scholar 

  238. Abne, C. C., Borkowf, C. B., Qiao, Y. L., Albert, P. S., Wang, E., Merrill, A. H., Jr., et al. (2001) Sphingolipids as biomarkers of fumonisin exposure and risk of esophageal squamous cell carcinoma in China. Cancer Cause Control 12, 821–828.

    Google Scholar 

  239. Rani, C. S., Abe, A., Chang, Y., Rosenzweig, N., Saltiel, A. R., Radin, N. S. et al. (1995) Cell cycle arrest induced by an inhibitor of glucosylceramide synthase. Correlation with cyclin-dependent kinases. J. Biol. Chem. 270, 2859–2867.

    PubMed  CAS  Google Scholar 

  240. Shayman, J. A., Mahdiyoun, S., Deshmukh, G., Barcelon, F., Inokuchi, J., and Radin, N. S. (1990) Glucosphingolipid dependence of hormone-stimulated inositol trisphosphate formation. J. Biol. Chem. 265, 12135–12138.

    PubMed  CAS  Google Scholar 

  241. Olshefski, R. and Ladisch S. (1998) Synthesis shedding, and intercellular transfer of human medulloblastoma gangliosides: abrogation by a new inhibitor of glucosylceramide synthase. J. Neurochem. 70, 467–472.

    Article  PubMed  CAS  Google Scholar 

  242. di Bartolomeo, S. and Spinedi, A. (2001) Differential chemosensitizing effect of two glucosylceramide: synthase inhibitors in hepatoma cells. Biochem. Biophys. Res. Commun. 288, 269–274.

    PubMed  Google Scholar 

  243. Levade, T., Andrieu-Abadie, N., Segui, B., Auge, N., Chatelut, M., Jaffrezou, J. P., et al. (1999) Sphingomyelin-degrading pathways in human cells: role in cell signalling. Chem. Physics Lipids 102, 167–178.

    CAS  Google Scholar 

  244. Chatterjee, S. (1993) Neutral sphingomyelinase. Adv. Lipid Res. 26, 25–47.

    PubMed  CAS  Google Scholar 

  245. Okazaki, T., Bielawska, A., Domane, N., Bell, R. M., and Hannun, Y. A. (1994) Characteristics and partial purification of a novel cytosolic, magnesium independent, neutral sphingomyelinase activated in the early signal transduction of 1a, 25-dihydorxyvitamin D3-induced HL-60 cell differentiation. J. Biol. Chem. 269, 4070–4077.

    PubMed  CAS  Google Scholar 

  246. Spence, M. W. (1993) Sphingomyelinases. Adv. Lipid Res. 26, 3–23.

    PubMed  CAS  Google Scholar 

  247. Schmuth, M., Man, M. Q., Weber, F., Gao, W., Feingold, K. R., Fritsch, P., et al. (2000) Permeability barrier disorder in Niemann-Pick disease: sphingomyelin-ceramide processing required for normal barrier homeostasis. J. Invest. Dermatol. 115, 459–466.

    PubMed  CAS  Google Scholar 

  248. Hauck, C. R., Grassme, H., Bock, J., Jendrossek, V., Ferlinz, K., Meyer, T. F., et al. (2000) Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett. 478, 260–266.

    PubMed  CAS  Google Scholar 

  249. Hurwitz, R., Ferlinz, K., and Sandhoff, K. (1994) The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol. Chem. Hoppe Seyler 375, 447–450.

    PubMed  CAS  Google Scholar 

  250. Uchida, R., Tomoda, H., Arai, M., and Omura, S. (2001) Chlorogentisylquinone, a new neutral sphingomyelinase inhibitor, produced by a marine fungus. J. Antibiot. (Tokyo) 54, 882–889.

    CAS  Google Scholar 

  251. Nara, F., Tanaka, M., Masuda-Inoue, S., Yamasato, Y., Doi-Yoshioka, H., Suzuki-Konagai, et al. (1999) Biological activities of scyphostatin, a neutral sphingomyelinase inhibitor from a discomycete, Trichopeziza mollissima. J. Antibiot. (Tokyo) 52, 531–535.

    CAS  Google Scholar 

  252. Arenz, C., Gartner, M., Wascholowski, V., and Giannis, A. (2001) Synthesis and biochemical investigation of scyphostatin analogues as inhibitors of neutral sphingomyelinase. Bioorg. Med. Chem. 9, 2901–2904.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penelope J. Duerksen-Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Yu, Y., Sun, S. et al. Ceramide and other sphingolipids in cellular responses. Cell Biochem Biophys 40, 323–350 (2004). https://doi.org/10.1385/CBB:40:3:323

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:40:3:323

Index Entries

Navigation