Skip to main content
Log in

Protein dynamics from solution NMR

Theory and applications

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Solution nuclear magnetic resonance (NMR) spectroscopy is unique in its ability to elucidate the details of atomic-level structural and dynamical properties of biological macromolecules under native-like conditions. Recent advances in NMR techniques and protein sample preparation now allow comprehensive investigation of protein dynamics over timescales ranging 14 orders of magnitude at nearly every atomic site. Thus, solution NMR is poised to reveal aspects of the physico-chemical properties that govern the ensemble distribution of protein conformers and the dynamics of their interconversion. We review these advances as well as their recent application to the study of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wand, A. J. (2001) Dynamic activation of protein function: a view emerging from NMR spectrscopy. Nat. Struct. Biol. 8, 926–931.

    PubMed  CAS  Google Scholar 

  2. Perutz, M. F. and Mathews, F. S. (1966) An x-ray study of azide mathaemoglobin. J. Mol. Biol. 21, 199–202.

    PubMed  CAS  Google Scholar 

  3. Changeux, J. P., Gerhardt, J. C., and Schachman, H. K. (1968) Allosteric interaction in aspartate transcarbamoylase. I. Binding of specific ligands to the native enzyme and its isolated subunits. Biochemistry 7, 531–538.

    PubMed  CAS  Google Scholar 

  4. Ke, H., Lipscomb, W. N., Cho, Y., and Honzatko, R. B. (1988) Complex of N-phosphonyl-l-aspartate with aspartate carbomoyl-transferase. X-ray refinement, analysis of conformational changes and catalytic and allosteric mechanisms. J. Mol. Biol. 204, 727–747.

    Google Scholar 

  5. Werner, W. E. and Schachman, H. K. (1989) Analysis of the ligand-promoted conformational change in aspartate transcarbamoylase: evidence for a two-state transition from boundary spreading in sedimentation velocity experiments. J. Mol. Biol. 206, 221–230.

    PubMed  CAS  Google Scholar 

  6. Jurica, M. S., Mesecar, A., Heath, P. J., et al. (1998) The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6, 195–210.

    PubMed  CAS  Google Scholar 

  7. Palmer, A. G., Williams, J., and McDermott, A. (1996) Nuclear magnetic resonance studies of biopolymer dynamics. J. Phys. Chem. 100, 13,293–13,310.

    CAS  Google Scholar 

  8. Williams, J. C. and McDermott, A. E. (1995) Dynamics of the flexible loop of triosephosphate isomerase: the loop motion is not ligand gated. Biochemistry 34, 8309–8319.

    PubMed  CAS  Google Scholar 

  9. Bai, Y., Sosnick, T. R., Mayne, L., et al. (1995) Protein folding intermediates: native-state hydrogen exchange. Science 269, 192–197.

    PubMed  CAS  Google Scholar 

  10. Abragam, A. (1961) Principles of Nuclear Magnetism, Clarendon, Oxford.

    Google Scholar 

  11. Peng, J. W. and Wagner, G. (1994) Investigation of protein motions via relaxation measurements. Methods Enzymol. 239, 563–596.

    PubMed  CAS  Google Scholar 

  12. Cavanagh, J., Fairbrother, W. J., Palmer, A. G., et al. (1996) Protein NMR Spectroscopy: Principles and Practice. Academic, San Diego, CA.

    Google Scholar 

  13. Hiyama, Y., Niu, C.-H., Silverton, J. V., et al. (1988) Determination of 15N chemical shift tensor via 15N−2H dipolar coupling in Boc-glycyl-glycyl [15N] glycine benzyl ester. J. Am. Chem. Soc. 110, 2378–2383.

    CAS  Google Scholar 

  14. Fushman, D., Tjandra, N., and Cowburn, D. (1998) Direct measurement of 15N chemical shift anisotropy in solution. J. Am. Chem. Soc. 120, 10,947–10,952.

    CAS  Google Scholar 

  15. Kroenke, C. D., Rance, M., and Palmer, A. G. (1999) Variability of the 15N chemical shift anisotropy in Escherichia coli ribonuclease H in solution. J. Am. Chem. Soc. 121, 10,119–10,125.

    CAS  Google Scholar 

  16. Farrow, N. A., Zhang, O., Szabo, A., et al. (1995) Spectral density function mapping using 15N relaxation data exclusively. J. Biomol. NMR 6, 153–162.

    PubMed  CAS  Google Scholar 

  17. Ishima, R. and Nagayama, K. (1995) Quasi-spectral density function analysis for nitrogen-15 nuclei in proteins. J. Magn. Reson. Ser. B. 108, 73–76.

    CAS  Google Scholar 

  18. Ishima, R. and Nagayama, K. (1995) Protein backbone dynamics revealed by quasi spectral density function analysis of amide N-15 nuclei. Biochemistry 34, 3162–3171.

    PubMed  CAS  Google Scholar 

  19. Peng, J. W. and Wagner, G. (1992) Mapping spectral density functions using heteronuclear NMR relaxation measurements. J. Magn. Reson. 98, 308–332.

    CAS  Google Scholar 

  20. Lipari, G. and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559.

    CAS  Google Scholar 

  21. Lipari, G. and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc. 104, 4559–4570.

    CAS  Google Scholar 

  22. Peng, J. W. and Wagner, G. (1995) Frequency spectrum of NH bonds in eglin c from spectral density mapping at multiple fields. Biochemistry 34, 16,733–16,752.

    CAS  Google Scholar 

  23. Peng, J. and Wagner, G. (1995) Frequency spectrum of NH bonds in eglin c from spectral density mapping at multiple fields. Biochemistry 34, 16,733–16,752.

    CAS  Google Scholar 

  24. Clore, G. M., Szabo, A., Bax, A., et al. (1990) Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. Chem. Soc. 112, 4989–4991.

    CAS  Google Scholar 

  25. Mandel, A. M., Akke, M., and Palmer, A. G. (1995) Backbone dynamics of E. coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144–163.

    PubMed  CAS  Google Scholar 

  26. Woessner, D. E. (1962) Spin relaxation processes in a two-proton system undergoing anisotropic reorientation. J. Chem. Phys. 36, 1–4.

    CAS  Google Scholar 

  27. Bremi, T., Brüschweiler, R., and Ernst, R. R. (1997) A protocol for the interpretation of side-chain dynamics based on NMR relaxation: application to phenylalanines in antamanide. J. Am. Chem. Soc. 119, 4272–4284.

    CAS  Google Scholar 

  28. Brüschweiler, R. and Wright, P. E. (1994) NMR order parameters of biomolecules: a new analytical representation and application to the Gaussian axial fluctuation model. J. Am. Chem. Soc. 116, 8426–8427.

    Google Scholar 

  29. Tugarinov, V., Liang, Z., Shapiro, Y. E., et al. (2001) A structural mode-coupling approach to 15N NMR relaxation in proteins. J. Am. Chem. Soc. 123, 3055–3063.

    PubMed  CAS  Google Scholar 

  30. Polimeno, A. and Freed, J. H. (1993) A manybody stochastic approach to rotational motions in liquids. Adv. Chem. Phys. 83, 89–163.

    CAS  Google Scholar 

  31. Polimeno, A. and Freed, J. H. (1995) Slow motional ESR in complex fluids—the slowly relaxing local-structure model of solvent cage effects. J. Phys. Chem. 99, 10,995–11,012.

    CAS  Google Scholar 

  32. Shapiro, Y. E., Kahana, E., Tugarinov, V., et al. (2002) Domain flexibility in ligand-free and inhibitor-bound Escherichia coli Adenylate kinase based on a mode-coupling analysis of 15N spin relaxation. Biochemistry 41, 6271–6281.

    PubMed  CAS  Google Scholar 

  33. Mandel, A. M., Akke, M., and Palmer, A. G. R. (1996) Dynamics of ribonuclease H: temperature dependence of motions on multiple time-scales. Biochemistry 35, 16,009–16,023.

    CAS  Google Scholar 

  34. Ishima, R. and Torchia, D. A. (2000) Protein dynamics from NMR. Nat. Struct. Biol. 7, 740–743.

    PubMed  CAS  Google Scholar 

  35. Kay, L. E. (1998) Protein dynamics from NMR. Nat. Struct. Biol. 5, 513–517.

    PubMed  CAS  Google Scholar 

  36. Palmer, A. G. (2001) NMR probes of molecular dynamics: overview and comparison with other techniques. Annu. Rev. Biophys. Biomol. Struct. 30, 129.

    PubMed  CAS  Google Scholar 

  37. Boyd, J. (1995) Measurement of 15N relaxation data from the side chains of asparagine and glutamine residues in proteins. J. Magn. Reson. B. 107, 279–285.

    CAS  Google Scholar 

  38. Wilkinson, T. A., Botuyan, M. V., Kaplan, B. E., et al. (2000) Arginine side-chain dynamics in the HIV-1 rev-RRE complex. J. Mol. Biol. 303, 515–529.

    PubMed  CAS  Google Scholar 

  39. Buck, M., Boyd, J., Redfield, C., et al. (1995) Structural determinants of protein dynamics: analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme. Biochemistry 34, 4041–4055.

    PubMed  CAS  Google Scholar 

  40. Stivers, J. T., Abeygunawardana, C., Mildvan, A. S., et al. (1996) 15N NMR relaxation studies of free and inhibitor-bound 4-oxalocrotonate tautomerase: backbone dynamics and entropy changes of an enzyme upon inhibitor binding. Biochemistry 35, 16,036–16,047.

    CAS  Google Scholar 

  41. Alerhand, A., Doddrell, D., Glushko, V., et al. (1971) Conformation and segmental motion of native and denatured ribonuclease A in solution. Application of natural-abundance carbon-13 partially relaxed Fourier transform nuclear magnetic resonance. J. Am. Chem. Soc. 93, 544–546.

    Google Scholar 

  42. Wand, A. J., Bieber, R. J., Urbauer, J. L., et al. (1995) Carbon relaxation in randomyl fractionally 13C-enriched proteins. J. Magn. Reson. Ser. B. 108, 173–175.

    CAS  Google Scholar 

  43. LeMaster, D. M. and Kushlan, D. M. (1996) Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis. J. Am. Chem. Soc. 118, 9263–9272.

    CAS  Google Scholar 

  44. Dayie, K. T. and Wagner, G. (1995) Carbonyl-carbon relaxation rates reveal a dynamic heterogeneity of the polypeptide backbone in villin 14T. J. Magn. Reson. B. 109, 105–108.

    PubMed  CAS  Google Scholar 

  45. Dayie, K. and Wagner, G. (1997) Carbonyl carbon probe of local mobility in 13C, 15N-enriched proteins using high-resolution nuclear magnetic resonance. J. Am. Chem. Soc. 119, 7797–7806.

    CAS  Google Scholar 

  46. Engelke, J. and Rüterjans, H. (1995) Determination of 13Cα relaxation times in uniformly 13C/15N enriched proteins. J. Biomol. NMR 5, 173–182.

    CAS  Google Scholar 

  47. Yamazaki, T., Muhandiram, R., and Kay, L. E. (1994) NMR experiments for the measurement of carbon relaxation properties in highly enriched, uniformly 13C, 15N-labeled proteins: application to 13Cα carbons. J Am Chem Soc. 116, 8266–8278.

    CAS  Google Scholar 

  48. Zeng, L., Fischer, M. W. F., and Zuiderweg, E. R. P. (1996) Study of protein dynamics in solution by measurement of 13Cα−13CO NOE and 13CO longitudinal relaxation. J. Biomol. NMR 7, 157–162.

    CAS  Google Scholar 

  49. Allard, P. and Hard, T. (1997) NMR relaxation mechanisms for backbone carbonyl carbons in a 13C, 15N-labeled protein. J. Magn. Reson. 126, 48–57.

    PubMed  CAS  Google Scholar 

  50. Nicholson, L. K., Kay, L. E., Baldisseri, D. M., et al. (1992) Dynamics of methyl groups in proteins as studied by proton detected 13C NMR spectroscopy. Application to the leucine residues of Staphylococcal nuclease. Biochemistry 31, 5253–5263.

    PubMed  CAS  Google Scholar 

  51. Sklenár, V., Torchia, D., and Bax, A. (1987) Measurement of carbon-13 longitudinal relaxation using 1H detection. J. Magn. Reson. 73, 375–379.

    Google Scholar 

  52. Hartmann, S. R., and Hahn, E. L. (1962) Nuclear double resonance in the rotating frame. Phys. Rev. 128, 2042–2053.

    CAS  Google Scholar 

  53. Krishnan, V. V., and Rance, M. (1995) Influence of chemical exchange among homonuclear spins in heteronuclear coherence transfer experiments in liquids. J. Magn. Reson. A 116, 97–106.

    CAS  Google Scholar 

  54. Muhandiram, D. R., Yamazaki, T., Sykes, B. D., et al. (1995) Measurement of 2H T 1 and T relaxation times in uniformly 13C-labeled and fractionally 2H-labeled proteins in solution. J. Am. Chem. Soc. 117, 11,536–11,544.

    CAS  Google Scholar 

  55. Lee, A. L., Urbauer, J. L., and Wand, A. J. (1997) Improved labeling strategy for 13C relaxation measurments of methyl groups in proteins. J. Biomol. NMR 9, 437–440.

    PubMed  CAS  Google Scholar 

  56. Ishima, R., Louis, J. M., and Torchia, D. A. (1999) Transverse 13C relaxation of CHD2 methyl isotopomers to detect slow conformational changes of protein side chains. J. Am. Chem. Soc. 121, 11,589–11,590.

    CAS  Google Scholar 

  57. Farrow, N. A., Muhandiram, R., Singer, A. U., et al. (1994) Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry, 33, 5984–6003.

    PubMed  CAS  Google Scholar 

  58. Pascal, S. M., Yamazaki, T., Singer, A. U., et al. (1995) Structural and dynamic characterization of the phosphotyrosine binding region of an Src homology 2 domain-phosphopeptide complex by NMR relaxation, proton exchange, and chemical shift approaches. Biochemistry 34, 11,353–11,362.

    CAS  Google Scholar 

  59. Kay, L. E., Muhandiram, D. R., Farrow, N. A., et al. (1996) Correlation between dynamics and high affinity binding in an SH2 domain interaction. Biochemistry 35, 361–368.

    PubMed  CAS  Google Scholar 

  60. Fischer, M. W. F., Zeng, L., Pang, Y., et al. (1997) Experimental characterization of models for backbone picosecond dynamics in proteins. Quantification of NMR auto- and cross-correlation relaxation mechanisms involving different nuclei of the peptide plane. J. Am. Chem. Soc. 119, 12,629–12,642.

    CAS  Google Scholar 

  61. Ishima, R., Wingfield, P. T., Stahl, S. J., et al. (1998) Using amide 1H and 15N transverse relaxation to detect millisecond timescale motions in perdeuterated proteins: application to HIV-1 protease. J. Am. Chem. Soc. 120, 10,534–10,542.

    CAS  Google Scholar 

  62. Ishima, R., Petkova, A. P., Louis, J. M., et al. (2001) Comparison of methyl rotation axis order parameters derived from model-free analyses of 2H and 13C longitudinal and transverse relaxation rates in the same protein sample. J. Am. Chem. Soc. 123, 6164–6171.

    PubMed  CAS  Google Scholar 

  63. Lee, A. L., Flynn, P. F., and Wand, A. J. (1999) Comparison of 2H and 13C NMR relaxation techniques for the study of protein methyl group dynamics in solution. J. Am. Chem. Soc. 121, 2891–2902.

    CAS  Google Scholar 

  64. Akke, M., and Palmer, A. G. (1996) Monitoring macromolecular motions on microsecond-millisecond timescales by R -R 1 constant-relaxation-time NMR spectroscopy. J. Am. Chem. Soc. 118, 911–912.

    CAS  Google Scholar 

  65. Davis, D. G., Perlman, M. E., and London, R. E. (1994) Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T and T 2 (CPMG) methods. J. Magn. Reson. B. 104, 266–275.

    PubMed  CAS  Google Scholar 

  66. Carr, H. Y., and Purcell, E. M. (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638.

    CAS  Google Scholar 

  67. Meiboom, S., and Gill, D. (1958) Modified spinecho method for measuring nuclear spin relaxation times. Rev. Sci. Instrum. 29, 688–691.

    CAS  Google Scholar 

  68. Hahn, E. L. (1950) Spin echoes. Phys. Rev. 80, 580–594.

    Google Scholar 

  69. Carver, J. P., and Richards, R. E. (1972) A general two-site solution for the chemical exchange produced dependence of T 2 upon the Carr-Purcell pulse separation. J. Magn. Reson. 6, 89–105.

    CAS  Google Scholar 

  70. Ishima, R., and Torchia, D. A. (1999) Estimating the times cale of chemical exchange of proteins from measurements of transverse relaxation rates in solution. J. Biomol. NMR 14, 369.

    PubMed  CAS  Google Scholar 

  71. Luz, Z., and Meiboolm, S. (1963) Nuclear magnetic resonance study of the protolysis of trimethylammonium ion in aqueous solution—order of the reaction with respect to solvent. J. Chem. Phys. 39, 366–370.

    CAS  Google Scholar 

  72. Millet, O. M., Loria, J. P., Kroenke, C. D., et al. (2000) The static magnetic field dependence of chemical exchange line broadening defines the NMR chemical shift timescale. J. Am. Chem. Soc. 122, 2867–2877.

    CAS  Google Scholar 

  73. Palmer, A. G., Kroenke, C. D., and Loria, J. P. (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 339(Pt. B), 204–238.

    Article  PubMed  CAS  Google Scholar 

  74. Mueller, L. J. and Weitekamp, D. P. (1999) Quantum statistical corrections to dynamic nuclear magnetic resonance. Science 283, 61–65.

    PubMed  CAS  Google Scholar 

  75. Trott, O. and Palmer, A. G. (2002) R relaxation outside of the fast-exchange limit. J. Magn. Reson. 154, 157–160.

    PubMed  CAS  Google Scholar 

  76. Loria, J. P., Rance, M., and Palmer, A. G. (1999) A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J. Am. Chem. Soc. 121, 2331–2332.

    CAS  Google Scholar 

  77. Wang, C. Y., Grey, M. J., and Palmer, A. G. (2001) CPMG sequences with enhanced sensitivity to chemical exchange. J. Biomol. NMR 21, 361–366.

    PubMed  CAS  Google Scholar 

  78. Mulder, F. A., Skrynnikov, N. R., Hon, B., et al. (2001) Measurement of slow (μs-ms) timescale dynamics in protein side chains by 15N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J. Am. Chem. Soc. 123, 967–975.

    PubMed  CAS  Google Scholar 

  79. Skrynnikov, N. R., Mulder, F. A., Hon, B., et al. (2001) Probing slow-timescale dynamics at methyl-containing side chains in proteins by relaxation dispersion NMR measurements: application to methionine residues in a cavity mutant of T4 lysozyme. J. Am. Chem. Soc. 123, 4556–4566.

    PubMed  CAS  Google Scholar 

  80. Marion, D., Ikura, M., Tschudin, R., et al. (1989) Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. J. Magn. Reson. 85, 393–399.

    CAS  Google Scholar 

  81. Geen, H., and Freeman, R. (1991) Band-selective radio frequency pulses. J. Magn. Reson. 93, 93–141.

    Google Scholar 

  82. Kay, L. E., Keifer, P., and Saarinen, T. (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10,663–10,665.

    CAS  Google Scholar 

  83. Palmer, A. G., Cavanagh, J., Wright, P. E., et al. (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J. Magn. Reson. 93, 151–170.

    CAS  Google Scholar 

  84. Orekhov, V. Y., Pervushin, K. V., and Arseniev, A. S. (1994) Backbone dynamics of (1–71) bacteriorhodopsin studied by two-dimensional 1H−15N NMR spectroscopy. Eur. J. Biochem. 219, 887–896.

    PubMed  CAS  Google Scholar 

  85. Akke, M., Brüschweiler, R., and Palmer, A. G. (1993) NMR order parameters and free energy: an analytic approach and application to cooperative Ca2+ binding by calbindin D9k. J. Am. Chem. Soc. 115, 9832–9833.

    CAS  Google Scholar 

  86. Cavanagh, J., and Akke, M. (2000) May the driving force be with you—whatever it is. Nat. Struct. Biol. 7, 11–13.

    PubMed  CAS  Google Scholar 

  87. Li, Z., Raychaudhuri, S., and Wand, A. J. (1996) Insights into the local residual entropy of proteins provided by NMR relaxation. Protein Sci. 5, 2647–2650.

    Article  PubMed  CAS  Google Scholar 

  88. Yang, D., Mok, Y. K., Forman-Kay, J. D., et al. (1997) Contributions to protein entropy and heat capacity from bond vector motions measured by NMR spin relaxation. J. Mol. Biol. 272, 790–804.

    PubMed  CAS  Google Scholar 

  89. Yang, D. and Kay, L. E. (1996) Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol. 263, 369–382.

    PubMed  CAS  Google Scholar 

  90. Bracken, C., Carr, P. A., Cavanagh, J., et al. (1999) Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA. J. Mol. Biol. 285, 2133–2146.

    PubMed  CAS  Google Scholar 

  91. Zidek, L., Novotny, M. V., and Stone, M. J. (1999) Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat. Struct. Biol. 6, 1118–1121.

    PubMed  CAS  Google Scholar 

  92. Lee, A. L., Kinnear, S. A., and Wand, A. J. (2000) Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat. Struct. Biol. 7, 72–77.

    PubMed  CAS  Google Scholar 

  93. Lee, A. L., and Wand, A. J. (2001) Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411, 501–504.

    PubMed  CAS  Google Scholar 

  94. Hill, R. B., Bracken, C., DeGrado, W. F., et al. (2000) Molecular motions and protein folding: characterization of the backbone dynamics and folding equilibrium of alpha D-2 using C-13 NMR spin relaxation. J. Am. Chem. Soc. 122, 11,610–11,619.

    CAS  Google Scholar 

  95. Tollinger, M., Skrynnikov, N. R., Mulder, F. A., et al. (2001) Slow dynamics in folded and unfolded states of an SH3 domain. J. Am. Chem. Soc. 123, 11,341–11,352.

    CAS  Google Scholar 

  96. Vugmeyster, L., Kroenke, C. D., Picart, F., et al. (2000) 15N R measurements allow the determination of ultrafast protein folding rates. J. Am. Chem. Soc. 122, 5387–5388.

    CAS  Google Scholar 

  97. Eisenmesser, E. Z., Bosco, D. A., Akke, M., et al. (2002) Enzyme dynamics during catalysis. Science 295, 1520–1523.

    PubMed  CAS  Google Scholar 

  98. Rozovsky, S., Jogl, G., Tong, L., et al. (2001) Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics. J. Mol. Biol. 310, 271–280.

    PubMed  CAS  Google Scholar 

  99. Cole, R., and Loria, J. P. (2002) Evidence for flexibility in the function of ribonuclease A. Biochemistry 41, 6072–6081.

    PubMed  CAS  Google Scholar 

  100. Mulder, F. A., Mittermaier, A., Hon, B., et al. (2001) Studying excited states of proteins by NMR spectroscopy. Nat. Struct. Biol. 8, 932–935.

    PubMed  CAS  Google Scholar 

  101. Akke, M., Forsén, S., and Chazin, W. J. (1991) Molecular basis for cooperativity in Ca2+ binding in calbindin D9k. J. Mol. Biol. 220, 173–189.

    PubMed  CAS  Google Scholar 

  102. Mäler, L., Blankenship, J., Rance, M., et al. (2000) Site-site communication in the EF-hand Ca2+-binding protein calbindin D9k. Nat. Struct. Biol. 7, 245–250.

    PubMed  Google Scholar 

  103. Stevens, S. Y., Sanker, S., Kent, C., et al. (2001) Delineation of the allosteric mechanism of a cytidylyltransferase exhibiting negative cooperativity. Nat. Struct. Biol. 8, 947–952.

    PubMed  CAS  Google Scholar 

  104. Loria, J. P., Rance, M., and Palmer, A. G. (1999) A TROSY CPMG sequence for characterizing chemical exchange in large proteins. J. Biomol. NMR 15, 151–155.

    PubMed  CAS  Google Scholar 

  105. Zhu, G., Xia, Y., Nicholson, L. K., et al. (2000) Protein dynamics measurements by TROSY-based NMR experiments. J. Magn. Reson. 143, 423–426.

    PubMed  CAS  Google Scholar 

  106. Tolman, J. R., Flanagan, J. M., Kennedy, M. A., et al. (1997) NMR evidence for slow collective motions in cyanometmyoglobin. Nat. Struct. Biol. 4, 292–297.

    PubMed  CAS  Google Scholar 

  107. Tolman, J. R., Al-Hashimi, H. M., Kay, L. E., et al. (2001) Structural and dynamic analysis of residual dipolar coupling data for proteins. J. Am. Chem. Soc. 123, 1416–1424.

    PubMed  CAS  Google Scholar 

  108. Reif, B., Hennig, M., and Griesinger, C. (1997) Direct measurement of angles between bond vectors in high-resolution NMR. Science 276, 1230–1233.

    PubMed  CAS  Google Scholar 

  109. Yang, D. W., Mittermaier, A., Mok, Y. K., et al. (1998) A study of protein side-chain dynamics from new 2H auto-correlation and 13C cross-correlation NMR experiments: application to the N-terminal SH3 domain from drk. J. Mol. Biol. 276, 939–954.

    PubMed  CAS  Google Scholar 

  110. Carlomagno, T., Maurer, M., Hennig, M., et al. (2000) Ubiquitin backbone motion studied via NHN-C′Cα dipolar-dipolar and C′-C′Cα/NHN CSA-dipolar cross-correlated relaxation. J. Am. Chem. Soc. 122, 5105–5113.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Patrick Loria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kempf, J.G., Loria, J.P. Protein dynamics from solution NMR. Cell Biochem Biophys 37, 187–211 (2002). https://doi.org/10.1385/CBB:37:3:187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:37:3:187

Index Entries

Navigation